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1 Introduction
A sweeping surface is a surface traced by a con-
tinuously moving of profile curve along a space
curve, which serves as the spine curve. If the
spine curve is a straight line, the sweeping sur-
face traced is nothing but a cylindrical surface.
If the spine curve is a circular arc, the resulting
sweeping surface is a surface of revolution. Con-
sequently, both cylindrical and rotation surfaces
can be considered as special sets of sweeping sur-
face [1-8]. A sweeping surface has the ownership
that the cross section is a circle and the normal
of the circle plane is mostly parallel to that of the
cross section. There are several various names for
the sweeping surface in previous literature, such
as pipe surfaces, tubular surfaces, and canal sur-
faces.

Several studies in the previous literature that
may be inclusived in the area of our treatise are
as follows: Do Carmo discussed some geometri-
cal features of pipe surfaces and proved two very
remarkable theorems, namely Fary–Milnor theo-
rem and Fenchel’s theorem [1]. In [2], Lu and
Pottmann proved that a canal surface with a ra-
tional spine curve constantly admits a rational
parametrization and offered an algorithm for its
computation. In [3], Stasiak and Maddocks mod-
eled DNA molecules and parts of proteins as de-
formable canal surfaces and classified the better
packing problem. Maritan et al. [4] studied the
problem locating the optimal shapes of closely
packed canal surfaces. Caglioti and Giusti offered
an automatic reconstruction method to address
the reconstruction of a canal surface from a sin-

gle image [4]. Krivoshapko, and Hyeng stuided
the geometric researches of cyclic surfaces with
generating circles of constant and several diam-
eters [5]. Kim et al. [6] considered a particular
type of sweeping surface named canal surfaces in
Euclidean 3-space. For such a kind of surfaces,
some interesting and important relations about
the Gaussian curvature, the mean curvature and
the second Gaussian curvature are derived. Soli-
man et al. [7] investigated a particular Wein-
garten and linear Weingarten varieties of canal
surfaces according to Bishop frame in Euclidean
3-space satisfying some fascinating and necessary
equations in terms of the Gaussian curvature, the
mean curvature. A significant fact about sweep-
ing surfaces is that they can be developable ruled
surfaces [8] . Developable ruled surfaces have a
very influential place in mathematics and engi-
neering such as motion analysis or designing cars
and ships [9–11]. There are three types of devel-
opable ruled surfaces: cylinders, cones and tan-
gent surfaces.

As an useful tool for analyzing curves and
surfaces in differential geometry, Serret–Frenet
frame is the most familiar and the most used
frame field, but not unique, there are also the
another frame fields such as Bishop frame or ro-
tation minimizing frame (RMF). Corresponding
to Bishop frame in Euclidean space E3, there ex-
ists a Lorentzian version’s frame that is called
a Lorentzian Bishop frame, constructed along a
curve in Lorentzian space and it is the analog
of the Frenet-Serret type frame as applied to
Lorentzian geometry. When we discuss a space
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curve, it is more convenient for us to use the
Lorentzian Bishop frame along the curve as the
basic tool than the Frenet-Serret type frame in
Lorentzian space. There are several papers about
Lorentzian Bishop frame [12-17].

This manuscript studies the problem to con-
struct a timelike developable surface through a
timelike sweeping surface, using a special orthog-
onal frame of the timelike spine curve, namely the
(so. called) rotation minimizing frame (RMF for
short). As a result, the necessary and sufficient
condition for the timelike sweeping surface to be
a timelike developable ruled surface is derived.
In particular, we focuses on the study for the re-
sulting timelike developable surface to be cylin-
der, cone or tangent surface. Finaly, some repre-
sentative timelike curves are chosen to construct
the corresponding timelike developable surfaces
which possessing these curves as line of curva-
tures.

