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A canal or channel surface is a surface traced out as 

the envelope of a one-parameter family of 

sphereswhose centers lie on a space curve, its spine 

or directrix: When the radii of the generating 

spheres areconstant the canal surface is the 

envelope of a moving sphere and is called a 

sweeping or pipe surface.There are several 

examples that we are familiar with, such as: right 

circular cylinder (spine is a line, theaxis of the 

cylinder), torus (directrix is a circle), right circular 

cone (spine is a line (the axis), radii ofthe spheres 

not constant), and surface of revolution (spine is a 

line). This concept is a generalization ofthe classical 

notion of a mate of a planar curve [1-8.] 

 Sweeping surfaces play an essential rolein 

Computer Aided Geometric Design (CAGD),such 

as construction of robotic path planning,blending 

surfaces, transition surfaces betweenpipes, 

manufacturing of sculptured surfaces [8, 9].One of 

the important fact about sweeping surfaceis that the 

sweeping surface can be a developablesurface [11-

13]. Developable surfaces havea very important 

place in mathematics and engineeringsuch as 

motion analysis or designing carsand ships. There 

are three types of developableruled surfaces: 

cylinders, cones and tangent surfaces[13-16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several studies in the previous literature thatmay be 

inclusived in the area of our treatise areas follows: 

Do Carmo discussed some geometricalfeatures of 

pipe surfaces and proved two veryremarkable 

theorems, namely Fary{Milnor theoremand 

Fenchel's theorem [1]. In [2], Lu andPottmann 

proved that a canal surface with a rationalspine 

curve constantly admits a rationalparametrization 

and o ered an algorithm for itscomputation. In [3], 

Stasiak and Maddocks modeledDNA molecules 

and parts of proteins as deformablecanal surfaces 

and classi ed the betterpacking problem. Maritan et 

al. [4] studied theproblem locating the optimal 

shapes of closelypacked canal surfaces. 

Krivoshapko, and Hyengstuided the geometric 

researches of cyclic surfaceswith generating circles 

of constant and several diameters[5]. Kim et al. [6] 

considered a particulartype of sweeping surface 

named canal surfaces inEuclidean 3-space. For such 

a kind of surfaces,some interesting and important 

relations aboutthe Gaussian curvature, the mean 

curvature andthe second Gaussian curvature are 

derived. Qianet al. [7] studied canal surfaces in the 

Euclidean3-space in terms of their Gauss map, and 

obtaineda complete classi cation of canal surfaces 

whoseGauss maps are of the so-called pointwise 1-

type.Soliman et al. [8] investigated a particular 

Weingartenand linear Weingarten varieties of 

canalsurfaces according to Bishop frame in 

Euclidean3-space satisfying some fascinating and 

necessary 



equations in terms of the Gaussian curvature, the
mean curvature.

In 1975, Bishop [17] introduced a new frame
called the alternetive frame or Bishop frame,
which could provide the desired means to slide
along a space curve. It has become a useful tool
for animations, motion planning, computer vi-
sion, and related applications where the Serret–
Frenet frame may prove unsuitable. For exam-
ple, it may be use to compute the shape of se-
quences of DNA using a curve defined by the
Bishop frame. The Bishop frame may be also
produce a way to control virtual cameras in com-
puter animations [11, 12, 19].

In this paper, sweeping surfaces with Natu-
ral mate curve of a curve are proposed and fur-
ther applied to surface modeling. By establish-
ing the Natural rotation-minimizing (NRMF) of
Natural mate curve of a spatial curve, we express
parametric representation for a sweeping surface
and study its local singularities and convexity. In
terms of this, the necessary and sufficient condi-
tion for the sweeping surface to be a developable
ruled surface is derived. Finally, we illustrate the
convenience and efficiency of this method by some
representative examples. This study is intended
to conduct the geometric analysis of sweeping sur-
faces through the Natural mate curve of a spatial
curve.

