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Abstract: We propose an efficient method for estimating a vector of parameters that characterize the node-to-
node traffic intensities in a network. The estimation procedure is free from any initial estimate which is often
difficult to choose for iterative procedures that occur in maximum likelihood estimation or method of moments.
The procedure discussed here updates the information from a continuous chain of data until a stopping variable
decides the final sample size and the estimate. More importantly, it considers the cost of logistics in sampling. We
discuss important desirable properties of the estimation-procedure under the assumption of Poisson distribution.
Data analyses reveal a highly accurate estimation and demonstrate a fast convergence.
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1 Introduction
The performance of a network, comprising node to
node traffic, is often characterized by the delay in the
system. In a network of c source-destination (SD)
pairs, the quantum of signals passing from one node to
another node is usually modeled by simple probabil-
ity distributions such as Poisson distribution, charac-
terized by the parameter-vector λ = (λ1, λ2, ..., λc).
The traffic-intensity in the links connecting these SD
pairs is an important quantity to estimate. Under the
Markovian routing, proposed in [1], the traffic inten-
sities on the links may be characterized by a vector of
linear combinations of λ1, λ2, ..., λc. Hence estimat-
ing such a vector of parameters is of great importance.
This idea of Network Tomography [1] has received
lots of attention recently in understanding the link per-
formance in ad-hoc networks to VANET [2, 3, 4, 5, 6],
and other related areas. Most recently, evaluation of
software open-source IMS network under the load of
SIP messages was addressed by [7] and identifying
and correcting the network weaknesses by incorporat-
ing bandwidth measurements was discussed by [8].

The existing challenges in estimating the vector of
parameters are quite non-trivial. Most of the litera-
ture, including [1], dealt with maximum likelihood
estimation (MLE). Another method of estimation that
has been adopted is based on method of moments also
popularly know as EM (expectation-maximization)
algorithm. Moreover, the system of linear equations
to solve the parameters constitute a LININPOS (LIN-
ear INverse POSitive) problem [9, 10]. All these
methods face substantial numerical difficulties. The
convergence of the parameters, much of which is
based on normal approximations, also depends on the
initial choice in the iterative processes. We strive to
circumvent these hindrances by proposing a simpler

and theoretically sound procedure.
It is very realistic to assume that the traffic data are

obtained sequentially instead of several values com-
ing in at one time [11]. In such a situation, where data
arrive sequentially, an adaptive procedure, based on
a certain stopping variable, may be more pragmatic
to adopt. Such a procedure is not only efficient but
may also save the number of required samples. If the
data collection is costly, concerning time or money,
an adaptive procedure can be implemented to control
the cost of data collection. In this paper, we perform
a minimum-risk point estimation of the average num-
ber of packets that pass through each link in a system
of node-to-node traffic. We explore some attractive
asymptotic properties for the proposed method of es-
timation. We also present empirical evidence through
extensive simulation studies. In the literature, a com-
prehensive review of minimum-risk point estimation
and sequential or adaptive sampling techniques are
presented in [12]. A very recent work [13] presents
the application of a sequential algorithm for anomaly
detection in networks. There is a broad literature on
theories and applications in sequential analysis, one
is referred to [14], [15], and [12]. For more recent de-
velopments and applications utilizing sequential anal-
ysis, one is referred to [16], [17], [18], [19], and [20].

We summarize themain contributions of this paper
as follows:

• The average number of messages at the links
is extremely critical to estimate and the esti-
mator is simple. The estimation process has a
well-defined measure of accuracy, namely, risk-
efficiency.

• A sequential method of recording data enables an
estimation procedure to save the cost of estima-
tion in terms of money, time, or other logistics,
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without oversampling on average.

Section 2 of this article describes the basic proba-
bility distribution and some definitions similar to [1].
Section 3 conveys the estimation procedure and ex-
plores some appealing properties. Section 4 presents
an extensive data analysis that supports the theoretical
findings and the conjecture from Section 3. Finally,
we conclude with some future directions.

