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Abstract: - There have been numerous attempts to model the progression of Diabetes Mellitus, which is a 
disease suffered by those with eating disorders with prevalence in the aged population. Models in the past have 
not been very successful in discovering the future development of the symptoms in a long term prediction. This 
is due to the fact that the state variables under consideration change in drastically different time scales, and the 
models that do not take careful account of this are not able to provide sufficiently accurate forecast that can be 
of satisfactory assistance to physicians taking care of their patients. In this work, we use the singular 
perturbation method to analyse a model of insulin and glucose interaction, incorporating beta cell dynamics and 
the pancreatic reserve, proposed by De Gaetano et al. in 2008. Different dynamic behaviour will be identified 
and numerical simulations will be carried out in support of our theoretical predictions. 
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1 Introduction 
Drug resistance has been a grave concern for many. 
According to [1], diabetes is on the rise across the 
globe. IDF’s statistics shows that at the present time 
it is estimated that every seven seconds someone 
dies from diabetes or its complications, 50% of 
which deaths occurring to those under the age of 60 
years, amounting to a total of 4 million deaths per 
year. The global diabetes prevalence is 8.8% (95% 
confidence interval 7.2-11.3%) of the world 
population in 2017, standardized for the age group 
20-79 years, according to [2]. 

In [3], the statistics indicates that, in 2017, 
Thailand has a population of 4.8 million who suffer 
from diabetes, only half of which has been 
diagnosed with the disease. In addition, it was 
reported in [4] that one in eleven people in the Thai 
population, at a mature age, is diagnosed with 
diabetes in 2016, while the World Health 
Organization reported that during 2009 - 2014, the 
number of diabetic patients has risen 4 folds and 

over 70 thousand died from illnesses related to 
diabetes each year [4].  

Glycemia and insulinemia are regulated through 
a negative feedback loop in which  -cells are 
stimulated by plasma glucose to release insulin 
leading to insulin-mediated increased tissue glucose 
uptake and decreased liver gluconeogenesis and 
glycogenolysis [5]. 

In 2001, Lenbury et al. [6] proposed a nonlinear 
mathematical model of the glucose-insulin control 
mechanism, incorporating the function of beta-cells 
in maintaining and regulating plasma insulin level in 
human. A gastrointestinal absorption term is utilized 
to model glucose absorption by the intestine and the 
entry of glucose into the bloodstream, assuming that 
this process takes place at a given rate initially but 
declining exponentially with time. The model is 
analysed using the singular perturbation method by 
which the delineating conditions on the system 
parameters are derived to identify different dynamic 
behaviour, including the existence of limit cycles in 
the system model which mimic oscillatory patterns 
often observed in clinical data. A sinusoidal term is 
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added to take into account the temporal absorption 
of glucose in order to investigate the patients’ 
responses under ambulatory-fed conditions. 

In 2015, Cao et al. [7] considered a model 
consisting of four states of type 2 diabetes, 
assuming no input or output. The model consists of 
partial differential equations for which a general 
well-posedness result is obtained and the 
exponential stability of dynamic solution is proved. 
The steady-state solution gives a prediction of the 
stable distribution probability of diabetics.  

In 2008, Giang et al. [8] considered and analysed 
the delay model of the glucose–insulin system 
proposed by Palumbo et al. in [9], where 
persistence, as well as existence and stability of a 
unique positive equilibrium point have been proved. 
In this work [8], uniform persistence of such 
equilibrium solutions and their global stability are 
considered. The effect of delays is investigated in 
terms of oscillating solutions utilizing the omega 
limit set of a persistent solution and the full time 
solution which they were able to derive. The model 
is shown be globally stable and to admit slowly 
oscillating behaviour under suitable conditions on 
the system parameters.  