2 Preliminaries
The ambient space is the Euclidean 3-space E3,
and for our work we have used [1, 9] as general
references. Let α = α(s) be a unit speed curve
in Euclidean 3-space R3; by κ(s) and τ(s) we de-
note the natural curvature and torsion of α(s), re-
spectively. Let {T(s), N(s), B(s)} be the Serret–
Frenet frame associated with the curve α(s), then
the Serret–Frenet formulae read: T

′

N
′

B
′

 =

 0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0

 T
N
B


(1)

= Ω×

 T
N
B

 ,
. where Ω(s)=τT + κB is the angular velocity
of the Serret–Frenet frame. Here a dash denotes
differentiation with respect to s.

Definition 2.1. Let curve β(sn) be the in-
tegral curve of the principal normal vector N(s)
of α(s), that is β(sn) = 0s

∫
N(s)ds, the curve

β(sn) is called the Natural mate curve of α(s),

and the pair{α(s), β(sn)} is called the Natural
pair [20].

It can be also shown that the arc length pa-
rameter sn of the curve β(sn) can be expressed as
sn = s+ c , where c is a constant, without losing
of generality, we can take c = 0, that is, s = sn.
The Serret–Frenet frame {Tn(s), Nn(s), Bn(s)}
along β(s) satisfies the following formula Tn

Nn

Bn

 =

 0 1 0
− cosψ 0 sinψ
sinψ 0 cosψ

 T
N
B

 ,
(2)

where

cosψ =
κ√

κ2 + τ2
, sinψ =

τ√
κ2 + τ2

. (3)

Furthermore, we have T
′

n

N
′

n

B
′

n

 =

 0 κn(s) 0
−κn(s) 0 τn(s)
0 −τn(s) 0

 Tn

Nn

Bn


(4)

= Ωn×

 Tn

Nn

Bn

 ,
where Ωn(s)=τnTn + κnBn is the angular ve-
locity of the Serret–Frenet frame {Tn(s), Nn(s),
Bn(s)}. Here,

κn(s) =
√
κ2 + τ2, τn(s) =

κ2

κ2 + τ2

(
τ

κ

)′

. (5)

Definition 2.2. An orthonormal moving frame
{ξ1, ξ3, ξ3}, along a space curve γ(s), is rotation
minimizing frame (RMF) with respect to ξ1 if
its angular velocity ω satisfies < ω, ξ1 >=0 or,
equivalently, the derivatives of ξ2 and ξ3 are both
parallel to ξ1. An analogous characterization
holds when ξ2 or ξ3 is chosen as the reference
direction [19].

According to the Definition 2.2, we ob-
serve that the Serret–Frenet frame is rotation-
minimizing with respect to the principal normal
N2, but not with respect to the tangent Tn and
the binormal Bn. Although the Serret–Frenet
frame is not rotation minimizing with respect to
Bn, one can easily derive such a rotation min-
imizing frame from it. New normal plane vec-
tors (N1,N2) are specified through a rotation of
(Nn,Bn) according to T1

N1

N2

 =

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 Tn

Nn

Bn

 ,
(6)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.63 Rashad A. Abdel-Baky, Monia F. Naghi

E-ISSN: 2224-2880 582 Volume 19, 2020



with a certain angle ϕ(s). Here, we will call the
set {T1, N1, N2} as Natural rotation-minimizing
(NRMF). Therefore, we have the alternative
frame equations T

′

1

N
′

1

N
′

2

 =

 0 κ1(s) κ2(s)
−κ1(s) 0 0
−κ2(s) 0 0

 T1

N1

N2

 ,
(7)

where

κ1 = κn cosϕ,κ2 = κn sinϕ,

ϕ = tan−1
(
κ2

κ1

)
;κ1 6= 0,√

κ21 + κ22 = κ, ϕ− ϕ0 = −s0s
∫
τnds.

 (8)

We denote a surface M in E3 by

Q(s, θ) = (x1 (s, θ) , x2 (s, θ) , x3 (s, θ)) ,

(s, θ) ∈ D ⊆ R2.