2 Preliminaries
Let R3 = {(a1, a2, a3) |, ai ∈ R (i=1, 2, 3)}
be a 3-dimensional Cartesian space. For any
a = (a1, a2, a3), and b = (b1, b2, b3) ∈ R3, the
pseudo scalar product of a, and b is specified by
[1, 18, 19]:

< a,b > = −a1b1 + a2b2 + a3b3. (1)

We call (R3, <,>) Minkowski 3-space. We write
E3

1 instead of (R3, <,>). We say that a non-zero
vector a ∈E3

1 is spacelike, lightlike or timelike if
< a,a >>0, < a,a > = 0 or < a,a ><0 respec-
tively. The norm of the vector a ∈E3

1 is specified
to be ‖a‖ =

√
|< a,a >|. For any two vectors a,

c ∈ E3
1 , we specify a vector a× c by

a× c

∣∣∣∣∣∣
−e1 e2 e3
a1 a2 a3
c1 c2 c3

∣∣∣∣∣∣ (2)

= (−(a2c3 − a3c2), (a3c1 − a1c3), (a1c2 − a2c1)

where e1, e2, e3 is the canonical basis of E3
1 . We

can easily check that

det(a, c,b) =< a× c,b >, (3)

so that a× c is pseudo orthogonal to any
b = (b1, b2, b3) ∈ E3

1 .

Let β = β(s) be a unit speed timelike curve
in E3

1 ; by κ(s) and τ(s) we indicate the natural
curvature and torsion of β = β(s), respectively.

We suppose β
′′

(s) 6= 0 for all s ∈ [0, L], since this

would give us a straight line. Consider the Serret–
Frenet frame {T(s), N(s), B(s)} of β = β(s),
then the Serret–Frenet equations are: T

′

N
′

B
′

 =

 0 κ(s) 0
κ(s) 0 τ(s)
0 −τ(s) 0

 T
N
B


(4)

= ω ×

 T
N
B

 ,
where ω(s) = τT + κB is Darboux vector of the
Serret–Frenet frame. In this paper, dash indicate
the derivatives with respect to arc-length param-
eter s. It is easy to see that

T×N = B,T×B = −N,N×B = −T. (5)

Definition 2.1. A pseudo orthogonal moving
frame {ξ1, ξ3, ξ3}, along a non null space curve
α(s), is rotation minimizing frame (RMF) with
respect to ξ1 if the derivatives of ξ2 and ξ3 are
both parallel to ξ1, or its angular velocity ω
satisfies < ω, ξ1 >= 0. A similar characterization
holds when ξ2 or ξ3 is chosen as the reference
direction.

According to the Definition 2.1, we observe
that the Serret–Frenet frame is RMF with respect
to the principal normal N, but not with respect
to the tangent T and the binormal B. Although
the Serret–Frenet frame is not RMF with respect
to T, one can easily obtain such a RMF from it.
New normal plane vectors (N1,N2) are identify
through a rotation of (N,B) according to T1

N1

N2

 =

 1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ

 T
N
B

 ,
(6)

with a certain spacelike angle ϑ(s) ≥ 0. Here, we
will call the set {T1, N1, N2} as RMF or Bishop
frame. The RMF vector satisfy the relations

T1×N1 = N2,T1×N2 = −N1,N1×N2 = −T1.
(7)

As a result, we have the alternative frame equa-
tions T

′

1

N
′

1

N
′

2

 =

 0 κ1(s) −κ2(s)
κ1(s) 0 0
−κ2(s) 0 0

 T1

N1

N2


(8)

= ω̃ ×

 T1

N1

N2

 ,
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where ω̃(s) = κ2N1+κ1N2 is RMF Darboux vec-
tor. Here, the Bishop curvatures are defined by
κ1(s) = κ cosϑ, and κ2(s) = κ sinϑ. One can
show that

κ(s) =
√
κ21 + κ22, and ϑ = tan−1

(
κ2

κ1

)
;κ1 6= 0,

ϑ(s) = ϑ0 − 0s
∫
τds, ϑ0 = ϑ(0).

}
(9)

Comparing Eq. (4) with Eq. (8) we pay attention
that the relative velocity is

ω̃(s)− ω(s)=τT. (10)

As a consequence, the Serre-Frenet frame and
the RMF are identical if and only if β(s) is a
planar, i.e. τ(s) = 0.

We symbolize a surface M in E3
1 by

M : X(s, u) = (x1 (s, u) , x2 (s, u) , x3(s, u) ,
(11)

(s, u) ∈ D ⊆ R2.

