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Abstract: - The application of the local polynomial and non-polynomial to the construction of methods for 
numerically solving the heat conduction problem is discussed. The non-polynomial splines are used here to 
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being approximated. Numerical examples are given. 
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1 Introduction 
Everyone knows the formula for the polynomial 
interpolation. In 1901 Runge, and in 1916 Bernstein  
found examples of functions on a uniform grid of 
nodes on [-1,1]. The Runge function is 𝑓(𝑥) =

1

1+25𝑥2. The Bernstein function is 𝑓(𝑥) = |𝑥|. 
These examples (the Runge function and the 
Bernstein function) show that on a uniform grid of 
nodes built on the interval [-1,1], with an increase in 
the number of nodes, the relation is valid: 

lim
𝑛→∞

max
−1≤𝑥≤1

|𝑓(𝑥) − 𝑃𝑛 (𝑥)| = ∞. 

Here 𝑃𝑛 (𝑥) is the interpolation polynomial that 
interpolates 𝑓(𝑥) in the nodes. Thus, the 
interpolation polynomial is not very good for 
interpolation on the uniform grid of nodes when the 
number of nodes is large. Spline approximations 
have a significant advantage over interpolation 
polynomials. 
      Currently, there are a wide variety of splines.  
Everyone knows and often uses the difference 
method to solve partial differential equations. When 
constructing solutions, spline approximations are 
often used (see, [1]-[7]). Among the variety of 
books on splines, we should first of all mention De 
Boor's book. Among the variety of splines 

researchers prefer to use the polynomial splines, 
mostly the B-splines (see, [4]-[6]). In paper [6], two 
types of basis functions are considered: B-spline and 
expo-rational B-spline combined with Bernstein 
polynomials. In paper [7], the polyharmonic splines 
with added polynomials defined in a 2D plane are 
used. 
     The construction of B -splines involves solving a 
system of linear algebraic equations. Often the 
number of unknowns is large, so the system of 
equations has a large dimension. The matrix of this 
system of equations turns out to be tridiagonal, 
therefore this circumstance facilitates the task 
(although there are various methods on how to solve 
a system with a tridiagonal matrix). 
      Nowadays, various types of splines are known. 
Spline construction techniques are extremely 
diverse. The approximations obtained using 
different splines also differ in properties. The 
splines with a local interpolation basis are of 
particular interest. These splines interpolate the 
function at the grid points. To construct the splines, 
we do not need to solve a system of equations. The 
splines are constructed separately on each grid 
interval in the form of a linear combination of basis 
splines and the function values at the grid nodes. 
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We will use the technique for constructing splines 
proposed by Professor S.G. Mikhlin of St. 
Petersburg State University. The technique proposed 
by him involves the construction of polynomial 
splines in the form of a product of the values of a 
function and derivatives of this function at the grid 
nodes by the corresponding basis functions. 
Professor Mikhlin considered non-zero level spline 
approximations. The level of the spline is the 
number of the derivatives of the function that 
(derivatives) are used to construct a spline. The 
length of the support of each basis spline is two grid 
intervals. Professor S.G. Mikhlin paid much 
attention to local polynomial splines of the Hermite 
type. Polynomial basic splines on each grid interval 
can be obtained by solving a system of equations 
(S.G. Mikhlin called this system, a system of 
fundamental relations). Non-polynomial local 
splines are constructed similarly to polynomial ones. 
Professor Yu.K. Demjanovich pays much attention 
to non-polynomial splines. The approximation 
constructed using these splines has the property that 
it is infinitely differentiable within each grid 
interval. At each nodal point, the approximation is 
only continuous. Nevertheless, within each interval, 
the approximation is differentiable, and by 
continuity it is possible to determine the value of the 
derivative on the left (or right) at a grid point of 
arbitrary order. 
    When constructing an approximation, it is 
important to take into account the behaviour of the 
first and second derivatives of the function. We will 
construct continuous splines of the fourth order of 
approximation, which interpolate the function at the 
grid nodes, and also take into account the behaviour 
of the first and second derivatives of the function. 
By applying spline approximations of the non-zero 
level, we improve the quality of the approximation. 
Using non-polynomial splines also improves the 
quality of the approximation. In this paper, both 
polynomial and non-polynomial splines of the 
fourth order of approximation will be constructed, 
taking into account the behaviour of the first and 
second derivatives of the function. 
    We construct the solution separately on each grid 
interval. The length of the support of each basis 
spline is one or two grid intervals. Our focus will 
also be on continuous interpolation splines.  
     The construction and application of polynomial 
and non-polynomial splines were considered by the 
author earlier in papers [8]-[13]. The construction of 
difference schemes using some local interpolation 
non-polynomial splines was considered in papers 
[12]-[13].  

    Here we will consider the application of other 
local interpolation non-polynomial splines and 
compare the results with those obtained earlier. In 
addition, we will dwell on the theoretical 
foundations in more detail. Thus, features of the use 
of the local interpolation polynomial and non-
polynomial will be discussed in this paper. In this 
paper the application of the trigonometrical splines 
for constructing the numerical method for solving 
the heat problem is discussed. The properties of 
these splines and the theorems of the approximation 
were presented in papers [8]-[11]. This paper will 
also discuss the construction of a Lagrangian-type 
approximation that takes into account the behaviour 
of the first and second derivatives of a function.  
It should be noted that the problem of improving the 
quality of approximation is very important and 
interesting. In this regard, we should note that 
finding points of importance in an interpolation 
problem were considered in papers [14]-[15]. 

 

2 The Difference Methods 
The difference methods for solving the heat 
equation 

 𝜕𝑢

𝜕𝑡
= 𝑎

𝜕2𝑢

𝜕𝑥2  + 𝑏
𝜕𝑢

𝜕𝑥
+ 𝑐𝑢 + 𝑓,  𝑢 = 𝑢(𝑥, 𝑡), 

where 𝑎 = 𝑎(𝑥, 𝑡) > 0, 𝑏 = 𝑏(𝑥, 𝑡), 𝑐 = 𝑐(𝑥, 𝑡), 
0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇, are well known and widely 
used. In what follows, we will assume that a mesh 
with step h along the space axis and  𝜏 along the 
time axis is constructed in the rectangular area. Let 
us put 𝑎 = 1, 𝑏 = 0, 𝑐 = 0. Denote 𝑢𝑗𝑘 =

𝑢(𝑗ℎ, 𝑘𝜏). Among the most commonly used 
schemes are two: the explicit and the implicit 
schemes. The explicit scheme is used to solve the 
Cauchy problem: 

𝑢|𝑡=0 = 𝑢0(𝑥), 𝑥 ∈ [0, 1], 

𝑢𝑗𝑘+1 − 𝑢𝑗𝑘

𝜏
=

𝑢𝑗−1𝑘 − 2𝑢𝑗𝑘 + 𝑢𝑗+1𝑘

ℎ2
+ 𝑓(𝑗ℎ, 𝑘𝜏). 

The explicit scheme has significant restrictions on 
the ratio of steps in time and space:   𝜏 ≤ ℎ2/2. 

     The implicit scheme is used for solving the 
mixed problem: 𝑢|𝑡=0 = 𝑢0(𝑥), 𝑢|𝑥=0 = 𝜑0(𝑡), 
𝑢|𝑥=1 = 𝜑1(𝑡) .  

𝑢𝑗𝑘+1 − 𝑢𝑗𝑘

𝜏
=

𝑢𝑗−1𝑘+1 − 2𝑢𝑗𝑘+1 + 𝑢𝑗+1𝑘+1

ℎ2

+ 𝑓(𝑗ℎ, (𝑘 + 1)𝜏). 
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On each layer, it is necessary to solve a system of 
linear algebraic equations with a tridiagonal matrix. 
As it is known, the implicit scheme is stable with 
respect to rounding errors. The purpose of this paper 
is to construct difference schemes based on non-
polynomial spline approximations and to discuss the 
stability. Now let us consider in more detail the 
approximation of  𝜕

2𝑢

𝜕𝑥2.  

2 The Approximation of the 

Derivatives 
First of all, we note that the above formulas for 
numerical differentiation can be easily obtained 
using the theory of constructing local interpolation 
polynomial splines. 
Let 𝑚, 𝑛 be integer. Let {𝑥𝑗} be a set of ascending 
ordered nodes and function 𝑢(𝑥) be such that 𝑢 ∈
𝐶4([𝑥0, 𝑥𝑛]). Let us use the approximation 𝑈𝑀𝑃(𝑥) 
of the function 𝑢(𝑥) on the grid interval [𝑥𝑗, 𝑥𝑗+1] 
with the cubic polynomial splines  

𝑈𝑀𝑃(𝑥) = 𝑢(𝑥𝑗−1)𝑔𝑗−1 + 𝑢(𝑥𝑗)𝑔𝑗 + 𝑢(𝑥𝑗+1)𝑔𝑗+1 

+𝑢(𝑥𝑗+2)𝑔𝑗+2. 

Here the basis splines 𝑔𝑖 , 𝑖 = 𝑗 − 1, 𝑗, 𝑗 + 1, 𝑗 + 2, are as 
follows: 

𝑔𝑗−1 =
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗−1 − 𝑥𝑗)(𝑥𝑗−1 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗+2)
, 

𝑔𝑗 =
(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)
, 

𝑔𝑗+1 =
(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗+1 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)
, 

𝑔𝑗+2 =
(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+2 − 𝑥𝑗−1)(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗)
. 

Theorem 1. The following approximation estimate is 
valid: 

|𝑢(𝑥) − 𝑈𝑀𝑃(𝑥)| ≤ 0.02344ℎ4 ∥ 𝑢(4) ∥[𝑥𝑗,𝑥𝑗+1], 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1) . 

Proof. Using the Hermitе interpolation remainder 
theorem, we obtain 

𝑢(𝑥) − 𝑈𝑀𝑃(𝑥) =
𝑢(4)(𝜃)

4!
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗−1)(𝑥 −

𝑥𝑗+1)(𝑥 − 𝑥𝑗+2),  
where  𝜃 = 𝜃(𝑥) ∈ [𝑥𝑗 , 𝑥𝑗+1]. 