2 The Probability Model
Consider c pairs of communicating nodes also called
source-destination (SD) pairs and r directed links.
Typically we face a situation where c > r. Following
[1], we define a few necessary variables below. For
i = 1, 2, ..., r and j = 1, 2, ..., c, let

• Xj ≡ the number of transmitted messages for the
SD pair j.

• Y j
i ≡ the number of messages with address j

passing through link i.

• P j
i ≡ probability that a message with address j

passes through link i.

• P j
ii′ ≡ probability that a message with address j

passes through both link i and link i′.

• Yi ≡ total number of messages passing through
the link i.

It is often assumed that the Xj’s are distributed in-
dependently as Poisson with parameter λj for j =
1, 2, ..., c. Note that the quantity Yi has its mean∑

j λjP
j
i for i = 1, 2, ..., r and this is what we are

interested to estimate. Moreover, because of the thin-
ning property of Poisson distribution, the distribu-
tion of Y j

i will be Poisson with mean λjP
j
i for i =

1, 2, ..., r and j = 1, 2, ..., c. We also note that for
each i = 1, 2, ..., r

Yi =

c∑
j=1

Y j
i ∼ Poisson

 c∑
j=1

λjP
j
i

 (1)

We also consider a routing matrixA = ((aij))r×c of
probabilities of the propagation of the signal. To be
more specific, we can say that aij is the conditional
probability that a signal with SD-address j = (j1, j2)
passes through the link i = (i1, i2) given that it leaves
from the node i1. Here, recall the basic nature of a
Markov chain which says that future event would de-
pend only on themost recent past. Hence, in our prob-
lem the Markovian nature of routing makes the prob-
ability aij independent of how the packet arrived at
i1. It rather depends on the final address j and only

the node fromwhich it started going to j. For instance
in Figure 1 from Section 4, the probability that a sig-
nal goes from node b to node d depends only on node
b. It does not depend on the fact that the signal could
arrive to b either from a or from c.

3 Estimation of Parameters
By using the theorem of total probability, we com-
pute matrix P = ((P j

i ))r×c from the components of
matrix A. Here, P j

i is (i, j)th component of the ma-
trix P . We assume that the matrix A is known to us
so that P is completely specified. Then, by (1), we
have,

E(Y ) = Pλ and Cov(Y ) = Σ = ((σij))r×r (2)

where, Y = (Y1, Y2, ..., Yr)
′. Using definitions given

in Section 2 and from equation (1) it can be shown
that,

σii′ =

{ ∑
j λjP

j
ii′ if i ̸= i′∑

j λjP
j
i if i = i′

where, i, i′ = 1, 2, ..., r and j = 1, 2, ..., c.
The diagonal elements of the variance-covariance

matrixΣ follows from (1). The off-diagonal elements
of Σ or the covariance terms can be obtained by fol-
lowing the procedure given in [1] and for brevity, we
will skip the details. Our main focus is on the estima-
tion of the parameters which we discuss in the next
section.

3.1 An Adaptive Procedure
We are going to adopt a minimum-risk point esti-
mation procedure to estimate the mean vector Pλ.
Having recorded Y (1),Y (2), ...,Y (n), with, Y (k) =

(Y
(k)
1 , Y

(k)
2 , ..., Y

(k)
r )′ for k = 1, 2, ..., n, the sample

mean vector, Y n = n−1
∑

k Y
(k) can be taken as an

unbiased estimate of Pλ. We let the associated loss
function to be of the form,

Ln(λ,Y n) = (Y n−Pλ)TW (Y n−Pλ)+γn (3)

Here, γ > 0 is known, and Wr×r is a known p.d.
matrix. The term cn represents the cost of gather-
ing n observations and (Y n − Pλ)TW (Y n − Pλ)
represents the loss due to the estimation of Pλ. If n
is small then the sampling cost γn will be small but
(Y n − Pλ)TW (Y n − Pλ) may be large. On the
other hand if n is large the effects will be reversed. So
the loss function in (3) achieves a trade-off between
expenses due to sampling and estimation error.