Let U be the standard unit normal vector field
on a surface M located by U = Xu×Xs

‖Xu×Xs‖ , where,

Xi = ∂X
∂i . Then the metric (first fundamental

form) I of a surface M is

I = g11ds
2 + 2g12dsdu+ g22du

2, (12)

where g11 =< Xs,Xs >, g12 =< Xu,Xs >
, g22 =< Xu,Xu >. We define the second funda-
mental form II of M by

II = h11ds
2 + 2h12dsdu+ h22du

2, (13)

where h11 =< Xss,U >, h12 =< Xus,u >
, h22 =< Xuu,U >. M is called a space-
like/timelike surface if the induced metric is
Riemannian/Lorentzian metric on each tangent
plane. Therefore, since M is timelike and space-
like, respectively, we have

det(gij) = g11g22 − g212 < 0, (14)

and det(gij) = g11g22 − g212 > 0.

The Gaussian curvature K is

K(s, u) = ε
h11h22 − h212
g11g22 − g212

, withε =< U,U >= ±1.

(15)

3 Timelike sweeping surface
The concept of a sweeping surface is defined kine-
matically by a plane curve moving through space

such that the movement of any point on the sur-
face is always orthogonal to the plane. By utiliz-
ing the type-2 Bishop frame, the timelike sweep-
ing surface family which pass through the timelike
curve β(s) is described by

M : X(s, u) = β(s) +A(s)x(u) (16)

= β(s) + x1(u)N1 + x2(u)N2,

where the profile curve x(u) = (0, x1(u), x2(u))t,
the symbol ’t’ represents transposition, with an-
other parameter 0 ≤ u ≤ U . The semi orthogo-
nal matrix A(s) = {T(s),N1(s),N2(s)} specifies
the RMF along β(s). Geometrically, the sweeping
surface X(s, u) is generated by moving the profile
curve x(u) along the spine curve β(s) with the ori-
entation as specified by A(s). Profile curve x(u) is
in the 2D or 3D space which passes through the
spine curve β(s) during sweeping. Clearly, the
sweeping technique leaves the designer with one
degree of freedom, as it is still possible to revolve
the RMF around. We now analyze the relation
between the differentiability of the timelike spine
curve and of the identical sweeping surface. Next,
without loss of generality, we can suppose that
the profile curve x(u) is a unit speed spacelike
curve, i.e. .x21 + .x22 = 1. Also, we use “dot”to de-
note the derivative with respect to the arc length
parameter of the profile curve x(u). Then, the
tangent vectors and the unit normal vector to the
surface, respectively, are

Xs(s, u) = (1 + κ1x1 − κ2x2) T1,
Xu(s, u) = .x1N1 + .x2N2,

}
(17)

The unit normal vector of M is

U(s, u) : =
Xu ×Xs

‖Xu ×Xs‖
= −.x2N1 + .x1N2. (18)

Note that ‖U(s, u)‖2 = 1 means that M is a
timelike surface.

Proposition 3.1. Consider a point in the nor-
mal plane of the spine timelike curve β(s). The
tangent vector of its trajectory β(s) + A(s)x(u),
that is generated by the RMF, is always parallel
to the tangent vector of β(s).

By simple calculations, we have the following:

g11= − (1 + κ1x1 − κ2x2)2 ,
g12 = 0, g22 = 1.

}
(19)
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Furthermore, we have:

Xss =
(
κ

′

1x1 − κ
′

2x2
)

T1

+ (1 + κ1x1 − κ2x2) (κ1N1 − κ2N2),
Xsu = (κ1.x1 + κ2.x2)T1,
Xuu = ..x1N1 + ..x2N2.


(20)

Thus, we arrive by means of Eqs. (18), and (20),
at

h11 = − (1 + κ1x1 − κ2x2) (κ1.x2 + κ2.x1) ,
h12 = 0, h22 = .x1..x2 − .x2..x1.

}
(21)

Hence, the u-and s curves of M are lines of curva-
ture, that is, g12 = h12 = 0. So, the isoparametric
curve

π(u) : ζ(u) := X(u, s0) = β(s0) + x1(u)N1(s0)
(22)

+x2(u)N2(s0),

is a planar unit speed spacelike line of
curvature. Eq. (22) define a set of one-
parameter family of timelike planes in E3

1 .
The spacelike unit tangent vector to ζ(u)
is Tζ(u) = .x1N1(s0) + .x2N2(s0),and thus
the spacelike unit principal normal vector of
ζ(u) is given by Nζ(u) = T1(s0) × Tζ(u) =
−.x2N1 + .x1N2 = U(s0, u).