If the grid is uniform with step ℎ, then 𝑥𝑗+1 = 𝑥𝑗 +

ℎ. When 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1) we put 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈

[0,1].  Thus, we obtain the estimate 

|𝑢(𝑥𝑗 + 𝑡ℎ) − 𝑈𝑀𝑃
(𝑥𝑗 + 𝑡ℎ)| ≤ 

ℎ4

4!
 max
[𝑥𝑗,𝑥𝑗+1]

|𝑢(4)| max
 𝑡∈[0,1]

|𝑡(𝑡 + 1)(𝑡 − 1)(𝑡 − 2)|. 

Let us find the maximum of the expression 

|𝑡(𝑡 + 1)(𝑡 − 1)(𝑡 − 2)|. 

It is not difficult to see that 

max
𝑡∈ [0,1]

|𝑡(𝑡 + 1)(𝑡 − 1)(𝑡 − 2)|  ≤ 0.5625. 

Thus, we obtain:  

|𝑢 − 𝑈𝑀𝑃| ≤ ℎ4

max
[𝑥𝑗,𝑥𝑗+1]

|𝑢(4)|

4!
0.5625. 

The proof is complete. 

Thus, the estimation of the approximation can be 
written in the form: |𝑢 − 𝑈𝑀𝑃] ≤ 𝐶ℎ4, 𝐶 > 0. 

     Now let us construct a new approximation of the 
function u using the obtained basis functions.  
    Our aim is to construct the approximation which 
uses only the values of the function u in the nodes. 
The grid of nodes is uniform with step ℎ therefore, 
we can use next formulas for approximation the 
derivatives: 

𝑢′(𝑥𝑗)

=
−2𝑢(𝑥𝑗−1) − 3𝑢(𝑥𝑗) + 6𝑢(𝑥𝑗+1) − 𝑢(𝑥𝑗+2)

6ℎ
+ 𝑂(ℎ3), 

𝑢′′(𝑥𝑗) =
𝑢(𝑥𝑗−1) − 2𝑢(𝑥𝑗) + 𝑢(𝑥𝑗+1)

ℎ2
+ 𝑂(ℎ2). 

Denote 
 𝑣1

=
−2𝑢(𝑥𝑗−1) − 3𝑢(𝑥𝑗) + 6𝑢(𝑥𝑗+1) − 𝑢(𝑥𝑗+2)

6 ℎ
,   

𝑣2 =  
𝑢(𝑥𝑗−1) − 2𝑢(𝑥𝑗) + 𝑢(𝑥𝑗+1)

ℎ2
. 

Now we get the approximation 𝑉(𝑥) in the form:  
𝑉(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗,0(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1,0(𝑥) 

 +𝑣1𝑤𝑗,1(𝑥)+ 𝑣2𝑤𝑗,2(𝑥). 
Therefore, we obtain the relation: 

𝑉(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗,0(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1,0(𝑥)+ 
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−2𝑢(𝑥𝑗−1) − 3𝑢(𝑥𝑗) + 6𝑢(𝑥𝑗+1) − 𝑢(𝑥𝑗+2)

6ℎ
𝑤𝑗,1(𝑥) 

+
𝑢(𝑥𝑗−1) − 2𝑢(𝑥𝑗) + 𝑢(𝑥𝑗+1)

ℎ2
𝑤𝑗,2(𝑥). 

The approximation uses only the values of the 
function in the nodes and the old basis splines. It 
can be written in the form: 

  𝑄𝑝(𝑥) = 𝑢(𝑥𝑗)𝑊𝑗
𝑝(𝑥) + 𝑢(𝑥𝑗+1)𝑊𝑗+1

𝑝 (𝑥) 

+ 𝑢(𝑥𝑗−1)𝑊𝑗−1
𝑝 (𝑥) +  𝑢(𝑥𝑗+2)𝑊𝑗+2

𝑝 (𝑥), 

where 

𝑊𝑗
𝑝(𝑥) = 𝑤𝑗,0(𝑥) −

𝑤𝑗,1(𝑥)

2ℎ
− 2𝑤𝑗,2(𝑥)/ℎ2, 

𝑊𝑗+1
𝑝 (𝑥) = 𝑤𝑗+1,0(𝑥) +

𝑤𝑗,1(𝑥)

ℎ
+ 𝑤𝑗,2(𝑥)/ℎ2, 

𝑊𝑗−1
𝑝 (𝑥) = −

𝑤𝑗,1(𝑥)

3ℎ
+ 𝑤𝑗,2(𝑥)/ℎ2, 

𝑊𝑗+2
𝑝 (𝑥) = −𝑤𝑗,2(𝑥)/(6ℎ2). 

When applying the approximation 𝑈𝑀𝑃(𝑥) of the 
function 𝑢(𝑥), we receive the formula: 

(𝑈𝑀𝑃(𝑥))
′′

= 𝑢(𝑥𝑗−1)𝑔′′
𝑗−1

(𝑥) + 𝑢(𝑥𝑗)𝑔′′
𝑗
(𝑥)

+ 𝑢(𝑥𝑗+1)𝑔′′
𝑗+1

(𝑥)

+ 𝑢(𝑥𝑗+2)𝑔′′
𝑗+2

(𝑥), 

where 𝑔′′
𝑗(𝑥𝑗) = −

2

ℎ2, 𝑔′′
𝑗+1(𝑥𝑗) =

1

ℎ2, 

𝑔′′
𝑗−1(𝑥𝑗) =

1

ℎ2, 𝑔′′𝑗+2(𝑥𝑗)=0, 𝑥𝑗+1-𝑥𝑗 = ℎ.  

The approximation 𝑈𝑀𝑃(𝑥) is based on the interval 
[𝑥𝑗, 𝑥𝑗+1]. This approximation 𝑈𝑀𝑃(𝑥) is 
continuous on the interval [𝑥0, 𝑥𝑛].  The 
approximation is continuously differentiable on the 
interval (𝑥𝑗, 𝑥𝑗+1). We are interested in the second 
derivatives at the point 𝑥𝑗. We consider a one-sided 
limit of the function (𝑈𝑀𝑃(𝑥))

′′,  𝑥 ∊ (𝑥𝑗, 𝑥𝑗+1) as 
𝑥 approaches the point  𝑥𝑗  from the right. Thus, we 
obtain (𝑈𝑀𝑃)′′(𝑥𝑗+). 

Since we are only interested in points from the 
interval [𝑥𝑗, 𝑥𝑗+1), in what follows, this limit is 
denoted as (𝑈𝑀𝑃)′′(𝑥𝑗). 

Thus, at the point 𝑥𝑖, we get the formulas that are 
presented on this slide: 

𝑔′′
𝑗
(𝑥𝑗) = −

2

ℎ2, 𝑔′′
𝑗+1

(𝑥𝑗) =
1

ℎ2, 

 𝑔′′
𝑗−1

(𝑥𝑗) =
1

ℎ2, 𝑔′′𝑗+2(𝑥𝑗) = 0. 

Applying these formulae, we obtain the well-known 
formula for numerical differentiation and it can be 
used to approximate the partial derivative above. It 
can be shown that the error in approximating the 
second derivative is the next: 

 |(𝑈𝑀𝑃(𝑥𝑗))
′′

− 𝑢′′(𝑥𝑗)| ≤ 𝐾ℎ2, 𝐾 > 0. 

We will now consider the approximation of 
derivatives using the trigonometric splines. Let 𝑢 ∈
𝐶4([𝑥0, 𝑥𝑛]). There are many possibilities to 
construct a local approximation with trigonometric 
splines. When applying the approximation 𝑈𝑀𝑇(𝑥) 
of the function 𝑢(𝑥) on the grid interval [𝑥𝑗, 𝑥𝑗+1] 
with the trigonometric spline 

𝑈𝑀𝑇(𝑥) = 𝑢(𝑥𝑗−1)𝑔𝑗−1 + 𝑢(𝑥𝑗)𝑔𝑗 + 𝑢(𝑥𝑗+1)𝑔𝑗+1 

+𝑢(𝑥𝑗+2)𝑔𝑗+2, 

where 

𝑔𝑗−1 = 𝐴𝑗−1/𝐵𝑗−1, 

𝐴𝑗−1 = sin (
𝑥

2
−

𝑥𝑗

2
) sin (

𝑥

2
−

𝑥𝑗+1

2
) sin (

𝑥

2
−

𝑥𝑗+2

2
), 

𝐵𝑗−1 = sin (
𝑥𝑗−1

2
−

𝑥𝑗

2
) sin (

𝑥𝑗−1

2
−

𝑥𝑗+1

2
) sin (

𝑥𝑗−1

2

−
𝑥𝑗+2

2
), 

𝑔𝑗 = 𝐴𝑗/𝐵𝑗, 

𝐴𝑗 = sin (
𝑥

2
−

𝑥𝑗−1

2
) sin (

𝑥

2
−

𝑥𝑗+1

2
) sin (

𝑥

2
−

𝑥𝑗+2

2
), 

𝐵𝑗 = sin (
𝑥𝑗

2
−

𝑥𝑗−1

2
) sin (

𝑥𝑗

2
−

𝑥𝑗+1

2
) sin (

𝑥𝑗

2

−
𝑥𝑗+2

2
), 

𝑔𝑗+1 = 𝐴𝑗+1/𝐵𝑗+1, 

𝐴𝑗+1 = sin (
𝑥

2
−

𝑥𝑗−1

2
) sin (

𝑥

2
−

𝑥𝑗

2
) sin (

𝑥

2
−

𝑥𝑗+2

2
), 
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𝐵𝑗+1 = sin (
𝑥𝑗+1

2
−

𝑥𝑗−1

2
) sin (

𝑥𝑗+1

2
−

𝑥𝑗

2
) sin (

𝑥𝑗+1

2

−
𝑥𝑗+2

2
), 

𝑔𝑗+2 = 𝐴𝑗+2/𝐵𝑗+2, 

𝐴𝑗+2 = sin (
𝑥

2
−

𝑥𝑗−1

2
) sin (

𝑥

2
−

𝑥𝑗+1

2
) sin (

𝑥

2
−

𝑥𝑗

2
), 

𝐵𝑗+2 = sin (
𝑥𝑗+2

2
−

𝑥𝑗−1

2
) sin (

𝑥𝑗+2

2

−
𝑥𝑗+1

2
) sin (

𝑥𝑗+2

2
−

𝑥𝑗

2
), 

we receive the formula: 

(𝑈𝑀𝑇(𝑥))
′′

= 𝑢(𝑥𝑗−1)𝑔′′
𝑗−1

(𝑥) + 𝑢(𝑥𝑗)𝑔′′
𝑗
(𝑥)

+ 𝑢(𝑥𝑗+1)𝑔′′
𝑗+1

(𝑥)

+ 𝑢(𝑥𝑗+2)𝑔′′
𝑗+2

(𝑥). 