Now using the fact that,

Eλ

[
(Y n − Pλ)(Y n − Pλ)T

]
= Σ

n ,
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the risk function associated with the loss function
in (3) is given by,

Rn(γ) = Eλ

[
Ln(λ,Y n)

]
=

tr(WΣ)

n
+ γn. (4)

Here, tr(.) denotes the trace of a matrix. By taking
derivative of the expression in (4) one can find the n
that will minimize the risk. That will give the optimal
fixed-sample size as,

n∗ ≡ n∗(γ) = [tr(WΣ)/γ]1/2 , (5)

which gives the minimum fixed-sample risk
Rn∗(γ) = 2γn∗. One should carefully note that, both
λ and Σ are unknown, and therefore neither n∗ nor
Rn∗(γ) can be determined. Hence, we adopt a purely
sequential sampling procedure to estimate Pλ. The
sampling can be done according to the the stopping
rule,

N ≡ N(γ) = inf

{
n ≥ 2 : n ≥

√
tr(WSn)

γ

}
(6)

where,

Sn =
1

n− 1

n∑
k=1

(Y (k) − Y n)(Y
(k) − Y n)

T

is the r × r sample dispersion matrix.
We now illustrate the algorithm to implement the

stopping rule given in (6). First, we compute the
mean vector ȳ2 and the sample-covariance matrix
s2 =

1

2− 1

∑2
k=1(y

(k) − y2)(y
(k) − y2)

T from the

two observed vectors of data y(1) and y(2). Note
that W and γ are known to begin with. Now, we
will compute the right-hand side of the inequality in
(6) i.e. [tr(Ws2)/γ]

1/2 and check whether or not,
n = 2 ≥ [tr(Ws2)/γ]

1/2. If yes, then our estimate is
ȳ2. If not, then we collect the next data vector, y(3)

and compute the updated mean vector ȳ3 and the co-
variance matrix s3. One will again check from (6)
whether or not, n = 3 ≥ [tr(Ws3)/γ]

1/2. If yes, then
our estimate will be ȳ3. If not, then we repeat the pre-
vious steps with the next data vector. This is how the
algorithm will be continued until the condition to stop
in (6) is satisfied. We will stop at the minimum value
of n for which we observe, n ≥ [tr(Wsn)/γ]

1/2 and
hence take the observed value ȳn as our final estima-
tor of the unknown vector Pλ. Clerly, the stopping
variable N is a random variable and we will explore
some of its properties shortly.

Once the sampling procedure in (6) terminates and
we estimate the parameter vectorPλ by the randomly

stopped mean vector Y N . The associated sequential
risk function is,

RN (γ) =Eλ

[
(Y N − Pλ)TW (Y N − Pλ)

]
+ γEλ [N ] .

(7)

Since the estimation procedure is based on a stop-
ping rule, it is important to verify that the procedure
will stop eventually and also without much oversam-
pling. The following theorem explains that.

Theorem 1. For all fixed λ and Wr×r, for the the
stopping rule in (6) we have the following properties,

(i) Pλ[N < ∞] = 1

(ii) limγ→0Nn∗−1 = 1 with probability 1.

(iii) limγ→0Eλ

[
Nn∗−1

]
= 1

where, n∗ is defined in (5).

Proof. To prove (i), first note that with probability 1,
Sm → Σ asm → ∞. Now,

Pλ[N = ∞] = lim
m→∞

Pλ[N > m]

≤ lim
m→∞

Pλ

[
m <

[
γ−1tr(WSm)

]1/2]
= 0.

Next, from (5) and (6) we can claim, with proba-
bility 1,√

γ−1tr(WSN ) ≤ N <
√
γ−1tr(WSN−1) + 1

(8)
which implies√

tr(WSN )

tr(WΣ)
≤ N

n∗ <

√
tr(WSN−1)

tr(WΣ)
+

1

n∗ . (9)

As γ → 0, N → ∞ and hence, SN−1 → Σ and
SN → Σ with probability 1. This proves (ii).