Consequently, the surface spacelike normal
U(s0, u) is identical with the spacelike prin-
cipal normal Nζ(u), i.e., the curve ζ(u) is a
geodesic planar spacelike line of curvature on
X(u, s0). Surfaces whose parametric curves are
lines of curvature have various applications in
geometric design [6-8]. In the case of sweeping
surfaces, one has to compute the offset surfaces
Xf (u, s) = X(u, s) + fU(s, u) of a given surface
X(u, s) at a certain distance f . In consequence of
this equation, the offsetting process for timelike
sweeping surface can be reduced to the offsetting
of planar profile spacelike curve, which is very
easier to deal with. Hence, we can state the
following proposition:

Proposition 3.2. Consider a timelike sweeping
surface M represented by Eq. (16). Let xf (u)
be the spacelike planar offset of the profile curve
x(u) at distance f . Then the offset timelike
surface Qf (u, s) is again a timelike sweeping
surface, generated by the timelike spine curve
β(s) and profile spacelike curve xf (u).

3.1 Local singularities and convexity
Singularities and convexity are essential for un-
derstanding the properties of sweeping surfaces

and are investigated in the following: A point
of the timelike surface M is called singular if and
only if the first derivatives are linearly dependent.
Owing to Proposition 3.1, this is only possible if
(∂/∂s)X(s, u) = 0. Thus, we obtain the following
condition:

‖Xu ×Xs‖=1 + κ1x1 − κ2x2 = 0,

which leads to

ρ+ x1 cosϑ− x2 sinϑ = 0,

where ρ(s) = κ−1 is the radius of curvature of
β(s). Using ρ(s), we have the relations

x1 = −ρ cosϑ,x2 = ρ sinϑ,

where ϑ = ϑ(s). In consequence of its kinematical
generation, the sweeping surface X(s, u) has sin-
gular points exactly at intersections of the space-
like profile curve x = x(u) and the spacelike cur-
vature axis (rotation axis),

L(u) = {(x1, x2) | ρ+ x1 cosϑ− x2 sinϑ = 0}.

Thus, the timelike sweeping surface has a second
order contact with the timelike surface of revo-
lution that is generated by simply rotating the
profile spacelike curve x = x(u) around spacelike
axis L(u). Hence, we obtain the following corol-
lary:

Corollary 3.1. The timelike sweeping sur-
face M represented by Eq. (16), has no singular
points if the condition

ρ+ x1 cosϑ− x2 sinϑ 6= 0,

is satisfied for all s, and u.

In order to study the shape of M we inves-
tigate the Gaussian curvature K(s, u) = χ1χ2.
Here, the χi(s, u) (i = 1, 2) are the principal
curvatures. From Eqs. (6), and (18), we obtain

U(s, u) = − (.x2 cosϑ+ .x1 sinϑ) N (23)

+ (−.x2 sinϑ+ .x1 cosϑ) B.

Further, since g12 = h12 = 0, the principal curva-
ture χ1(s0, u) of the profile curve x(u) is

χ1 := ‖.x× ..x‖ ‖.x‖−3 = .x1..x2 − .x2..x1. (24)

The curvature of the s−parameter curve (u-
constant) is

χ(s, u0) :=
‖Xs ×Xss‖
‖Xs‖3

=
1

ρ+ x1 cosϑ− x2 sinϑ
.

(25)
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The principal curvature χ2 is related to the cur-
vature χ(s, u) via Meusnier’s Theorem [1]:

χ2 = χ(s, u) cosϕ, (26)

where ϕ is spacelike angle of U, and N. Thus,
the Gaussian curvature K(s, u) can be defined by

K(s, u) = χ1χ(s, u) cosϕ. (27)

In CAGD, conditions that guarantee the convex-
ity or curves which output parabolic points of a
surface are required in different applications [6-9].
However, for the timelike sweeping surface M the
convexity can be controlled with the help of the
Gaussian curvature as:

K(s, u) = 0⇔ χ1χ(s, u) cosϕ = 0. (28)

It can be seen that there are three cases which
make parabolic points:
Case (1) exists when χ1 = 0. If χ1 = 0, the pro-
file curve x = x(u) is degenerate into a spacelike
straight line, from Eq. (24), it can be seen that

χ1 = 0⇔ .x× ..x = 0⇔ .x ‖ ..x.