Let U be the standard unit normal vector field
on a surface M defined by U = Qs×Qθ

‖Ps×Pθ‖ , where,

Qi = ∂Q
∂i . Then the metric (first fundamental

form) I of a surface M is defined by

I = g11ds
2 + 2g12dsdθ + g22dθ

2, (9)

where g11 =<Qs,Qs >, g12 =<Qs,Qθ >
, g22 =<Qθ,Qθ >. We define the second fun-
damental form II of M by

II = h11ds
2 + 2h12dsdθ + h22dθ

2, (10)

where h11 =<Qss,U >, h12 =<Qθs,U >
, h22 =<Qθθ,U >. The Gaussian curvature K is
given by

K(s, θ) =
h11h22 − h212
g11g22 − g212

. (11)

3 Sweeping surfaces
In this section, we first define a sweeping surface
in Euclidean 3-space E3. Let β(s) be the Nat-
ural mate curve of a unit speed curve α(s), and
{T1, N1, N2} be the NRMF along β(s). Then a
parametrization of a sweeping surface is given by

M : Q(s, θ) = β(s) + T (s)x(θ) (12)

= β(s) + cos θN1(s) + sin θN2(s).

For such a sweeping surface, β(s) and x(θ) are
called the spine curve and the profile curve, re-
spectively; x(θ) = (0, cos θ, sin θ)t is with another
parameter θ ∈ I ⊆ R. The special orthogonal

matrix T (s) = {T1,N1,N2} specifies the NRMF
along β(s). From now on, we shall often not write
the parameters s, and θ explicitly in our formulae.
By using Eq. (7), we can obtain that

Qs(s, θ) = (1− κ1 cos θ − κ2 sin θ)T1,
Qθ(s, θ) = − sin θN1 + cos θN2,

}
(13)

and

g11= (1− κ1 cos θ − κ2 sin θ)2 ,
g12 = 0, g22 = 1.

}
(14)

The unit normal vector is

U(s, θ) = cos θN1 + sin θN2. (15)

It is clear that U(s, θ) is contained in the nor-
mal plane of the spine curve β(s), because it is
perpendicular to T1. Also,

γ(θ) = Q(θ, s0) = α(s0)+cos θN1(s0)+sin θN2(s0),
(16)

is a planar unit speed curve. The unit tangent
vector to γ(θ) is

Tγ(θ) = − sin θN1(s0) + cos θN2(s0),

and thus the unit principal normal vector of γ is
given by

Nγ = e1(s0)×Tγ(θ) = − cos θN1(s0)−sin θN2(s0)

= U(s0, θ)

Thus, the surface normal U(s0, θ) is identical to
the principal normal Nγ , that is, the curve γ(θ)
is a geodesic curve on Q(θ, s0). Subsequently, the
θ−parameter curve cannot be asymptotic curve.
By simple computations, we have:

Qss = −
(
κ

′

1 sin θ + κ
′

2 cos θ
)

T1

+ (1− κ1 sin θ − κ2 cos θ) (κ1N1 + κ2N2),
Qsθ = −(κ1 cos θ − κ2 sin θ)T1,
Qθθ = − (sin θN1 + cos θN2) .


(17)

This leads to h11, h12, and h22 are given by:

h11 = (1− κ1 sin θ − κ2 cos θ) (κ1 sin θ + κ2 cos θ) ,
h12 = 0, h22 = 1.

}
(18)

Proposition 3.1. Let M be the sweeping surface
as in Eq. (12). Then:
(1) The s−parameter curve is a geodesic on M if
and only if

κ1 sin θ − κ2 cos θ + κ1κ2 cos θ + 1
2

(
κ22 − κ21

)
sin 2θ = 0,

κ
′

1 cos θ + κ
′

2 sin θ = 0

}
(19)
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(2) The s−parameter curve is an asymptotic
curve on M if and only if.