In the same year, Kardar et al. [10] utilize an 
advisory/control algorithm to assist out-patients 
affected by insulin dependent diabetes mellitus. By 
using Mamdani type fuzzy logic controllers, their 
advisory/control algorithm puts together expert 
knowledge about the treatment of this diabetes in 
order to regulate the blood glucose level while the 
patient is subjected to disturbances in glucose levels 
due to food intakes or there are fluctuations in the 
measured glucose level arising from discrepancies 
in the measuring instrument 

In 2009, Chuedoung et al. [11] proposed and 
analysed a delayed nonlinear model of glucose-
insulin system incorporating the beta cells as the 
third compartment. Later on, Lueabunchong et al. 
[12] carried out a statistical evaluation of a 
glucose/insulin nonlinear model of differential 
equations, using both classical and Bayesian 
procedures. Then, in 2013, Juagwon et al. [13] 
worked on the reconstruction of insulin secretion 
under the influences of hepatic extraction during 
OGTT. 

Also in 2008, De Gaetano et al. [14] proposed a 
model of the pancreatic islet compensation, and 
proved some fundamental qualitative characteristics 
of its solutions. Its performance over the span of a 
lifetime is simulated under various conditions. Upon 
comparing between two previous models of diabetes 
progression, the proposed model is judged to be a 
realistic and robust description of the glucose-

insulin process in healthy and diabetic person. Their 
model can be reduced to either “fast” or “slow” 
subsystems by varying the size of one of the system 
parameters. 

Comparatively, the models mentioned above, 
while useful in answering several pertinent 
questions concerning Diabetes Mellitus progression, 
have not taken into account, in their models 
analyses, the extreme differences in the time scales 
at which the state variables vary with time. The 
model proposed by Cao et al. in 2015 [7} is a 
system of partial differential equations, while those 
in [6], [8], [9], [11], [13] and [14] are systems of 
ordinary differential equations, incorporating 
different mechanisms deemed important into their 
models. These are deterministic models, whereas 
[12] carried out a statistical study of a 
glucose/insulin nonlinear model of interest.   

Specifically, we observe that the model of De 
Gaetano et al. [14] has not incorporated appropriate 
expression to take into account the decline of the 
ability of the cells to absorb or use up blood sugar as 
the glucose level becomes higher. According to 
[15], in a person with prediabetes conditions, the 
pancreas has to work increasingly hard to release 
sufficient insulin to keep the blood glucose level 
down. Insulin resistance occurs when excess 
glucose in the blood reduces the ability of the cells 
to absorb and use blood sugar for energy. We 
therefore propose a modification of the model in 
[14] to incorporate the decline in the ability of cells 
in controlling plasma glucose when its level 
becomes higher. The singular perturbation technique 
is utilized to identify different dynamic behaviour 
permitted by our model. 

2 Model System 
The “original” model in [14] describes the time 
course of the glucose-insulin system of a single 
individual over many years, consisting of the 
following equations on the rates of change of  -
cell mass (B), fasting glucose concentration (G), and 
fasting insulin concentration (I): 

0 0, ( )dB
B B t B

dt
      (1) 

0 0, ( )G

d
K G T t

dt
 


            (2)   

0 0, ( )gI xg xgI

dG
T K G K IG G t G

dt
       (3)     

0 0( ) , ( )igB xi

dI
h G T B K I I t I

dt
        (4) 

where 
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while  represents the capability of the pancreas to 
increase the reserved  -cells. The equation (1) for 
B assumes a logistic growth rate that varies with the 
glucose level according to the expression (6). The 
first term on the right of (2) is the reduction in the 
capability of the pancreas due to increase in blood 
glucose, while T  is the spontaneous recovery rate 
of the pancreas. gIT is the rate of liver glucose 
output, xgK  is the 1st-order insulin-independent 
glucose tissue uptake rate, and the term xgIK IG in (3) 
is the 2nd-order insulin-dependent glucose tissue 
uptake rate per pM insulin, and represents insulin 
sensitivity. The first term in (4) is the rate of insulin 
release from the  -cells, while the last term is the 
apparent 1st-order elimination rate [14]. 