This equation shows that an inflection or flat
point of the profile spacelike curve generates a
parabolic curve s =const. on parts of M .
Case (2) exists when χ(s, u) = 0. Thus, an infec-
tion or flat point of the spine curve generates an
isoparametric parabolic curve u=const. on M .
Case (3) exists when ϕ = π/2. Owing to Eqs.
(23), and (26), these parabolic curves are charac-
terized by the following condition

.x2 cosϑ+ .x1 sinϑ = 0, (29)

is satisfied for all s, and u. In this case, the spine
timelike curve β is not only a line of curvature
but as well a geodesic spacelike curve on M .
In CAD, conditions that surety the convexity of a
surface are required in various applications (such
as manufacturing of sculptured surfaces, or lay-
ered manufacturing). In the case of the timelike
sweeping surface M , however, the convexity can
be planned with the help of the differential ge-
ometric properties, as follows: By integration of
Eq. (29), the following equation can be obtained

x2 sinϑ+ x1 cosϑ = h(s),

where h = h(s) is an arbitrary function. Then we
have the relations

x1 = h(s) cosϑ,x2 = h(s) sinϑ. (30)

When Eqs. (30) are applied to Eq. (16), with
attention of Eq. (6), we instantly find that the
expression of the parabolic curve is

γ(s) = β(s) + h(s)B(s). (31)

From the above analysis the following conclu-
sions can be attain.

Corollary 3.2. Let M be a timelike sweeping
surface expressed by Eq. (16), with timelike
spine curve, and spacelike profile curve have
non-vanishing curvatures everywhere. Then M
has exactly one parabolic line if and only if the
spine curve is a spacelike geodesic curve.

3.2 Timelike developable ruled
surfaces

In this subsection, we analyze the case, that
the profile curve x(u) degenerates to a spacelike
straight line. If x(u) = (0, 0, u)t, we have the
following timelike developable surface

F : Q(s, u) = β(s) + uN2(s), u ∈ R. (32)

Similarly, we have the following timelike devel-
opable surface

F⊥ : Q⊥(s, u) = β(s) + uN1(s), u ∈ R. (33)

Proposition 3.3. Let M be a timelike sweeping
surface expressed by Eq. (3.1), if the profile
curve x(u) degenerates to a spacelike straight
line, then M is a timelike developable surface.

Furthermore, it is possible to show Q(s, 0) =
β(s) (resp. Q⊥(s, 0) = β(s)), 0 ≤ s ≤ L, that is,
the surface F (resp. F⊥) interpolates the curve
β(s). Furthermore, since

Qs ×Qu := − (1− uκ2) N1(s), (34)

then F⊥ is the normal timelike developable
surface of F along β(s). Therefore, the timelike
surface F (resp. F⊥) interpolates the timelike
curve β(s), and β(s) is a timelike line of curva-
ture of F (resp. F⊥). Hence, we can classify the
singularities of developable surface F by using κ2.

Theorem 3.1. (Existence and uniqueness).
Under the above notations there exists a unique
timelike developable surface expressed by Eq.
(32).
Proof. For the existence, we have the timelike
developable surface expressed by Eq. (32). On
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the other hand, since F is a ruled surface, we
assume that

F : Q(s, u) = β(s) + ua(s), u ∈ R,

a(s) = a1(s)T1+a2(s)N1+a3(s)N2,

‖a(s)‖2 = −a21 + a22 + a23 = 1, a
′
(s) 6= 0.


(35)

It can be immediately seen that F is developable
if and only if

det(β
′
,a,a

′
) = 0⇔ a2

(
a

′

3 − a1κ2
)
−a3

(
a

′

2 + a1κ1
)

= 0.

(36)
On the other hand, in view of Eq. (34), we have

(Qs ×Qu) (s, u) = ±λ (s, u) N1, (37)

where λ = λ (s, u) is a differentiable function.
Further, the normal vector Qs ×Qv at the point
(s, 0) is

(Qs ×Qu) (s, 0) = −a3N1 + a2N2. (38)

Thus, from Eqs. (37), and (38), one finds that:

a2 = 0, anda3 = λ (s, 0) , (39)

which follows from Eq. (3.23) that a3a1κ1 = 0,
which leads to a1a3 = 0, with κ1 6= 0. If (s, 0) is
a regular point (i.e., λ (s, 0) 6= 0), then a3(s) 6= 0,
and a1 = 0. Therefore, the direction of a(s) is the
direction of N2(s). This means that uniqueness
holds .