θ = tan−1

κ2 ± κ1
√∣∣κ22 + κ21 − 1

∣∣
κ1 ∓ κ2

√∣∣κ22 + κ21 − 1
∣∣
 . (20)

Proof. Form Eqs. (15), and (16), we have:
(1) The s−parameter curve is a geodesic if and
only if Qss ×U(s, θ) = 0, that is,

[κ1 sin θ − κ2 cos θ + κ1κ2 cos θ
+1

2

(
κ22 − κ21

)
sin 2θe1

+
[
κ

′

1 cos θ + κ
′

2 sin θ
]

(sin θN1 − cos θN2) = 0.


Since T1, N1 and N2 are linearly independent
unit vectors, we have the equation system (19).
(2) The s−parameter curve is an asymptotic
curve on M if and only if < U,Qss >= 0, that
is,

(1− κ1 sin θ − κ2 cos θ) (κ1 cos θ + κ2 sinϑ) = 0,

from which it follows that

sin θ =
κ2 ± κ1

√∣∣κ22 + κ21 − 1
∣∣

κ22 + κ21

and

cos θ =
κ1 ∓ κ2

√∣∣κ22 + κ21 − 1
∣∣

κ22 + κ21
,

as claimed .

3.1 Singularities and lines of
curvature

WSingularities and lines of curvature are essen-
tial for understanding the properties of sweeping
surfaces and are investigated in the following: M
has singular points if and only if the first deriva-
tives are linearly dependent, that is,

Qθ ×Qs= (1− κ1 cos θ − κ2 sin θ)U = 0. (21)

Since U is a nonzero unit vector, then 1 −
κ1 cos θ − κ2 sin θ = 0; hence,

sin θ =
κ2 ± κ1

√∣∣κ22 + κ21 − 1
∣∣

κ22 + κ21
(22)

, and

cos θ =
κ1 ∓ κ2

√∣∣κ22 + κ21 − 1
∣∣

κ22 + κ21
.

Hence there are two sets of singular points on M .
From Eq. (12) it follows that the expression of

these two sets is

r±(s) = β(s) +
κ1 ∓ κ2

√∣∣κ22 + κ21 − 1
∣∣

κ22 + κ21
N1(s)

(23)

+
κ2 ± κ1

√∣∣κ22 + κ21 − 1
∣∣

κ22 + κ21
N2(s).

From Eqs. (14), and (18) it can be found that
g12 = h12 = 0. Hence, the ϑ-and s curves
of M are lines of curvature. Surfaces whose
parametric curves are lines of curvature have
several applications in geometric design [2]. In
the case of sweeping surfaces, one has to compute
the offset surfaces Qf (s, θ) = Q(s, θ) + ρU(s, θ)
of a given surface Q(s, θ) at a certain distance ρ.
Therefore, the offsetting operation for sweeping
surface can be reduced to the offsetting of planar
profile curve, which is much easier to deal with.
Hence, we can state the following proposition:

Proposition 3.2. Consider a sweeping sur-
face M as in Eq. (12). Let xf (θ) be the planar
offset of the profile x(θ) at distance ρ. Then
the offset surface Qf (s, θ) is again a sweeping
surface, generated by the spine curve β(s) and
profile curve xf (θ).

In order to study the shape of M we exam-
ine the Gaussian curvature K(s, θ) = χ1χ2.
Here, the χi(s, θ) (i = 1, 2) are the principal
curvatures of the sweeping surface. For this
purpose, the value of one principal curvature is

χ1 :=

∥∥∥∥∥dxdθ × d2x

dθ2

∥∥∥∥∥
∥∥∥∥dxdθ

∥∥∥∥−3 = 1. (24)

And, the curvature of the s−parameter curve (θ-
constant) is

χ(s, θ0) :=
‖Qs ×Qss‖
‖Qs‖3

=
κn

1− κ1 cos θ − κ2 sin θ
.