In order to reflect the previously mentioned 
symptom, observed in [15] that, in a person with 
prediabetes conditions, excess levels of glucose in 
the blood reduce the ability of the cells to absorb 
and use blood sugar for energy, we propose to 
replace equation (3) by the following equation: 

0 0( ) , ( )gI xg xgI

dG
T K G K r G IG G t G

d
     (7) 

where  

2( ) G
r G

M G



      (8) 

M being a positive constant, so that the rate of 
removal of glucose, due to insulin, is no longer a 
constant multiple of the product of G and I. It now 
increases with higher plasma glucose to a certain 
point, then declines with the increase of G beyond a 
certain level, to more closely simulate the clinical 
condition mentioned in [15]. 
 Moreover, since the model allows their levels to 
drop close to zero, it is considered more reasonable 
to take G and I in the model equations to be those 
concentrations above their respective basal levels.  

The parameter ε may be thought of as being a 
very small scaling factor. When ε is allowed to be 
extremely small, we arrive at a “fast” model and the 
rates of variations of B and   over time also 
become very small, and therefore, B and    may be 
thought of as being slow in the fast time t, 

expressed, for example, in minutes. The “fast” 
subsystem becomes 

 

 0 0 00, ( ) ( )dB
B t B B t B

dt
       (9) 

0 0 00, ( ) ( )d
t t

dt


                        (10) 

0 0( ) , ( )gI xg xgI

dG
T K G K r G IG G t G

d
             (11) 

0 0( ) , ( )igB xi

dI
h G T B K I I t I

dt
                 (12) 

 
A large ε yields a “slow” model which focuses 

on changes over months or years [14], providing 
long-term forecasts. In such a situation, it is 
proposed that we use of the following “slow” 
subsystem. 

0 0, ( )dB
B B t B

dt
              (13) 

0 0, ( )G

d
K G T t

dt
 


                 (14) 

G
rI







 , xg

xgI

K

K
               (15) 

max
( )

B
I h G I B              (16) 
 

We consider here in the “fast” model (9) – (12), 
with (5) – (6). In this case, compared to changes in 
G and I, those in B may be thought of as being quite 
slow so that B may be thought of as remain 
relatively constant in time at B0.  

De Gaetano et al. [14] also carried out a detailed 
discussion of the numerical values assigned to their 
model system parameters. Guided by these values, 
we may observe that the parameters in the rate 
equation for I are significantly smaller than those in 
the rate equation for G. Thus, to apply the singular 
perturbation analysis, it is reasonable to assume that 
G is the faster variable, I is the intermediate 
variable, and   is the slow variable. We therefore 
modify Equations (9)-(10) by substituting   

G GK K   , T T   , igB igBT T  , xi xiK K   
and then dropping the primes, so that our model of 
interest consists of the following equations.  

0 0 00, ( ) ( )dB
B t B B t B

dt
               (17) 

0 0, ( )G

d
K G T t

d
 


   


        (18) 

0 0( ) , ( )gI xg xgI

dG
T K G K r G IG G t G

d
            (19) 
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 0 0( ) , ( )igB xi

dI
h G T B K I I t I

d



        (20) 

where ( )h G and ( )r G are as defined in (5) and (8), 
respectively.   

Thus, when ε and   are very small, we may at 
first take   to be relatively constant. I changes at an 
intermediate speed, and G moves at a relatively high 
speed.  

3 Singular Perturbation Analysis 
We begin by identifying the equilibrium manifolds 
in the ( , , )G I  - space. 

Slow Manifold 0   

This is the surface in the 3 dimensional space 
derived by equating the right hand side of (18) to 
zero, which yields 

G

T
G

K



 
                       (21)  

Intermediate Manifold 0I   

This is the surface in the 3 dimensional space 
derived by equating the right hand side of (19) to 
zero, which yields 
 

( ) h

h

v
igB

v

xi h

h G T G
I

K G




 


, 0igB

xi

T B

K
             (22) 

We observe that, on this manifold, we have 0I   
when G = 0, and I   as G   

Fast Manifold 0G   
This is the surface in the 3 dimensional space 
derived by equating the right hand side of (20) to 
zero, which yields 

  2

( )
gI xggI xg

xgI xgI

T K G M GT K G
I

K r G K G

 
            (23)  

We observe that on this manifold,  as 0I G  , 
I as G and 0 atI   

 *gI

xg

T
G G

K
  .           (24) 

Letting 

, 0,
2 2

gI gI

xg xg

T T M
b c d

K K
     

we can prove the following result. 