When 𝑥𝑗−1 = 𝑥𝑗 − ℎ,  𝑥𝑗+1 = 𝑥𝑗 + ℎ, 𝑥𝑗+2 = 𝑥𝑗 +

2ℎ, it is not difficult to obtain the formula: 

(𝑈𝑀𝑇(𝑥𝑗))
′′

= 𝑢(𝑥𝑗−1)𝑔′′
𝑗−1(𝑥𝑗) + 𝑢(𝑥𝑗)𝑔′′

𝑗(𝑥𝑗)

+ 𝑢(𝑥𝑗+1)𝑔′′
𝑗+1(𝑥𝑗)

+ 𝑢(𝑥𝑗+2)𝑔′′
𝑗+2(𝑥𝑗), 

where 

𝑔′′
𝑗(𝑥𝑗) = −

3

4
−

cos2 (
ℎ

2
)

2 sin2 (
ℎ

2
)

, 

𝑔′′
𝑗−1 =

cos (ℎ/2)

2 sin (
ℎ

2
) sin (

3ℎ

2
)

+
cos (ℎ)

2 sin(ℎ) sin (
3ℎ

2
)

, 

𝑔′′
𝑗+1(𝑥𝑗) =  

cos (ℎ/2)

2 𝑠𝑖𝑛2 (
ℎ

2
)

−
cos(ℎ)

2sin(h) sin (
ℎ

2
)

. 

It can be shown that the error in approximating the 
second derivative is  

|(𝑈𝑀𝑇(𝑥𝑗))
′′

− 𝑢′′(𝑥𝑗)| ≤ 𝐾ℎ2, 𝐾 > 0. 

Another possibility for the approximation of the 
second derivative will be discussed in Section 3. 
Here we note, then if ℎ → 0 we can obtain the 
relations: 

𝑔′′
𝑗(𝑥𝑗) = −2ℎ−2 −

5

12
−

ℎ2

120
+ 𝑂(ℎ4), 

𝑔′′
𝑗+1(𝑥𝑗) = 𝑔′′

𝑗−1(𝑥𝑗)

= ℎ−2 +
5

24
+

53ℎ2

1920
+ 𝑂(ℎ4). 

Example 1. We apply the polynomial and the 
trigonometric approximations of derivatives to solve 
the heat equation: 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ 𝑓(𝑥, 𝑡). 

Suppose that the exact analytical solution to the 
equation is 𝑢(𝑥, 𝑡) = 𝑡 (sin(2𝑥) + cos (

𝑥

2
)). 

We find a solution in the domain: 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈
[0,1], under boundary conditions:𝑢|𝑡=0 = 𝑢0(𝑥),
𝑥 ∈ [0, 1], 𝑢|𝑥=0 = 𝜑0(𝑡), 𝑢|𝑥=1 = 𝜑1(𝑡). 𝑇 =
 0.08, 𝜏 = 0.08/𝑚 , ℎ = 1/𝑛. We use the Maple 
program to calculate when Digits=15. First, we 
apply the traditional polynomial approximation of 
the partial derivatives. Applying an implicit scheme 
for solving the heat equation, we solve a system of 
linear algebraic equations on each layer. Fig. 1 
shows the plot of the difference between the values 
of the exact solution and the values of the grid 
function at the grid nodes, where 𝑛 = 20, 𝑚 = 30. 
The graph of the difference in absolute value 
between the values of the grid function and the 
values of the exact solution at the grid nodes on the 
last layer is shown in Fig. 2. 

 

Fig.1. The plot of the difference between the values of 
the exact solution and the values of the grid function at 

the grid nodes (the use of the polynomial splines). 

Now we apply the approximation of the second 
partial derivative using the trigonometric splines. 
Applying an implicit scheme for solving the heat 
equation, we solve a system of linear algebraic 
equations on each layer. Fig.3 shows the plot of the 
error between the values of the exact solution and 
the values of the grid function at the grid nodes, 
where 𝑛 = 20, 𝑚 = 30. 
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Fig.2. The graph of the difference in absolute value 
between the values of the grid function and the values of 
the exact solution at the grid nodes on the last layer (the 

use of the polynomial splines). 

 

Fig.3. The plot of the difference between the values of 
the exact solution and the values of the grid function at 

the grid nodes (the use of the trigonometric splines). 

The graph of the difference in absolute value 
between the values of the grid function and the 
values of the exact solution at the grid nodes on the 
last layer is shown in Fig.4.  

 

Fig.4. The plot of the difference between the values of 
the exact solution and the values of the grid function at 

the grid nodes on the last layer (the use of the 
trigonometric splines). 

This example shows that in some cases the 
approximation of partial derivatives by 
trigonometric functions can create result in a smaller 
error. 

   Now consider the application of exponential 
splines. The exponential splines can be constructed 
in a such  way that  𝑈𝑀𝐸(𝑥) = 𝑢(𝑥), 𝑢(𝑥) =

exp(𝑥) , exp(−𝑥) , 1, 𝑥, for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. We can 
use the next approximation of the second derivative: 

(𝑈𝑀𝐸(𝑥))
′′

𝑥𝑗
= 𝑢(𝑥𝑗−1)𝑔′′

𝑗−1(𝑥𝑗)

+ 𝑢(𝑥𝑗)𝑔′′
𝑗(𝑥𝑗)

+ 𝑢(𝑥𝑗+1)𝑔′′
𝑗+1(𝑥𝑗)

+ 𝑢(𝑥𝑗+2)𝑔′′
𝑗+2(𝑥𝑗), 

where 𝑔′′
𝑗+2 = 0, 

𝑔′′
𝑗−1 =

exp(ℎ)

(exp(ℎ) − 1)2
,  𝑔′′𝑗+1 =

exp (ℎ)

(exp(ℎ) − 1)2
, 

𝑔′′𝑗 =
−2exp (ℎ)

(exp(ℎ) − 1)2
. 

We will discuss the error of the approximation with 
these exponential splines later, in Section 3. Here 
we note, then if ℎ → 0 we can obtain the relations: 

𝑔′′
𝑗(𝑥𝑗) = −2ℎ−2 +

1

6
−

ℎ2

120
+ 𝑂(ℎ4), 

𝑔′′
𝑗+1

(𝑥𝑗) = 𝑔′′
𝑗−1

(𝑥𝑗) = ℎ−2 −
1

12
+

ℎ2

240
+ 𝑂(ℎ4). 

The formula for the approximation of the function 
with the exponential splines in the interval [𝑥𝑗, 𝑥𝑗+1] 
can be written as follows: 

𝑈𝑀𝐸(𝑥𝑗 + 𝑡ℎ) = 𝑢(𝑥𝑗−1)𝑤𝑗−1 + 𝑢(𝑥𝑗)𝑤𝑗

+ 𝑢(𝑥𝑗+1)𝑤𝑗+1 + 𝑢(𝑥𝑗+2)𝑤𝑗+2, 

where 𝑡 ∈ [0,1]. 

The basis splines are the following: 

𝑤𝑗(𝑥𝑗 + 𝑡ℎ) = 𝑁𝑗/𝑀𝑗, where 

𝑁𝑗 = exp(𝑡ℎ)(𝑡 exp(4ℎ) + exp(4ℎ) + 𝑡 exp(3ℎ) − 

𝑡 exp(ℎ) − 𝑡 − 1) + exp (ℎ)(exp(ℎ) + 2) 

+ exp(2𝑡ℎ) (− exp(2ℎ) − 2 exp(3ℎ)), 
𝑀𝑗 = exp(𝑡ℎ) (exp(ℎ) − 1)3(exp(ℎ) + 1), 

𝑤𝑗+1(𝑥𝑗 + 𝑡ℎ) = 𝑁𝑗+1/𝑀𝑗+1, where 

𝑁𝑗+1 = exp(h + th) (1 + 𝑡 − exp(2ℎ) 
−𝑡 exp (2ℎ)) + exp(3ℎ + 2𝑡ℎ) − exp(ℎ), 

     𝑀𝑗+1 = exp (𝑡ℎ)(exp (4ℎ) − 2 exp(3ℎ) +

2 exp(ℎ) − 1); 
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𝑤𝑗−2(𝑥𝑗 + 𝑡ℎ) = 𝑁𝑗−2/𝑀𝑗−2, where 
       𝑁𝑗−2 = exp(ℎ + 𝑡ℎ) (𝑡 exp(2ℎ) − 𝑡)

− exp(2ℎ + 2𝑡ℎ) + exp(2ℎ), 
       𝑀𝑗−2 = 𝑀𝑗+1; 
𝑤𝑗−1(𝑥𝑗 + 𝑡ℎ) = 𝑁𝑗−1/𝑀𝑗−1, where 
         𝑁𝑗−1 = exp (𝑡ℎ)(𝑡 + 𝑡 exp(ℎ) + exp(ℎ) 
        −𝑡 exp(3ℎ) − exp(3ℎ) − 𝑡 exp (4ℎ)) 
        −exp (ℎ)(1 + 2 exp (ℎ)) + 
            exp (2𝑡ℎ)(exp(3ℎ) + 2exp (2ℎ)), 
        𝑀𝑗−1 = 𝑀𝑗+1. 
 