(25)
Moreover, the principal curvature χ2 is related to
the curvature χ(s, θ) via Meusnier’s Theorem [1]:

χ2 = χ(s, θ) cos Γ, (26)

where Γ = cos−1 < U,Nn>. Hence, the Gaus-
sian curvature K(s, θ) can be rewritten as

K(s, θ) = χ(s, θ) cos Γ. (27)

In CAGD, conditions that guarantee the convex-
ity or curves which produce parabolic points of a
surface are required in various applications (such
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as manufacturing of sculptured surfaces, or lay-
ered manufacturing). However, for the sweeping
surface M the convexity can be controlled with
the help of the geometrical properties as:

K(s, θ) = 0⇔ χ(s, θ) cos Γ = 0. (28)

There are two possible cases:
Case (1) occurs when χ(s, θ) = 0. From Eq.
(25) it can be found that if κn(s) = 0, then
χ = 0. This means that the spine curve β(s)
is degenerate into a straight line. Therefore,
an inflection or flat point of the spine curve
generates a parabolic curve θ =const. on the
sweeping surface.
Case (2) occurs when Γ = π/2. This means
that if U(s, θ) ‖ Bn, hence cos Γ = 0. Then the
curve β(s) is not only a line of curvature but also
asymptotic of the sweeping surface.

Corollary 3.1. Consider a sweeping sur-
face M with spine and profile curves have
non-vanishing curvatures everywhere. If the
normal U(s, θ) is never parallel to the principal
normal Nn(s) of the spine curve β(s), then M
has no parabolic points.

According to Proposition 3.1, and Eq. (12)
the expression of the two parabolic curves is

x(s)=β(s) +
κ1∓κ2

√
|κ2

2+κ
2
1−1|

κ2
2+κ

2
1

N1

+
κ2±κ1

√
|κ2

2+κ
2
1−1|

κ2
2+κ

2
1

N2.

Corollary 3.2. Let M be a sweeping surface
with spine and profile curves have non-vanishing
curvatures everywhere. Then M has exactly two
parabolic curves if and only if the spine curve
β(s) is an asymptotic curve.

3.2 Developable surfaces
We now will discuss in what conditions the sweep-
ing surfaces are developable surfaces. Therefore,
we analyze the case, that the profile curve x de-
generates into a straight line, thus generating a
developable surface

F : Q(s, u) = β(s) + uN2(s), u ∈ R. (29)

Similarly, from Eq. (12), we have the following
developable surface

F⊥ : Q⊥(s, u) = β(s) + uN1(s), u ∈ R. (30)

It is possible to show Q(s, 0) = β(s) (resp.
Q⊥(s, 0) = β(s)), 0 ≤ s ≤ L, that is, the sur-
face F (resp. F⊥) interpolates the curve β(s).
Furthermore, since

Qs ×Qu := − (1− uκ2) N1(s), (31)

then F⊥ is the normal developable surface of F
along β(s). Therefore, the surface F (resp. F⊥)
interpolates the curve β(s), and β(s) is a line of
curvature of F (resp. F⊥).

Theorem 3.1. (Existence and uniqueness).
Under the above notations there exists a unique
developable surface expressed by Eq. (29).
Proof. For the existence, we have the devel-
opable expressed by Eq. (29). On the other
hand, since F is a ruled surface, we assume that

F : Q(s, u) = β(s) + ua(s), u ∈ R,

a(s) = a1(s)T1+a2(s)N1+a3(s)N2,

‖a(s)‖2 = a21 + a22 + a23 = 1, a
′
(s) 6= 0.


(32)

It can be immediately seen that F is developable
if and only if

det(β
′
,a,a

′
) = 0⇔ a2

(
a

′

3 + a1κ2
)
−a3

(
a

′

2 + a1κ1
)

= 0.

(33)
On the other hand, in view of Eq. (3.21), we have

(Qs ×Qu) (s, u) = ±λ (s, u) N1, (34)

where λ = λ (s, u) is a differentiable function.
Further, the normal vector Qs ×Qv at the point
(s, 0) is

(Qs ×Qu) (s, 0) = −a3N1 + a2N2. (35)

Thus, from Eqs. (34), and (35), one finds that:

a2 = 0, anda3 = λ (s, 0) , (36)

which follows from Eq. (35) that a3a1κ1 = 0,
which leads to a1a3 = 0, with κ1 6= 0. If (s, 0) is
a regular point (i.e., λ (s, 0) 6= 0), then a3(s) 6= 0,
and a1 = 0. Therefore, the direction of a(s) is
equal to the direction of e3(s). This means that
uniqueness holds .