For part (iii), we have from (8), with probability 1,

Nn∗−1 <
√
tr(WSN−1)[tr(WΣ)]−1 + 1

<
√
U [tr(WΣ)]−1 + 1 (10)

where, U = maxk≥1 tr(WSk−1). By ergodic theo-
rem, all positive powers ofU are integrable. Thus part
(iii) follows from part (ii), (9) and dominated conver-
gence theorem.

We also have a conjecture regarding the risk de-
fined in (7). We first define the risk ratio as,

η(γ) =
RN (γ)

Rn∗(γ)
=

RN (γ)

2γn∗ . (11)
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Conjecture 1. For all fixed λ and Wr×r, we have,

lim
γ→0

η(γ) = 1 (12)

where, n∗ is defined in (5) and η(γ) is defined on (11).

Theorem 1 along with Conjecture 1 essentially
claims that the estimation strategy is efficient in es-
timating the parameter vector Pλ. Equation (12) is
actually claiming the risk-efficiency of the procedure.
While we postpone the rigorous proof of this claim,
an empirical verification of (12) will be provided in
Section 4.

4 Data Analysis
In this section we discuss the performance of our esti-
mation procedure discussed in Section 3. We assume
that P is known to us either directly or through the
random-routing matrixA. For brevity, let us consider
W = Ir×r. Hence, from (5) we have,

n∗ = [tr(Σ)/γ]1/2 = γ−1/2
∑
i

∑
j

λjP
j
i . (13)

Here we revisit the example discussed in [1]. A
simple network is described in Figure 1 where we
have 4 communicating nodes, a, b, c and d, forming
4×3 = 12 SD pairs. In addition, these nodes commu-
nicate via 7 directed links. These nodes communicate
via specific links which can be represented by the ran-
dom Markovian-routing matrix A given below. Cell
with 0 as the entry is kept blank.

A=

1 2 3 4 5 6 7 8 9 10 11 12
ab ac ad ba bc bd ca cb cd da db dc

1(a → b) 0.8 0.2 0.2
2(a → c) 0.2 0.8 0.8 1.0 1.0
3(b → a) 1.0 0.2 0.1 1.0 1.0
4(b → c) 0.8 0.8 0.1 1.0
5(b → d) 0.2 1.0 0.8 1.0
6(c → b) 0.8 0.2 0.8 0.8 0.2 1.0 1.0
7(c → d) 0.2 0.8 1.0 0.2 0.2 0.8
8(d → b) 1.0 1.0 1.0 0.8 0.8 0.2
9(d → c) 1.0 0.2 0.2 0.8

The entries of A are conditional probabilities, al-
ready defined in Section 2. As an example, we con-
sider a specific SD pair ad and the links involved in
the communication are shown in Figure 1.

Figure 1: Four node directed graph.

Now suppose we want to calculate P 7
3 (= P ad

c→d),
the probability that a message with SD address ad
passes through link c → d. The general multipli-
cation rule of probabilities says that P (ABC) =
P (A|BC)P (B|C)P (C). Noting that the entries of
A are conditional probabilities, applying the general
multiplication rule we get, P 7

3 = a23 × a73 = 0.8 ×
0.8 = 0.64. Similar calculations give the other en-
tries of the matrix P as shown below. As in matrix
A, a cell with 0 as the entry is kept blank.

P=

1 2 3 4 5 6 7 8 9 10 11 12
ab ac ad ba bc bd ca cb cd da db dc

1(a → b) 0.8 0.2 0.2
2(a → c) 0.2 0.8 0.8 0.2 0.1
3(b → a) 1.0 0.2 0.1 1.0 1.0
4(b → c) 0.16 0.8 0.1 0.2
5(b → d) 0.04 0.36 0.8 0.2
6(c → b) 0.16 0.16 0.8 0.8 0.2 0.2 0.2
7(c → d) 0.04 0.64 0.2 0.2 0.2 0.8
8(d → b) 0.04 0.2 0.2 0.8 0.2 0.2
9(d → c) 0.04 0.2 0.2 0.8

Here we consider an arbitrary vector

λ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)T

to be the true parameter and hence with known matrix
P , we have

Pλ = (1.8, 5.8, 22.6, 7.32, 15.68,

18.64, 17.32, 19.6, 21.8)T .