Example 2. We find a solution  

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ (−𝑎2𝑡 + 1) exp(−𝑎𝑥),  

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇, 

in the domain: 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ [0, 1], at initial and 
boundary conditions: 

𝑢(𝑥, 0) = 0,   𝑢(0, 𝑡) = 𝑡,    

𝑢(1, 𝑡) = 𝑡 exp(−𝑎), 𝑎 = 1. 

We have 𝑇 =  0.08, 𝜏 = 0.08/𝑚 , ℎ = 1/𝑛. First, 
we use the exponential splines. Applying an implicit 
scheme for solving the heat equation, we solve a 
system of linear algebraic equations on each layer.  

 

Fig.5. The graph of the difference between the values 
of the grid function and the values of the exact solution at 
the grid nodes on the last layer (the use of the exponential 

splines). 

Fig. 6 shows the plot of the error between the values 
of the exact solution and the values of the grid 
function at the grid nodes, where 𝑛 = 20, 𝑚 = 30. 
The graph of the difference in absolute value 
between the values of the grid function and the 
values of the exact solution at the grid nodes on the 
last layer is shown in Fig. 5. Here Digits=15. 

 

 

Fig.6. The plot of the difference between the values of 
the exact solution and the values of the grid function at 

the grid nodes (the use of the exponential splines). 

Now we use the polynomial splines. Applying an 
implicit scheme for solving the heat equation, we 
solve a system of linear algebraic equations on each 
layer. Fig. 8 shows the plot of the difference 
between the values of the exact solution and the 
values of the grid function at the grid nodes, where 
𝑛 = 20, 𝑚 = 30. The graph of the difference in 
absolute value between the values of the grid 
function and the values of the exact solution at the 
grid nodes on the last layer is shown in Fig. 7. Here 
Digits=15. 
   Now let us use the trigonometric splines. 
Applying an implicit scheme for solving the heat 
equation, we solve a system of linear algebraic 
equations on each layer. Fig. 10 shows the plot of 
the difference between the values of the exact 
solution and the values of the grid function at the 
grid nodes, where 𝑛 = 20, 𝑚 = 30. The graph of 
the difference in absolute value between the values 
of the grid function and the values of the exact 
solution at the grid nodes on the last layer is shown 
in Fig. 9. Here Digits=15. 
 

  

Fig.7. The graph of the difference between the values 
of the grid function and the values of the exact solution at 
the grid nodes on the last layer (the use of the polynomial 

splines). 
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Fig.8. The plot of the error between the values of the 
exact solution and the values of the grid function at the 

grid nodes (the use of the polynomial splines) 

 
 Fig.9. The graph of the difference between the values of 
the grid function and the values of the exact solution at 

the grid nodes on the last layer (the use of the 
trigonometric splines). 

As it was written above, the exponential splines are 
constructed in the way that 𝑈𝑀𝐸(𝑥) = 𝑢(𝑥),

𝑢(𝑥) = exp(𝑥) , exp(−𝑥) , 1, 𝑥, for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 
This explains the good quality of the approximate 
solution obtained using exponential splines of the 
problem from the example. 

 

Fig.10. The plot of the errors between the values of the 
exact solution and the values of the grid function at the 

grid nodes (the use of the trigonometric splines). 

The trigonometric splines in the Example 2 do not 
have a very good result. Let us apply the 
polynomial-trigonometric splines which we obtain 
from the conditions: 𝑈𝑀𝑃𝐸(𝑥) = 𝑢(𝑥), 𝑢(𝑥) =

sin(𝑥) , cos(x) , 1, 𝑥, for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. In this case 
we have the formula for the second derivative: 

(𝑈𝑀𝑇𝑃(𝑥))
′′

𝑥𝑗
= 𝑢(𝑥𝑗−1)𝑔′′

𝑗−1(𝑥𝑗)

+ 𝑢(𝑥𝑗)𝑔′′
𝑗(𝑥𝑗)

+ 𝑢(𝑥𝑗+1)𝑔′′
𝑗+1(𝑥𝑗)

+ 𝑢(𝑥𝑗+2)𝑔′′
𝑗+2(𝑥𝑗), 

where 𝑔′′
𝑗+2 = 0, 𝑔′′𝑗−1 =

−1

2(cos(ℎ)−1)
, 

𝑔′′𝑗+1 =
−1

2(cos(ℎ) − 1)
, 𝑔′′𝑗 =

1

cos(ℎ) − 1
. 

Here we note, then if ℎ → 0 we can obtain the 
relations: 

𝑔′′
𝑗(𝑥𝑗) = −2ℎ−2 −

1

6
−

ℎ2

120
+ 𝑂(ℎ3), 

𝑔′′
𝑗+1(𝑥𝑗) = 𝑔′′

𝑗−1
(𝑥𝑖)

= ℎ−2 +
1

12
+

ℎ2

240
+ 𝑂(ℎ3). 

Applying an implicit scheme for solving the heat 
equation, we solve a system of linear algebraic 
equations on each layer. The graph of the difference 
in absolute value between the values of the grid 
function and the values of the exact solution at the 
grid nodes on the last layer is shown in Fig. 11.  

 

Fig.11. The graph of the difference between the values of 
the grid function and the values of the exact solution at 

the grid nodes (the use of new polynomial-trigonometric 
splines). 
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Fig. 12 shows the plot of the difference between the 
values of the exact solution and the values of the 
grid function at the grid nodes, where 𝑛 = 20, 𝑚 =
30 (the use of new polynomial-trigonometric 
splines). 

 

Fig.12. The plot of the errors between the values of the 
exact solution and the values of the grid function at the 

grid nodes. 

4 The Approximation and 

Stability 
As it is known, when we have to solve the Cauchy 
problem or a mixed problem, we need to make an 
approximation of the partial differential equation 
with the required order of approximation, after that 
we have to investigate the resulting scheme for 
stability. In addition, the system of equations 
should be investigated for solvability, which is 
formed when using the implicit solution method. 
     Papers [8-11] show how to obtain an error 
estimate for the splines that are discussed in this 
paper. Let us have a uniform grid of nodes with a 
step ℎ. Using the method published in [9] it is easy 
to show that the next estimate of the error of 
approximation is valid: |𝑈 − 𝑢| ≤ 𝐾ℎ4. Therefore, 
to estimate the approximation of the second 
derivative, we obtain the inequality |𝑈′′ − 𝑢′′| ≤
𝐾ℎ2. Note that the corresponding interpolation 
polynomial, trigonometric, or exponential splines 
are convenient and expedient to use for calculating 
an approximate solution between the values of the 
grid function and for visualizing the result. It is very 
important that in the process of calculations 
according to the chosen scheme, various calculation 
errors, including rounding errors, do not 
accumulate. 
    To investigate the stability of an explicit scheme, 
we can apply the von Neumann stability condition. 
For the stability of the Cauchy problem with respect 
to the initial data we look for a solution to a 

homogeneous problem (when 𝑓(𝑥𝑗, 𝑡𝑘+1) = 0) in 
the form: 𝑢𝑗𝑘 = 𝜆𝑘 exp (𝐼𝑗𝑎), where 𝐼 is the 
imaginary unit, 𝑎 is real. For the explicit scheme we 
get 𝜏 ≤ ℎ2/2. We do not discuss the details in this 
paper. 
    In the case of the implicit scheme we have the 
difference equation: 

𝜆 − 1

𝜏
= 𝜆(𝑔′′𝑗+1 exp(𝐼𝑎) + 𝑔′′𝑗−1 exp(−𝐼𝑎)

+ 𝑔′′𝑗). 

Our aim is to find out for which 𝜏 and h the 
following inequality will satisfy | 𝜆 |≤1+c 𝜏  (von 
Neumann stability), when 𝑐 = 𝑐𝑜𝑛𝑠𝑡 does not 
depend on 𝜏 and h. Using the equality exp(𝐼𝑎) −
2 + exp(−𝐼𝑎) = −4sin2 (𝑎/2), we get for the 
trigonometric case 

| 𝜆 | = |
1

1 − 𝜏𝑔′′𝑗 + 2𝜏 (2 sin2 (
𝑎

2
) − 1)𝑔′′𝑗+1

|

≤ 1 + 𝑐𝜏, 

when 𝑐 = 0.0565. It is not difficult to see that the 
inequality | 𝜆 |≤1+𝑐𝜏 holds for any correlation 
between 𝜏 and h.  
     Applying the maximum principle it can be shown 
that the implicit schema is stable for any 𝜏 and h. 
Similarly, stability is considered for exponential 
splines. The problem of constructing a convergent 
difference scheme is divided into two. The first 
problem is to construct a difference scheme that 
approximates the differential problem on the 
solution. The second task is to check the stability of 
the constructed difference scheme. 
First of all, we recall some definitions. We have to 
solve the boundary value problem 𝐿𝑢 = 𝑓 in 
domain D with the border Γ. Let 𝐷ℎ = {𝑀ℎ}  be the 
set of nodes in 𝐷 ∪ Γ. Let 𝑢 = 𝑢(𝑥, 𝑡)  be the 
solution of the problem. Let the function 𝑢(ℎ) be 
defined only in the set of nodes, so it will be called 
the mesh function. It is well-known that instead of 
solving the problem 𝐿𝑢 = 𝑓, we solve the difference 
scheme 𝐿ℎ𝑢(ℎ) = 𝑓(ℎ). Let 𝑈ℎ be the linear normed 
space with the elements  𝑢(ℎ). Let 𝐹ℎ be the linear 
normed space with the elements  𝑓(ℎ).  Let  ∥⋅ ∥𝑈ℎ

, 
∥⋅ ∥𝐹ℎ

 be the norms in the spaces 𝑈ℎ, 𝐹ℎ: ∥

𝑢(ℎ) ∥𝑈ℎ
= max

𝑗,𝑘
|𝑢𝑗𝑘| , 

∥ 𝑓(ℎ)  ∥𝐹ℎ

= max (max
𝑗

|𝑢0(𝑗ℎ)| , max
𝑘

|𝜑0(𝑘𝜏)| , max
𝑘

|𝜑1(𝑘𝜏)|, 

max
𝑗,𝑘

|𝑓(𝑗ℎ, 𝑘𝜏)|). 
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  By the definition of stability, the solution of the 
difference scheme must satisfy the condition 

∥ 𝑢(ℎ) ∥𝑈ℎ
≤  𝐾 ∥ 𝑓(ℎ)  ∥𝐹ℎ

 

for any 𝑓(ℎ). We examine for the stability, the 
implicit difference scheme that was constructed with 
the polynomial-trigonometric or with the 
polynomial-exponential splines:  

𝑢𝑗,𝑘+1−𝑢𝑗,𝑘

𝜏
= 𝑢𝑗−1,𝑘+1𝑔′′𝑗−1 + 𝑢𝑗+1,𝑘+1𝑔′′𝑗+1 +

𝑢𝑗,𝑘+1𝑔′′𝑗+ 𝑓(𝑥𝑗, 𝑡𝑘+1). 