In similar arguments for F⊥, we can give
the corresponding Theorem of Theorem 3.1.
(Existence and uniqueness) we omit the details
here. Thus, the Joachimsthal theorem can be
stated as the following:

Theorem 3.2. (Joachimsthal). Let F and F⊥

two developable surfaces such that F ∩F⊥ = β(s)
is a regular curve and < N1,N2 >= 0 along β(s),
where N1 and N2 are unitary normal vector
fields to F and F⊥, respectively. Then β(s) is a
line of curvature of F if and only if it is a line of
curvature of F⊥.
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In above theorems, we not only prove the exis-
tence and uniqueness of the developable surface,
but also give the concrete expression of the sur-
face. This is very meaningful in practical applica-
tion. As it is will known, there are three types of
developable surfaces, the given curve can be clas-
sified into three kinds correspondingly. In what
follows, we will discuss the relationship between
the given curve β(s) and its isoparametric devel-
opable. The first case is when,

N2 ×N
′

2 = 0⇔κn sinϕN1 = 0. (37)

In this case, F is referred to as a cylindrical sur-
face. Since N1 is a nonzero unit vector, then the
F is a cylindrical surface if and only if sinϕ =
0 ⇔ ϕ = 0 or π. However, in any case, we have
ϕ

′
= 0, then τn = 0. That is, the curve β is a

planar curve, and F is a binormal surface. By
similar argument, we can also have the following:

N2 ×N
′

2 6= 0. (38)

This implies that the F is a non-cylindrical sur-
face. Therefore, the first derivative of the direc-
trix is

β
′
(s) = C

′
(s) + σ(s)N

′

2(s) + σ
′
(s)N2(s), (39)

where C
′

is the first derivative of the striction
curve, σ(s) is a smooth function. Therefore, we
obtain

< N2 ×N
′

2,C
′
>= 0. (40)

Similarly, there are two possible cases which sat-
isfy Eq. (40), as presented in the following: The
first case is when the first derivative of the stric-
tion curve is C

′
= 0. Geometrically this condition

implies that the striction curve degenerates to a
point, and the ruled surface becomes a cone; the
striction point of a cone is commonly referred to
as the vertex. Therefore, the surface F is a cone
if and only if there exists a fixed point C and a
function σ(s) such that σκn sinϕ = 1, σ

′
= 0,

which imply that

σ = const. =
1

κn sinϕ
⇔ κn sinϕ = κn0 sinϕ0,

(41)
where ϕ0 = ϕ(0), and κn0 = κn(0). In Eq. (41),
κn sinϕ is a constant. However, if ϕ is constant,
then τn = 0, that is, β(s) is a planar line of curva-
ture, and κn is also constant. Similarly, if κn is a
constant, we can have τn = 0, and ϕ is a constant.
Then the curve β(s) is the arc of a circle.

The second case is when κn sinϕ 6= κn0 sinϕ0,
we have C

′ 6= 0. Since < N2 × N
′

2,C
′
>= 0,

< N2,N
′

2 >= 0, and the condition for C to be

striction curve is equivalent to < C
′
,N2 >= 0 we

can get C
′‖N2. This means the tangent surface

is composed of tangents of a spatial curve, the
cuspidal edge β(s).

3.3 Examples

In what follows, we will discuss the construction
of developable surfaces with the given curve as a
line of curvature.

Example 1. Given the cylindrical helix

α(s) =
1√
2

(− cos s,− sin s, s), 0 ≤ s ≤ 2π.

Then, it is easy to show that:
T(s) = 1√

2
(sin s,− cos s, 1),

N(s) = (cos s, sin s, 0),
B(s) = 1√

2
(− sin s, cos s, 1),

κ = τ = 1√
2
.