In analogous arguments for F⊥, we can give the
corresponding Theorem of Theorem 3.1. we omit
the details here. Thus, the Joachimsthal theorem
can be stated as the following:

Theorem 3.2. (Joachimsthal). Let F and
F⊥ two timelike developable surfaces such that
F ∩ F⊥ = β(s) is a timelike regular curve and
< N1,N2 >= 0 along β(s), where N1 and N2

are unitary spacelike normal vector fields to F
and F⊥, respectively. Then β(s) is a timelike line
of curvature of F if and only if it is a timelike
line of curvature of F⊥.

In above theorem, we not only prove the exis-
tence and uniqueness of the timelike developable
surface, but also give the exact term of the sur-
face. This is very significance full in practical
application. As is will known, there are three
kinds of developable surfaces, the given curve
can be classified into three kinds correspondingly.
In what follows, we will discuss the relation-
ship among the given timelike curve β(s) and its

isoparametric timelike developable. The first case
is when,

N2 ×N
′

2 = 0⇔κ sinϑN1 = 0. (40)

In this case, F is referred to as a cylindrical
surface. Since N1 6= 0, then F is a timelike cylin-
drical surface if and only if sinϑ = 0⇔ ϑ = 0 or
π. However, in any case, we have ϑ

′
= 0, then

τ = 0. That is, the curve β is a timelike planar
curve, and F is a timelike binormal surface. As
a result the following theory can be given:

Theorem 3.3. The timelike developable
surface Eq. (32) is a cylinder surface if and only
if ϑ = 0 or π.

On the other hand, likwise, we can also have
the following:

N2 ×N
′

2 6= 0. (41)

This implies that F is a non-cylindrical surface.
Therefore, the first derivative of the directrix is

β
′
(s) = C

′
(s) + σ(s)N

′

2(s) + σ
′
(s)N2(s), (42)

where C
′

is the first derivative of the striction
curve, σ(s) is a smooth function. Therefore, we
obtain

< N2 ×N
′

2,C
′
>= 0. (43)

Similarly, there are two possible cases which sat-
isfy Eq. (43), as in the following: The first one
is when the first derivative of the striction curve
is C

′
= 0. Geometrically this condition implies

that the striction curve degenerates to a constant
point, and the ruled surface becomes a timelike
cone; the striction point of a cone is its vertex.
Thus, the surface F is a timelike cone if and only
if there exists a fixed point C and a function σ(s)
such that σκ sinϑ = 1, σ

′
= 0, which imply that

σ = const. =
1

κ sinϑ
⇔ κ sinϑ = κ0 sinϑ0, (44)

where ϑ0 = ϑ(0), and κ0 = κ(0). In Eq. (44),
κ sinϑ is a constant. However, if ϑ is constant,
then τ = 0, that is, β(s) is a timelike planar
line of curvature, and κ is also constant. Also,
if κ is a constant, we can have τ = 0, and ϑ is
a constant. Then the curve β(s) is the arc of a
Lorentzian circle.

Theorem 3.4. The timelike developable surface
Eq. (32) is a cone if and only if κ sinϑ = κ0 sinϑ0,
where ϑ0 = ϑ(0), and κ0 = κ(0).
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Theorem 3.5. The timelike developable
surface Eq. (32) is a tangential surface if and
only if κ sinϑ 6= κ0 sinϑ0, where ϑ0 = ϑ(0), and
κ0 = κ(0).
Proof. According to the proof of Theorem
3.4, if κ sinϑ 6= κ0 sinϑ0, then C

′ 6= 0. Since
¡N2×N

′

2,C
′
>= 0, and < N2,N

′

2 >= 0, and the
condition for C to be striction curve is equivalent
to < C

′
,N2 >= 0 we can get C

′‖N2. This means
the tangent surface is composed of tangents of a
timelike spatial curve, the cuspidal edge β(s) .

3.3 Examples
n what follows, we will discuss the construction of
timelike developable surfaces with the given curve
as a line of curvature.
Example 1. Given the timelike circle

β(s) = (sinh s, 0, cosh s), −1 ≤ s ≤ 1.

By computing, we get

T(s) = (cosh s, 0, sinh s),
N(s) = (sinh s, 0, cosh s),
B(s) = (0,−1, 0),
κ = 1, τ = 0.