Multiply both sides of the difference equation by 
−𝜏. We get 

𝜏 (𝑢𝑗−1,𝑘+1𝑔′′
𝑗−1 + 𝑢𝑗+1,𝑘+1𝑔′′

𝑗+1 + 𝑢𝑗,𝑘+1𝑔′′
𝑗) −

𝑢𝑗𝑘+1=−𝜏 𝑓(𝑥𝑗, 𝑡𝑘+1)−𝑢𝑗𝑘. 

We choose from all the values  𝑢𝑗,𝑘+1 which in 
absolute value equals to |𝑢𝑗,𝑘+1|. Such a value, 
whose index 𝑗 takes the smallest value j=𝑗∗. 
Suppose 𝑗∗ ≠ 0, 𝑗∗ ≠ n (otherwise the proof is 
obvious). Let us write the equation corresponding to 
this value: 

𝜏 (𝑢𝑗∗−1,𝑘+1𝑔′′
𝑗∗−1 + 𝑢𝑗∗+1,𝑘+1𝑔′′

𝑗∗+1 +

𝑢𝑗∗,𝑘+1𝑔′′
𝑗∗) − 𝑢𝑗∗𝑘+1=−𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)−𝑢𝑗∗𝑘 . 

Let 𝑢𝑗∗,𝑘+1 > 0. Consider the right side of the 
equation above: 

𝜏 (𝑢𝑗∗−1,𝑘+1𝑔′′
𝑗∗−1 + 𝑢𝑗∗+1,𝑘+1𝑔′′

𝑗∗+1

+ 𝑢𝑗∗,𝑘+1𝑔′′
𝑗∗) − 𝑢𝑗∗𝑘+1 

= 𝜏𝑔′′
𝑗∗+1(𝑢𝑗∗+1,𝑘+1 − 𝑢𝑗∗,𝑘+1)

+ 𝜏𝑔′′
𝑗∗−1(𝑢𝑗∗−1,𝑘+1 − 𝑢𝑗∗,𝑘+1)    

+𝜏𝑢𝑗∗,𝑘+1 (𝑔′′
𝑗∗−1 + 𝑔′′

𝑗∗+1 + 𝑔′′
𝑗∗  ) − 𝑢𝑗∗,𝑘+1

≤ −𝑢𝑗∗,𝑘+1. 

Therefore  −𝑢𝑗∗,𝑘+1 ≥ −𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)−𝑢𝑗∗𝑘 . 
Hence, 
max

𝑗
| 𝑢𝑗,𝑘+1| = 𝑢𝑗∗,𝑘+1 ≤ |𝜏 𝑓(𝑥𝑗∗ , 𝑡𝑘+1)-𝑢𝑗∗𝑘| 

≤ max
𝑗

| 𝑢𝑗,𝑘+1| + 𝜏max
𝑗,𝑘

| 𝑓(𝑥𝑗, 𝑡𝑘+1)|. 

Using this inequality, it is easy to obtain the 
following inequality ∥ 𝑢(ℎ) ∥𝑈ℎ

≤  𝐾 ∥ 𝑓(ℎ)  ∥𝐹ℎ
. 

Thus, for any 𝜏 and h, the stability condition is 
satisfied for the difference scheme. Thus, the 
computational scheme is stable. Since the difference 
scheme also approximates the problem, the solution 

of the difference scheme converges to the solution 
of the problem when the polynomial, the 
trigonometric, the exponential, the polynomial-
exponential and the polynomial-trigonometric were 
used. 

 

4 А Visualization of the Result 
In this section, we discuss the use of local 
polynomial and non-polynomial splines of the forth 
order of approximation to visualize the result. As a 
result of solving the problem, we obtained the 
values of the function at the grid nodes. These 
values were obtained with an error of 𝑂(ℎ2). It is 
required to connect the values of the function using 
local splines of the desired approximation order. In 
the previous sections, we considered the application 
of polynomial and non-polynomial splines of the 
fourth order of approximation. In this section, we 
will construct new splines of the fourth order of 
approximation. These splines will take into account 
the behaviour of the first and second derivatives of 
the function. At first, we construct the spline so that 
the function values, as well as the first and second 
derivatives, are interpolated. In this case, it is 
necessary to use not only the values of the function 
at the grid nodes, but also the values of the first and 
second derivatives of this function at the grid nodes. 
Further, we use the formulas of numerical 
differentiation in order not to apply the derivatives 
of the function. We use the approximation with an 
error 𝑂(ℎ3) and the approximation with an error 
𝑂(ℎ2).  As a result, we get a spline approximation 
that uses only the function values at the grid points. 
   In this section, as in the previous sections, let 𝑎, 𝑏 
be real, and function 𝑢(𝑥) be such that 𝑢 ∈ 𝐶4[𝑎, 𝑏]. 
Let 𝑥𝑗 be a set of nodes such that  

𝑎 = 𝑥0 < ⋯ < 𝑥𝑗−1 < 𝑥𝑗 < 𝑥𝑗+1 < ⋯ < 𝑥𝑛 = 𝑏. 

Now let us consider the question of constructing a 
continuous spline 𝑈, such that its support contains 
four intervals, the spline interpolates the function 
𝑢(𝑥) in the nodes, as well as the first and second 
derivatives. Thus, it is assumed that the relations are 
valid: 

𝑈(𝑥𝑗) = 𝑢(𝑥𝑗), 𝑈(𝑥𝑗+1) = 𝑢(𝑥𝑗+1), 
  𝑈’(𝑥𝑗) = 𝑢′(𝑥𝑗), 𝑈′′(𝑥𝑗) = 𝑢′′(𝑥𝑗). 

We will construct an approximation of the function 
𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1)  in the form: 

𝑈(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗,0(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1,0(𝑥) +

 𝑢′(𝑥𝑗)𝑤𝑗,1(𝑥)+ 𝑢′′(𝑥𝑗)𝑤𝑗,2(𝑥). 
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The first and the second derivatives of this 
approximation will be discontinued at the nodes.  
     We find the basis functions 𝑤𝑗,𝑖(𝑥) by solving 
the system of equations (approximation relations): 

𝑈(𝑥) = 𝑢(𝑥),   𝑢 = 𝑥𝑖,         𝑖 = 0, 1, 2, 3. 

Let ℎ = 𝑥𝑗+1 − 𝑥𝑗.   When 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1) we can put 
𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈ [0,1). The value of the 
determinant of the system is  2ℎ3. 
Now we obtain the formulas of the basis functions: 
𝑤𝑗,0(𝑥𝑗 + 𝑡ℎ) =  1 − 𝑡3,  𝑤𝑗+1,0(𝑥𝑗 + 𝑡ℎ) = 𝑡3, 
𝑤𝑗,1(𝑥𝑗 + 𝑡ℎ) = 𝑡ℎ − ℎ𝑡3, 
  𝑤𝑗,2(𝑥𝑗 + 𝑡ℎ)  = 𝑡2ℎ2/2-𝑡2ℎ3/2. 
Figures 13-16 show graphs of basis functions 𝑤𝑗,𝑖.  

 

Fig.13. The plot of the basis function 𝑤𝑗,0. 

 

Fig.14. The plot of the basis function 𝑤𝑗+1,0. 

 

Fig.15. The plot of the basis function 𝑤𝑗,1. 

 

Fig.16. The plot of the basis function 𝑤𝑗,2. 

The following statement is true.  
 

Theorem 2. Let function 𝑢(𝑥) be such that 𝑢 ∈
𝐶4[𝑎, 𝑏]. We approximate the function 𝑢(𝑥) on the 
interval [𝑥𝑗, 𝑥𝑗+1)   using the expression: 

𝑈(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗,0(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1,0(𝑥) +

 𝑢′(𝑥𝑗)𝑤𝑗,1(𝑥)+ 𝑢′′(𝑥𝑗)𝑤𝑗,2(𝑥), 
where 
 𝑤𝑗,0(𝑥𝑗 + 𝑡ℎ) =  1 − 𝑡3,  𝑤𝑗+1,0(𝑥𝑗 + 𝑡ℎ) = 𝑡3, 
𝑤𝑗,1(𝑥𝑗 + 𝑡ℎ) = 𝑡ℎ − ℎ𝑡3,  
 𝑤𝑗,2(𝑥𝑗 + 𝑡ℎ)  = 𝑡2ℎ2/2-𝑡2ℎ3/2, 
𝑡 ∈ [0,1), ℎ = 𝑥𝑗+1 − 𝑥𝑗. 