According to Eq. (2), the Serret–
Frenet frame of β(s) can be described as
Tn(s) = (cos s, sin s, 0)
Nn(s) = (− sin s, cos s, 0),
Bn(s) = (0, 0, 1),
κn = 1, andτn = 0.


From τn = 0, we find ϕ(s) = ϕ0 is a constant,
and Eq. (41) is satisfied. If ϕ0 = 0 or π
the developable surface is a cylinder. Choose
ϕ0 = 0 for example, the corresponding surface is
expressed as

F : Q(s, u) = (− sin s, cos s, u)

which is shown in Fig. 1 If we choose ϕ0 = π
4 ,

then

N2(s) = − sinϕNn+cosϕBn =
1√
2

(− sin s, cos s, 1),

and the developable surface
F:Q(s,u)=(-sin s− u√

2
sin s, cos s+ u√

2
cos s, u√

2
),

is a cone possesses β(s) as a line of curvature
(See Fig. 2).
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Figure 1: Cylinder with 0 ≤ s ≤ π and 0 ≤
u ≤ 1.

Figure 2: Cone with 0 ≤ s ≤ π and 0 ≤ u ≤ 1

Example 2. Given the slant helix

α(s) =
(
3
4 cos s+ cos 3s

12 , 34 sin s+ sin 3s
12 ,−

√
3
2 cos s

)
.

After simple computation, we have:

T(s) =
(
−3

4 sin s− sin 3s
4 , 34 cos s+ cos 3s

4 ,
√
3
2 sin s

)
,

N(s) =
(
−
√
3
2 cos 2s,−

√
3
2 sin 2s, 12

)
,

B(s) =
(
3 cos− cos 3s

4 + cos 3s
12 , sin3 s,

√
3
2 cos s

)
,

κ(s) =
√

3 cos s, τ(s) = −
√

3 sin s.


Furthermore, the Serret–Frenet
frame of β(s) can be described as:

Tn(s) =
(
−
√
3
2 cos 2s,−

√
3
2 sin 2s, 12

)
,

Nn(s) =
(
sin 4s
4 , −3−cos 4s4 ,−

√
3
2 sin 2s

)
,

Bn(s) =
(
3−cos 4s

4 , − cos− cos 3s
2 ,

√
3
2 cos 2s

)
,

κn =
√

3, andτn = −1.


It is easy to show that ϕ(s) = s + ϕ0. If
we choose ϕ0 = 0, then ϕ(s) = s, and
κ sinϕ 6= κ0 sinϕ0. Thus, the corresponding
surface is a tangential surface. By computing

 T1

N1

N2

 =

 1 0 0
0 cos s sin s
0 − sin s cos s

 Tn

Nn

Bn

 ,
the surface is expressed as

F : Q(s, u) =

(
sin 4s

4
,
−3− cos 4s

4
,−
√

3

2
sin 2s

)
+ u (− sin sNn + cos sBn)

=

(
sin 4s

4
,
−3− cos 4s

4
,−
√

3

2
sin 2s

)
+

u (0,− sin s, cos s) −
√
3
2 cos 2s −

√
3
2 sin 2s 1

2
sin 4s
4

−3−cos 4s
4 −

√
3
2 sin 2s

3 cos− cos 3s
4 + cos 3s

12 sin3 s
√
3
2 cos s

 ,
which is shown in Fig. 3; 0 ≤ s ≤ π/4, and
0 ≤ u ≤ 3.

Figure 3: Tangential surface with Natural mate
of slant helix.

4 Conclusion
This paper investigate the properties of sweeping
surface by setting up an orthonormal NRMF to
each point of the Naturam mate curve of a space
curve. Consequently, we have solved the problem
of requiring the surface that is sweeping surface
and at the same time developable surface. More-
over, examples illustrates the application of the
obtained formula are introduced. There are sev-
eral opportunities for further work. The method-
ology used here can be applied to the sweep-
ing surface in different spaces such as Lorentz-
Minkowski space, isotropic space, and etc.
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