To perform the simulations, we start by gener-
ating random observations of the vector Y =
(Y1, Y2, ..., Y9)

T one by one from the Poisson distri-
bution with mean vector Pλ. With each new sample
of vector, we check the stopping rule (6). This process
was also described in the paragraph following equa-
tion (6). Suppose the first time, the randomly stopped
sample size wasN1 = n1. Hence we have the first es-
timate of the true Pλ as P̂ λ1 = n−1

1

∑n1

i=1 Y n1
for

Pλ1 =
∑c

j=1 λjP
j
1 . This will be the first replication

of the process. If this entire process was replicated
R times, we have values, Ni, P̂ λi and RNi

(γ) for
i = 1, 2, ..., R. Table 1 and Table 2 present the sum-
mary of these statistics for R = 10000 simulations.
Let us first define the following quantities:

N = R−1
∑R

i−1Ni, P̂ λ = R−1
∑R

i=1 P̂ λi,
RN (γ) = R−1

∑R
i=1RNi

(γ) and
η̂(γ) = RN (γ)/Rn∗(γ).

Column 1 of Table 1 shows different values of the
cost factor γ. As γ decreases, the value of N grows
as expected. The second and the third columns of Ta-
ble 1 are revealing the behavior of the stopped sample
size. It is quite encouraging to see that the ratioN/n∗

remains close to 1 even for smaller values of N . The
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Table 1: Results of Simulation
γ N N/n∗ RN (γ) η̂(γ)

0.1 33.1114 1.0132 6.5429 1.0010
0.05 46.6402 1.0092 4.6259 1.0009
0.01 103.7709 1.0041 2.0714 1.0022
0.005 146.6068 1.0031 1.4630 1.0010
0.001 327.2686 1.0014 0.6562 1.0039

Table 2: Estimated values of Pλ for given γ
Pλ

values of γ
0.1 0.05 0.01 0.005 0.001

1.80 1.7968 1.7976 1.7970 1.7975 1.7998
5.80 5.7968 5.8003 5.7997 5.7979 5.7992

22.60 22.5918 22.5918 22.5978 22.5985 22.6046
7.32 7.3203 7.3211 7.3206 7.3231 7.3226
7.76 7.7659 7.7596 7.7627 7.7605 7.7581

18.64 18.6399 18.6401 18.6353 18.6408 18.6401
13.36 13.3576 13.3547 13.3650 13.3620 13.3576
15.64 15.6369 15.6331 15.6413 15.6398 15.6411
13.88 13.8717 13.8736 13.8781 13.8804 13.8801

fourth and the fifth columns correspond to the values
of simulated risk and the ratios of simulated risk over
optimal risk. The efficiency of the estimation proce-
dure is demonstrated by the values of η̂(γ) which are
close to 1 even for smaller values of N .

Table 2 shows the estimated values of the truePλ
for the different choices of γ from Table 1. The true
value and estimated values are extremely close for ev-
ery single choice of γ. Estimates for other choices
of λ were equally good. We do not present them for
brevity.

5 Conclusion and Future Directions
In this paper, we proposed an innovative and efficient
method of estimating a vector of parameters that char-
acterize the node-to-node traffic intensities in a net-
work. The error in the method of estimation is clearly
defined by a risk function. A stopping rule is devel-
oped which determines the required number of ob-
servations to provide an estimate of the parameters
while minimizing risk (error) in estimation. Unlike
ML/EM procedures, our process is unaffected by any
good or bad choice of initial estimators. Moreover, it
saves the cost of estimation in terms of money, time
or other logistics, without oversampling on average.
The efficiency of the adaptive estimation process is
demonstrated by theoretical derivations and validated
through extensive simulations. The estimation ofPλ
is highly accurate even when the sample size is small.

One may note that the estimation is conducted un-
der a Poisson probability model. In future research,
we will work on estimatingPλ under different distri-
bution models or even with a distribution-free setup.
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