Then the following approximation estimate is valid: 

|𝑢(𝑥) − 𝑈(𝑥)| ≤ 0.0043945ℎ4 ∥ 𝑢(4) ∥[𝑥𝑗,𝑥𝑗+1], 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1) . 

Proof. Using the Hermite interpolation remainder 
theorem, we obtain 

𝑢(𝑥) − 𝑈(𝑥) =
𝑢(4)(𝜃)

4!
(𝑥 − 𝑥𝑗)3(𝑥 − 𝑥𝑗+1),  

where  𝜃 = 𝜃(𝑥) ∈ [𝑥𝑗 , 𝑥𝑗+1]. 

If the grid is uniform with step h, then 𝑥𝑗+1 = 𝑥𝑗 +

ℎ. When 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1) we put 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈

 [0,1).   Thus, we obtain the estimate 

|𝑢(𝑥𝑗 + 𝑡ℎ) − 𝑈(𝑥𝑗 + 𝑡ℎ)| ≤ 

ℎ4

4!
 max
[𝑥𝑗,𝑥𝑗+1]

|𝑢(4)| max
 𝑡∈[0,1]

|(𝑡)3(𝑡 − 1)|. 

Let us find the maximum of the expression 
|(𝑡)3(𝑡 − 1)|. 

It is not difficult to see that max
𝑡∈ [0,1]

|(𝑡)3(𝑡 − 1)|  ≤

0.10547. Thus, we obtain: 

|𝑢 − 𝑈| ≤ ℎ4

max
[𝑥𝑗,𝑥𝑗+1]

|𝑢(4)|

4!
0.10547. 

The proof is complete. 

The estimation of the approximation can be written 
in the form:|𝑢 − 𝑈] ≤ 𝐶ℎ4. 

Now let us construct a new approximation of the 
function u using the obtained basis functions.  
    Our aim is to construct the approximation which 
uses only the values of the function u in the nodes. 
The grid of nodes is uniform with step ℎ therefore, 
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we can use next formulas for approximation the 
derivatives: 

𝑢′(𝑥𝑗)

=
−2𝑢(𝑥𝑗−1) − 3𝑢(𝑥𝑗) + 6𝑢(𝑥𝑗+1) − 𝑢(𝑥𝑗+2)

6ℎ
+ 𝑂(ℎ3), 

𝑢′′(𝑥𝑗) =
𝑢(𝑥𝑗−1) − 2𝑢(𝑥𝑗) + 𝑢(𝑥𝑗+1)

ℎ2
+ 𝑂(ℎ2). 

Denote 
 𝑣1

=
−2𝑢(𝑥𝑗−1) − 3𝑢(𝑥𝑗) + 6𝑢(𝑥𝑗+1) − 𝑢(𝑥𝑗+2)

6 ℎ
,   

𝑣2 =  
𝑢(𝑥𝑗−1) − 2𝑢(𝑥𝑗) + 𝑢(𝑥𝑗+1)

ℎ2
. 

Now we get the approximation 𝑉(𝑥) in the form:  
𝑄𝑝(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗,0(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1,0(𝑥) 

 +𝑣1𝑤𝑗,1(𝑥)+ 𝑣2𝑤𝑗,2(𝑥). 
Therefore, we obtain the relation: 

𝑄𝑝(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗,0(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1,0(𝑥)+ 

−2𝑢(𝑥𝑗−1) − 3𝑢(𝑥𝑗) + 6𝑢(𝑥𝑗+1) − 𝑢(𝑥𝑗+2)

6ℎ
𝑤𝑗,1(𝑥) 

+
𝑢(𝑥𝑗−1) − 2𝑢(𝑥𝑗) + 𝑢(𝑥𝑗+1)

ℎ2
𝑤𝑗,2(𝑥). 

The approximation uses only the values of the 
function in the nodes and the old basis splines. It 
can be written in the form: 

  𝑄𝑝(𝑥) = 𝑢(𝑥𝑗)𝑊𝑗
𝑝(𝑥) + 𝑢(𝑥𝑗+1)𝑊𝑗+1

𝑝 (𝑥) 

+ 𝑢(𝑥𝑗−1)𝑊𝑗−1
𝑝 (𝑥) +  𝑢(𝑥𝑗+2)𝑊𝑗+2

𝑝 (𝑥), 

where 

𝑊𝑗
𝑝(𝑥) = 𝑤𝑗,0(𝑥) −

3𝑤𝑗,1(𝑥)

6ℎ
− 2𝑤𝑗,2(𝑥)/ℎ2, 

𝑊𝑗+1
𝑝 (𝑥)(𝑥) = 𝑤𝑗+1,0(𝑥) +

6𝑤𝑗,1(𝑥)

6ℎ
+

𝑤𝑗,2(𝑥)

ℎ2
, 

𝑊𝑗−1
𝑝 (𝑥) = −

2𝑤𝑗,1(𝑥)

6ℎ
+

𝑤𝑗,2(𝑥)

ℎ2
, 

𝑊𝑗+2
𝑝 (𝑥) = −

𝑤𝑗,1(𝑥)

6ℎ
. 

When 𝑥 = 𝑥𝑗 + 𝑡ℎ, we get for 𝑡 ∈  [0,1): 

𝑊𝑗+2
𝑝

(𝑥𝑗 + 𝑡ℎ) = 𝑡(𝑡 − 1)(𝑡 + 1)/6, 

𝑊𝑗+1
𝑝

(𝑥𝑗 + 𝑡ℎ) = −𝑡(𝑡 − 2)(𝑡 + 1)/2, 

𝑊𝑗
𝑝

(𝑥𝑗 + 𝑡ℎ) = (𝑡 − 1)(𝑡 − 2)(𝑡 + 1)/2, 

𝑊𝑗−1
𝑝

(𝑥𝑗 + 𝑡ℎ) = −𝑡(𝑡 − 2)(𝑡 − 1)/6. 

Thus, these basis splines are just the same as are the 
cubic polynomial splines 𝑔𝑖+2, 𝑔𝑖+1, 𝑔𝑖, 𝑔𝑖−1, 
and the approximation  𝑄𝑝(𝑥) is just the same as 
𝑈𝑀𝑃(𝑥): 𝑄𝑝(𝑥) = 𝑈𝑀𝑃(𝑥). 

This approximation is considered only on the 
interval [𝑥𝑗, 𝑥𝑗+1). Considering similar expressions 
on adjacent intervals, we can write out a formula for 
the basis spline 𝑊𝑗(𝑥), 𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗+2).. This basis 
spline on the equidistant set of nodes  can be written 
as a piecewise given polynomial. 

𝑊𝑗
𝑝

= −
(𝑡 − 1)(𝑡 + 1)(𝑡 + 2)

2
, 𝑡 ∈ [−1, 0], 

𝑊𝑗
𝑝

=
(𝑡 − 1)(𝑡 + 1)(𝑡 − 2)

2
, 𝑡 ∈ [0, 1], 

𝑊𝑗
𝑝

= −
(𝑡 − 1)(𝑡 − 2)(𝑡 − 3)

6
, 𝑡 ∈ [1, 2], 

𝑊𝑗
𝑝

=
(𝑡 + 1)(𝑡 + 2)(𝑡 + 3)

6
, 𝑡 ∈ [−2, −1]. 

The plot of the basis spline 𝑊𝑗
𝑝

(𝑡) is shown in 
Fig.17. 

 

Fig.17. The plot of the basis function 𝑊𝑗
𝑝

(𝑡) 

Now let us compare two types of interpolation by 
the polynomial splines of the fourth order of 
approximation: cubic polynomial spline of the 
second level and the cubic spline when the 
derivatives were replaced using formulas of 
numerical differentiation. The interval [−1,1] was 
considered, on which a uniform grid was 
constructed wit step ℎ = 0.1. Table 1 presents the 
actual errors of approximation with the polynomial 
cubic splines 𝑈(𝑥) and the cubic splines 𝑄𝑝(𝑥) . 
Table 2 presents the theoretical errors of 
approximation with the polynomial cubic splines 
𝑈(𝑥) and the cubic splines 𝑄𝑝(𝑥) 
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     Figures 18-19 show the errors of approximation 
of the function sin(5𝑥) when the interval [−1,1] 
was considered, 𝑛 = 5, and ℎ = 2/5. Figure 18 
shows the error of approximation when splines 𝑈(𝑥) 
were used, Figure 19 shows the error of 
approximation when splines 𝑄𝑝(𝑥) were used, 

 

Fig.18. The plot of the error of approximation of function 
sin(5𝑥), obtained with 𝑈(𝑥). 

 

Fig.19. The plot of the error of approximation of the 
function sin(5𝑥), obtained with 𝑄𝑝(𝑥) 

 

Table 1. The actual errors of approximation with 
cubic ( 𝑈(𝑥)) and the cubic splines (𝑄𝑝(𝑥)). 

𝐹(𝑥) 𝑈(𝑥) 𝑄𝑝(𝑥) 
1

1 + 25𝑥2
 0.001662 0.009529 

sin(5𝑥) 0.0002430 0.001411 

Table 2. The theoretical errors of approximation 
with cubic ( 𝑈(𝑥)) and the cubic splines (𝑄𝑝(𝑥)). 

𝐹(𝑥) 𝑈(𝑥) 𝑄𝑝(𝑥) 
1

1 + 25𝑥2
 0.006592 0.03516 

sin(5𝑥) 0.0002747 0.001465 

The above examples show that the constructed 
splines of the second level can have an advantage 
over the usual polynomial cubic splines. 
     As it is known, using non-polynomial splines 
also improves the quality of the approximation. 
Now, in this section, non-polynomial splines of the 
fourth order of approximation will be constructed. 