Lemma 1 The curve resulting from the intersection 
between the fast manifold 0G   and the slow 

manifold 0   has 2 relative extrema at 

1 0MG G  and 2 1 0M MG G G   provided 

 34
27

d b                       (25) 

Proof 

Differentiating (23) with respect to I, we obtain  
2 3

2

2gI xg gI

xgI

T G K G T MdI

dG K G

 
              (26) 

Thus, the relative extrema occur if the numerator of 
(26) vanishes, that is 

3 2 0
2 2

gI gI

xg xg

T T M
G G

K K
               (27) 

The discriminant of (27) is 
Δ = −4b3d −27d2 

which is positive since (25) holds. Hence, by the 
Descartes' Rule of Signs, we conclude that (27) has 
2 positive solutions, which means there are 2 
relative extrema on this curve with 1,2MG  positive. 

Let the two relative extrema on the fast manifold 
be denoted by 1 1( , )M MG I and 2 2( , )M MG I where 

 1,2
1,2

1,2( )
gI xg M

M

xgI M

T K G
I

K r G


            (28) 

We note here that 
3 2

1,2 1,2 0
2 2

gI gI

M M

xg xg

T T M
G G

K K
    

Thus, 
3

1,2
1,2 2

1,2

0gI xg M

gI xg M

M

T M K G
T K G

G


    

By (28), we see that 1,2MI > 0, which means the 
relative extrema are in the first quadrant of the (G, I) 
plane. 

The graphs of the intermediate and fast 
manifolds projected onto the (G, I)-plane may be 
visualized as shown in Figure 1, provided the 
conditions in the following theorem hold, where  

1,2
1,2

( )M igB

xi

h G T
I

K
  

are the values of I on the intermediate manifold 
0I   at which 1 2 and M MG G G . 

     
Theorem 1 The model system (17)-(20) admits a 
periodic solution in the form of a limit cycle 
surrounding the equilibrium point ( , , )c c cG I  , at 
which the 3 manifolds intersect, if (25) holds, and 
  1 1 2 2,M MI I I I              (29) 
Proof  
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If (29) holds, then the fast and intermediate 
equilibrium manifolds, projected onto the (G, I) - 
plane, will be located as shown in Figure 1 relative 
to each other. 

Starting from a general initial point 
P 0 0 0( , , )G I  seen in Figure 1,   moves at a very 
slow speed to end up eventually at the slow 
manifold given by (21), not shown in Figure 1. 
Meanwhile, G and I will vary as described below at 
rates which do not depend on . 
 G is the fast variable, so it will make a fast 
transition in the direction of increasing G since here 

0G   in this region below the fast manifold. Here, 
a fast transition is denoted by a double arrow in 
Figure 1, while the intermediate one is denoted by a 
single arrow. 

 
 

Figure 1. The fast and intermediate manifolds are 
here projected onto the (G, I) – plane with 
transitions of fast speed (double arrows) and 
intermediate speed (single arrow)  
 

Once the transition reaches the fast manifold at 
the point Q, where 0G  so that the transition will 
remain on this curve. Since on this side of the 
intermediate manifold 0I  , a transition at 
intermediate speed will be made upward along this 
curve until the maximum point M 2 2( , )M MG I  is 
reached. The stability of the manifold is lost here so 
that a fast transition in the direction of decreasing G 
will be made until we arrive at the fast manifold at 
the point R. Here, 0I  so that a transition is made 
downward along this curve until the minimum point 
N 1 1( , )M MG I where the stability is again lost. A fast 
transition results which takes the trajectory towards 
the right branch of the fast manifold at the point S, 
thereby closing the cycle and the trajectory keeps 

repeating around the same path SMRNS resulting in 
a limit cycle solution to the model system. 
 