Now, we will obtain the RMF {T1(s), N1(s),
N2(s)} as follows: From τ(s) = 0, we find
ϑ(s) = ϑ0 is a constant. Therefore, the trans-
formation matrix can be expressed as: T1

N1

N2

 =

 1 0 0
0 cosϑ0 sinϑ0
0 − sinϑ0 cosϑ0

 T
N
B

 ,
From this, we have

N1 = (cosϑ0 sinh s,− sinϑ0, cosϑ0 cosh s) ,

N2 = (− sinϑ0 sinh s,− cosϑ0, sinϑ0 cosh s) .

Let x1(u) = cosu, x2(u) = sinu, and −π ≤ u ≤
π, the corresponding timelike sweeping surface
can be expressed as

M : X(s, u) = (cosh s, 0, sinh s)+cosuN1+sinuN2.

The timelike developable surface F is

F:Q(s,u)=(cosh s, 0, sinh s)
+ u (− sinϑ0 sinh s,− cosϑ0, sinϑ0 cosh s) .

1) If ϑ0 = 0 or π, obviously, according to
Theorem 3.3, the developable surface is a time-
like cylinder (see Fig. 1). In this case, the graph
of the corresponding timelike sweeping surface is
shown in Fig. 2.

Figure 1: The timelike cylinder with ϑ0 = 0.

Figure 2: The timelike sweeping surface with ϑ0 = 0

2) Choosing ϑ0 = π
4 , obviously, according to

Theorem 3.4, the corresponding surface is a time-
like cone as shown in Fig. 3. Simillarly, the cor-
responding timelike sweeping surface is shown in
Fig. 4.

Figure 3: The timelike cone with ϑ0 = π
4 .

Figure 4: The timelike sweeping surface with ϑ0 = π
4
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Example 2. Given the timelike cylindrical
helix

β(s) = (
√

2 sinh s, s,
√

2 cosh s), −1 ≤ s ≤ 1.

The Serret–Frenet frame can be computed as fol-
lows

T(s) = (
√

2 cosh s, 1,
√

2 sinh s),
N(s) = (sinh s, 0, cosh s),
B(s) = (− cosh s,−

√
2,− sinh s),

κ =
√

2, τ = −1.


By a similar procedure as in Example (1), we have
ϑ(s) = s+ ϑ0. Then we would obtain

N1 =

 N11

N12

N13

 =

 cosϑ sinh s− sinϑ cosh s
−
√

2 sinϑ
cosϑ cosh s− sinϑ sinh s

 ,
N2 =

 N21

N22

N23

 =

 − sinϑ sinh s− cosϑ cosh s
−
√

2 cosϑ
− sinϑ cosh s− cosϑ sinh s

 .

We can choose x1(u) = cosu, x2(u) = sinu, and
−π ≤ u ≤ π, so that

M : X(s, u) = (
√

2 sinh s, s,
√

2 cosh s)

+ cosu

 N11

N12

N13

+ sinu

 N21

N22

N23

 .

According to Theorem 3.5, the timelike devel-
opable surface

F : Q(s, u) = β(s) + uN2

=


√

2 sinh s− u (sinϑ sinh s+ cosϑ cosh s)
s− u

√
2 cosϑ√

2 cosh s− u (sinϑ sinh s+ cosϑ cosh s)

 ,

is a tangent surface. The graphs of the timelike
M , and F surfaces are shown in Figs. 6, 7; ϑ0 =
0. Figures 7, 8 shows the corresponding timelike
M , and F surfaces with θ0 = 0.5.

Figure 5: The tangent developable for ϑ0 = 0

Figure 6: the timelike sweeping surface with ϑ0 = 0

Figure 7: The surface F for ϑ0 = 0.5

Figure 8: The timelike sweeping surface with ϑ0 =
0.5

4 Conclusion
We discuss some aspects of the differential geom-
etry of timelike sweeping surface by setting up
an orthonormal RMF to each point of the spine
timelike curve. Then, we have solve the problem
of requiring the timelike surface that is timelike
sweeping surface and at the same time timelike
developable surface. This study is intended to
clear away to conduct the geometric analysis of
timelike developable ruled surfaces through the
timelike sweeping surfaces. An analogue of the
problem addressed in this paper may be consider
in the Galilean 3-space G3.
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