These splines will take into account the behaviour of 
the first and second derivatives of the function. 
     Thus, we will construct the spline so that it 
interpolates the function, and the first and second 
derivatives of this function. In addition, we will 
construct this spline so that it is continuous. Let the 
function 𝑢 be such that 𝑢 ∈ 𝐶4[𝑎, 𝑏]. Let a uniform 
grid of nodes  {𝑥𝑗}  with a step ℎ  be constructed on 
the interval [𝑎, 𝑏]. Similar to how it was done in the 
polynomial case, we will construct an 
approximation 𝑈(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1) in the form:  

𝑈(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗,0(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1,0(𝑥) +

𝑢′(𝑥𝑗)𝑤𝑗,1(𝑥) +  𝑢′′(𝑥𝑗)𝑤𝑗,2(𝑥). 

Suppose that the supports of the basis functions are 
as follows: 𝑠𝑢𝑝𝑝 𝑤𝑗,0 ∈ [𝑥𝑗−1, 𝑥𝑗+1], 𝑠𝑢𝑝𝑝 𝑤𝑗,1 ∈

[𝑥𝑗, 𝑥𝑗+1], 𝑠𝑢𝑝𝑝 𝑤𝑗,2 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

In the case of constructing non-polynomial splines 
of the second height of this type, we need to solve a 
system of equations of the form 
𝜑𝑖(𝑥𝑗)𝑤𝑗,0(𝑥) + 𝜑𝑖(𝑥𝑗+1)𝑤𝑗+1,0(𝑥) +

𝜑𝑖
′(𝑥𝑗)𝑤𝑗,1(𝑥) + 𝜑𝑖

′′(𝑥𝑗)𝑤𝑗,2(𝑥) = 𝜑𝑖(𝑥),  
𝑖 = 0, 1, 2, 3,   𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1).    

 
We assume that the functions  𝜑𝑖 form a Chebyshov 
system, and the determinant of this system of 
equations differs from zero. If the basis splines are 
such that 𝜑𝑖 = 𝑥𝑖, then we come to the polynomial 
case considered in the previous section. Now we 
consider the polynomial-trigonometrical case when 
𝜑𝑖 = 𝑥𝑖, 𝑖 = 0,1, 𝜑2 = sin(𝑥) , 𝜑3 = cos(𝑥). The 
value of the determinant of the system of equations, 
when ℎ = 𝑥𝑗+1 − 𝑥𝑗,  is equal to sin(ℎ) − ℎ. 
      Let  𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1). On the interval [𝑥𝑗, 𝑥𝑗+1) the 
equality 𝑥 = 𝑥𝑗 + 𝑡 ℎ,  𝑡 ∈ [0,1), ℎ = 𝑥𝑗+1 − 𝑥𝑗, 
takes place. Thus, the basis splines take the form: 

𝑤𝑗,0(𝑥𝑗 + 𝑡ℎ) =
sin(ℎ) − sin(𝑡ℎ) + ℎ(𝑡 − 1)

sin(ℎ) − ℎ
, 

𝑤𝑗+1,0(𝑥𝑗 + 𝑡ℎ) =
sin(𝑡ℎ) − 𝑡ℎ

sin(ℎ) − ℎ
, 

𝑤𝑗,1(𝑥𝑗 + 𝑡ℎ) =
sin(ℎ) 𝑡ℎ − ℎ sin(𝑡ℎ)

sin(ℎ) − ℎ
, 

𝑤𝑗,2(𝑥𝑗 + 𝑡ℎ) =
ℎ (cos(𝑡 ℎ) − t cos(ℎ) − 1 + 𝑡)

sin(ℎ) − ℎ
+ 

sin(𝑡ℎ − ℎ) − sin(𝑡ℎ) + sin (ℎ)

sin(ℎ) − ℎ
. 
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The plots of the basis functions 𝑤𝑗,𝑖(𝑥) on the 
interval [𝑥𝑗, 𝑥𝑗+1), 𝑥𝑗 = 0,  𝑥𝑗+1 = 1, when are 
given in Figures 20-23. 

 

Fig.20. The plot of the basis function 𝑤𝑗,0, ℎ = 1. 

 

Fig.21.The plot of the basis function 𝑤𝑗+1,0, ℎ = 1. 

 

Fig.22. The plot of the basis function 𝑤𝑗,1, ℎ = 1. 

 

Fig.23. The plot of the basis function 𝑤𝑗,2, ℎ = 1 

On the adjacent interval [𝑥𝑗−1, 𝑥𝑗), which is to the 
left of the interval [𝑥𝑗, 𝑥𝑗+1), we determine the basis 
functions by solving the system of equations. Thus, 
we solve a system of equations of the form: 
𝜑𝑖(𝑥𝑗−1)𝑤𝑗−1,0(𝑥) + 𝜑𝑖(𝑥𝑗)𝑤𝑗,0(𝑥) +

𝜑𝑖
′(𝑥𝑗−1)𝑤𝑗−1,1(𝑥) +  𝜑𝑖

′′(𝑥𝑗)𝑤𝑗−1,2(𝑥) = 𝜑𝑖(𝑥),  
𝑖 = 0, 1, 2, 3,   𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗).    

Combining the results obtained for the basis spline 
𝑤𝑗,0(𝑥), we obtain the formulas: 

𝑤𝑗,0(𝑥) =
sin(ℎ) − ℎ + 𝑡ℎ − sin(𝑡 ℎ)

sin(ℎ) − ℎ
, 

  𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1),           

𝑤𝑗,0(𝑥) =
sin(𝑡 ℎ) − 𝑡ℎ

sin(ℎ) − ℎ
, 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗). 

 
Combining these two possibilities, we get the basic 
function 𝑤𝑗,0(𝑥) on the interval [𝑥𝑗−1, 𝑥𝑗+1). 

The plot of the basis function 𝑤𝑗,0(𝑥) on the interval 
[𝑥𝑗−1, 𝑥𝑗+1) is given in Fig. 24. 

 

Fig.24. The plot of the basis function 𝑤𝑗,0(𝑥) on the 
interval [𝑥𝑗−1, 𝑥𝑗+1). 

We denote by 𝑉(𝑥), 𝑥 ∈ [𝑎, 𝑏),    a piecewise 
function given on each interval [𝑥𝑗, 𝑥𝑗+1) as follows 

𝑉𝑃𝑇(𝑥) = 𝑈(𝑥),    𝑈(𝑥) ∈ [𝑥𝑗, 𝑥𝑗+1),    
 𝑗 = 0, 1, … , 𝑛 − 1.    

Table 3 shows the results of numerical experiments.  
Let us construct a uniform grid of nodes on the 
interval [−1,1]  with the step  ℎ = 2/𝑛. Let the 
values of the function 𝑢(𝑥) and its first and second 
derivatives are given at the grid nodes. The actual 
errors of approximation with the polynomial-
trigonometric splines od the second level are given 
in Table 3. 
We denote 𝑅 = max

[−1,1]
|𝑢 − 𝑉𝑃𝑇|.   

Table 3. The actual errors of approximation with the 
polynomial-trigonometric splines od the second 
level 

𝑢(𝑥) 𝑅, 𝑛 = 20 𝑅, 𝑛 = 200 

1

1 + 25𝑥2
 0.001655 0.5274 ∙ 10−6 

sin(5𝑥) 0.0002333 0.3464 ∙ 10−7 

The plot of the error of the approximation of the 
function 1/(1 + 25𝑥2) when 𝑛 = 20, is given in 
Fig.25. 

The plot of the error of the approximation of the 
function 1/(1 + 25𝑥2) when 𝑛 = 40, is given in 
Fig.26. 
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Fig.25. The plot of the error of the approximation of the 
function 1/(1 + 25𝑥2). Here 𝑛 = 20. 

 

Fig.26. The plot of the error of the approximation of the 
function 1/(1 + 25𝑥2). Here 𝑛 = 40. 

The plot of the error of the approximation of the 
function sin(5𝑥) when 𝑛 = 20, is given in Fig.27. 

The plot of the error of the approximation of the 
function sin(5𝑥) when 𝑛 = 40, is given in Fig.28. 

 

Fig.27. The plot of the error of the approximation of the 
function sin(5𝑥). Here 𝑛 = 20. 

 

Fig.28. The plot of the error of the approximation of the 
function sin (5𝑥). Here 𝑛 = 40. 

Now our task is to construct an approximation that 
uses only the values of the function at the grid 

points. To do this, we replace the first and second 
derivatives of the function at the grid nodes using 
the formulas for numerical differentiation. To 
construct formulas for numerical differentiation, we 
will use a spline which has been constructed by 
using the system of functions: 1, sin(𝑥), cos(𝑥), 𝑥. 
Differentiating this spline twice, we obtain the 
formula for the second derivative at the point 𝑥𝑗: 

𝑢′′(𝑥𝑗) =
−𝑈𝑗−1 + 2𝑈𝑗 − 𝑈𝑗+1

2(cos (ℎ) − 1)
+ 𝑂(ℎ2). 

The expression for the first derivative at the point 
mm gives the equality 

𝑢′(𝑥𝑗) =
−𝐴𝑗 𝑈𝑗

2
+

𝐴𝑗+1𝑈𝑗+1

2
−

𝐴𝑗−1 𝑈𝑗−1

2
 

−
𝐴𝑗+2 𝑈𝑗+2

2
+ 𝑂(ℎ3), 

where 

𝐴𝑗 =
(sin(ℎ) − ℎ)(2 cos(ℎ) + 1)

ℎ sin(ℎ)(cos(ℎ) − 1)
, 

𝐴𝑗+1 =
2 sin(ℎ)cos(ℎ) + sin(ℎ) − ℎ cos(ℎ) − 2ℎ

ℎ sin(ℎ)(cos(ℎ) − 1)
. 

𝐴𝑗−1 =
ℎ cos(ℎ) − sin(ℎ)

ℎ sin(ℎ)(cos(ℎ) − 1)
, 

 

𝐴𝑗+2 =
sin(ℎ) − ℎ

ℎ sin(ℎ)(cos(ℎ) − 1)
. 