 By a similar argument, we can show the 
following stability result. 
Theorem 2 The model system (12)-(14) admits an 
equilibrium solution, ( , , )c c cG I  , which is locally 
asymptotically stable provided (21) holds, and either 
1)  1 1MI I , and 2 2MI I , 
or 
2) 1 1MI I , and 2 2MI I . 
 

The equilibrium point will be a spiral node, and 
the trajectory will converge towards the stable 
steady state ( , , )c c cG I  .  

The above two cases, in Theorem 1 and 2, 
describe a condition in which the insulin-mediated 
glucose elimination process is still functioning 
relatively well. 

However, if (25) is violated, situations may 
occur in which the solution trajectory spirals away 
from the steady equilibrium state, thus leading to an 
underirable scenario where excess glucose can no 
longer be kept at a reasonable level, unless 
treatment intervention is prescibed appropriately. 
This then depicts the patterns observed in a person 
with prediabetes conditions or full onset of Diabetes 
Mellitus.      
 
4 Discussion  
We have analyzed a model of glucose-insulin 
control mechanism which incorporates the 
compartments of beta cell mass and the capacity of 
the pancreas in producing beta cells on reserve.  The 
model is investigated in terms of the existence of 
limit cycle behavior which reflects the oscillatory 
dynamics frequently observed in experimental data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 G 

I 
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Figure 2. Numerical solution of (12) - (14) projected 
onto the (G, I) – plane, in the case that the 
conditions in Theorem 1 are satisfied. The trajectory 
tends toward a limit cycle as predicted by the 
theorem. 

We show in Figure 2 the solution trajectory, 
projected onto the (G, I) – plane, in the case where 
the conditions in Theorem 1 hold. We see that the 
trajectory traces out a limit cycle exactly as 
described by our singular perturbation arguments.  

Starting at a point where glucose level is low, if 
the level begins to increase, we see that there is a 
small lag time in insulin response during which 
insulin level still decreases so that there is a delay in 
the response of the cells to the rise in glucose level. 
This is a reasonable occurrence since a response 
should be elicited only when the glucose level 
becomes too high and not before that.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Times series of the solution of (12) - (14) 
seen in Figure 2 shows periodic behavior in a) 
glucose concentration, and b) insulin concentration. 

 
 
When the glucose level has begun to drop in 

Figure 2, insulin level still increases and remains 
high until the glucose level reduces down to an 
extremely low level before insulin level drops 
quickly, as commonly observed in reported 
experimental data, for example, in [16]. 

Figure 3 shows the corresponding time series of 
glucose and insulin levels in the case where the 2 
variables exhibit sustained oscillations. 

In Figures 2 and 3, G0 = 5; I0 = 0.05; 0  = 0.04; 
M    = 0.0005; B0   = 1000M; TigB = 0.4592; Tgl  = 
0.0738; Kxgl = 0.08;  Kxg  = 0.054; T = 0.0016; Kxi  = 
0.08; KnG  = 0.8; Gh = 0.09, 0.25   , 0.25  . We 
found that GM1 = 0.02274, GM2 = 0.68260, I1 = 
0.02331, I2 = 5.73827, IM1 = 0.04057, IM2 = 0.31553, 
rounded to 5 decimal places. The parametric values 
assignment has been guided by De Gaetano’s set of 
values to the orders of magnitude. Adjustments of 
values have been made in case where the conditions 
required by the theorem need to be satisfied. 
 
5 Conclusion 
In trying to efficiently control blood glucose levels, 
a great deal of complexities is involved in the 
treatment of symptoms. The use of traditional 
algorithm that is "one-size-fits-all" may not be 
flexible enough and rarely considers important 
factors that play crucial roles in the diabetic patients 
[17]. Many articles have stressed how mathematical 
models are playing important roles in the 
personalized treatment and management of Diabetes 
Mellitus and personalized medicine in general [17-
25]. A great deal of data is now readily available for 
model construction and verification. Sophisticated 
models can be a viable tool and should be placed at 
the disposal of physicians to assist them in their 
decision making concerning dosage prescriptions 
and changing treatment protocols which can be 
tailored to each patient in a personalized fashion. 
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