Now we replace the values of the first and second 
derivatives of the function through the numerical 
differentiation formulas in the expression for the 
spline approximation. In this case, we obtain an 
approximation of the form 
 

𝑉(𝑥𝑗 + 𝑡ℎ) = 𝐶𝑗(𝑡)𝑈𝑗 + 𝐶𝑗+1(𝑡)𝑈𝑗+1

+ 𝐶𝑗−1(𝑡)𝑈𝑗−1 + 𝐶𝑗+2(𝑡)𝑈𝑗+2, 
where 𝑡 ∈ [0,1), and the basis functions are as 
follows: 
 
𝐶𝑗+1 = (sin (𝑡 ℎ) − 𝑡 ℎ)/(sin (ℎ) − ℎ) + 

(〖(sin〗 (2ℎ) + sin (ℎ) − ℎ cos(ℎ) − 2ℎ)(ℎ 𝑡 sin (ℎ)
− ℎ sin(𝑡ℎ)))/((2ℎ sin(ℎ))(cos (ℎ)
− 1)(sin(h) − h)) 

−(ℎ cos(𝑡ℎ) − 𝑡 ℎ cos(ℎ) + sin(𝑡ℎ − ℎ) − ℎ + 𝑡ℎ 
− sin(𝑡ℎ) + sin(ℎ))/((sin(ℎ) − ℎ)(2 cos(ℎ) − 2)), 

 
𝐶𝑗 = (𝑡ℎ − ℎ + sin (ℎ) − sin (𝑡ℎ))/(sin (ℎ) − ℎ) 

−(2 cos(ℎ) + 1)(𝑡 ℎ sin(ℎ) 
−ℎ sin (𝑡 ℎ))/(2ℎ sin(ℎ) (cos(ℎ) − 1)) 

+2(ℎ cos(𝑡 ℎ) − 𝑡 ℎ cos(ℎ) + sin(𝑡 ℎ − ℎ) − h 
+t h + sin(h) − sin(th)) 

/((sin(ℎ) − ℎ)(2 cos(ℎ) − 2)), 
𝐶𝑗−1 = −(ℎ cos(ℎ) − sin (ℎ))(𝑡 ℎ sin(ℎ) 

−ℎ sin (𝑡ℎ)) 
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/(2ℎ sin(ℎ)(cos(ℎ) − 1)(sin(ℎ) − ℎ))
− (ℎcos(𝑡ℎ) − 𝑡ℎ cos(ℎ) 

+ sin(𝑡ℎ − ℎ) − ℎ + 𝑡ℎ − sin(𝑡ℎ) 
+sin (ℎ))/((sin(ℎ) − ℎ)(2 cos(ℎ) − 2)), 

 

𝐶𝑗+2 = −
(𝑡 ℎ  sin(ℎ) − ℎ sin(𝑡ℎ))

2 ℎ sin(ℎ)(cos(ℎ) − 1)
. 

 

The plot of the basis functions 𝐶𝑘 , 𝑘 = 𝑗, 𝑗 − 1, 𝑗 +
1, 𝑗 + 2, when ℎ = 1, are given in Fig 29. 

 
Fig. 29. The plots of the basis functions  𝐶𝑘, 

𝑘 =  𝑗 , 𝑗 − 1, 𝑗 + 1, 𝑗 + 2, when ℎ = 1. 
 

It is not difficult to obtain the formula for the basic 
spline 𝐶𝑗. We will join the endpoints of the spline 
values at the grid nodes by continuity. Then the 
support of this basic spline 𝐶𝑗 will occupy four 
neighbouring grid intervals: supp 𝐶𝑗 = [𝑥𝑗−2, 𝑥𝑗+2]. 
This basis spline can be given by an alternative 
given function: 

𝑊𝑗 = 𝐴𝑗0 + 𝐴𝑗1 + 𝐴𝑗2, 
where 

𝐴𝑗0 =
𝑡ℎ − ℎ + sin(ℎ) − sin(𝑡ℎ)

sin(ℎ) − ℎ
 

𝐴𝑗1 = −(2 cos(ℎ) + 1)(𝑡 ℎ sin(ℎ) 
−ℎ sin (𝑡ℎ))/(2ℎ sin(ℎ) (cos(ℎ) − 1)), 

𝐴𝑗2 = 2(ℎ cos(𝑡ℎ) − 𝑡 ℎ cos(ℎ) + sin(𝑡ℎ − ℎ) 
−h + t h + sin(h) − sin(th))/((sin(ℎ) 

−ℎ)(2 cos(ℎ) − 2)), 
and when 𝑡 ∈ [0,1] 
 

𝑊𝑗 = 𝐵𝑗0 + 𝐵𝑗1 + 𝐵𝑗2, 
where 
𝐵𝑗0 = ((sin((𝑡 + 1)ℎ)) 

−(𝑡 + 1)ℎ))/(sin (ℎ) − ℎ), 
𝐵𝑗1 = (sin(2ℎ) + sin(ℎ)) − ℎ cos(ℎ) 

−2ℎ)((𝑡 + 1)ℎ sin(ℎ) − ℎ sin((𝑡 + 1)ℎ)) 
/(2ℎ sin(ℎ)(cos(ℎ) − 1)(sin(ℎ) − ℎ)), 

𝐵𝑗2 = −(ℎ cos((𝑡 + 1)ℎ) − ℎ(𝑡 + 1)cos(ℎ) 
+ sin(ℎ(𝑡 + 1) − ℎ) − ℎ + ℎ(𝑡 + 1) 

− sin((𝑡 + 1)ℎ) + sin (ℎ)) 
/((2 cos(ℎ) − 2)(sin(ℎ) − ℎ)), 

and when 𝑡 ∈ [−1,0], 
𝑊𝑗 = 𝐷𝑗0 + 𝐷𝑗1, 

where 
𝐷𝑗0 = −((ℎ cos(ℎ) − sin(ℎ))(ℎ(𝑡 − 1) sin(ℎ) 

−ℎ sin(ℎ(𝑡 − 1)))/(2 ℎ sin (ℎ)(cos(ℎ) −
1)(sin(ℎ) − ℎ)), 

𝐷𝑗1 = −(ℎ cos(ℎ(𝑡 − 1)) − ℎ(𝑡 − 1)cos(ℎ) 

+sin((𝑡 − 1)ℎ − ℎ) − ℎ + ℎ(𝑡 − 1) 

−sin((𝑡 − 1)ℎ) + sin (ℎ)) 

/((2 cos(ℎ) − 2)(sin(ℎ) − ℎ)), 
and when 𝑡 ∈ [1, 2], 
 
𝑊𝑗 = − ((𝑡 + 2)ℎ sin(ℎ) − ℎ sin((𝑡 + 2)ℎ)) 

/(2ℎ sin(ℎ)(cos(ℎ) − 1)) 
when 𝑡 ∈ [−2, −1]. 
The plot of the basis function 𝐶𝑗 is given in Fig. 30. 
 

 
Fig.30. The plot of the basis function 𝐶𝑗, when ℎ = 1. 

 
It is easy to see that there are relations between the 
polynomial and newly constructed splines: 

𝑊𝑗 = −
(𝑡 − 1)(𝑡 + 1)(𝑡 + 2)

2
+ 𝑂(ℎ2), 

𝑡 ∈ [−1,0] 

𝑊𝑗 =
(𝑡 − 1)(𝑡 + 1)(𝑡 − 2)

2
+ 𝑂 (ℎ2

), 
𝑡 ∈ [0, 1], 

𝑊𝑗 = −
(𝑡 − 1)(𝑡 − 2)(𝑡 − 3)

6
+ 𝑂 (ℎ2

), 
𝑡 ∈ [1, 2], 

𝑊𝑗 =
(𝑡 + 1)(𝑡 + 2)(𝑡 + 3)

6
+ 𝑂 (ℎ2

), 
𝑡 ∈ [−2, −1], 

In addition, the following relations hold: 

𝑊𝑗+1 = −
𝑡(𝑡 + 1)(𝑡 − 2)

2
+ 𝑂(ℎ2), 

𝑡 ∈ [0, 1], 

𝑊𝑗 =
(𝑡 − 1)(𝑡 + 1)(𝑡 − 2)

2
+ 𝑂(ℎ2), 

𝑡 ∈ [0, 1], 

𝑊𝑗−1 = −
𝑡(𝑡 − 1)(𝑡 − 2)

6
+ 𝑂(ℎ2), 

𝑡 ∈ [0, 1], 
𝑊𝑗+2 =

𝑡(𝑡+1)(𝑡−1)

6
+ 𝑂(ℎ2),    𝑡 ∈ [0, 1]. 

Thus, in this paper we have constructed the spline, 
of the fourth order of approximation, which 
interpolates the function, and its first and second 
derivatives at the grid nodes. This spline uses the 
values of the function and its first and second 
derivatives. Further, applying the formulas of 
numerical differentiation and the obtained spline,  
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we constructed a continuous spline, also of the 
fourth order of approximation. This spline uses only 
the values of the function at the grid nodes and takes 
into account the behaviour of the first and second 
derivatives of the function being approximated. 
  Remark. In the proposed method, the same rules 
should be preserved as in the traditional method. It 
is necessary not to forget about the unremovable 
error of numerical differentiation and not to select 
too small a grid step.  
 

 

 

5 Conclusion 
We considered alternative implicit difference 
schemes for solving the heat equation. For the 
construction, polynomial, trigonometric, 
exponential, polynomial-exponential and 
polynomial-trigonometric splines were used. The 
theoretical errors of approximation are obtained. 
The resulting difference schemes turned out to be 
stable; therefore, the proposed schemes turned out to 
be convergent to the solution of the problem. 
    In this paper, polynomial and non-polynomial 
splines of the fourth order of approximation are 
constructed. They take into account the behaviour of 
the first and second derivatives of the function. 
 Using non-polynomial splines also improves the 
quality of the approximation.  Having analyzed the 
results of numerical experiments presented in the 
article, we note that when constructing a numerical 
solution, polynomial-trigonometric splines give a 
smaller error. 
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