
 

 
1. Introduction 
 
Investigations of solitary waves and solitons began with 
their discovery by John Scott Russell in 1834, as he rode 
his horse beside the narrow Union Canal near 
Edinburgh, Scotland  [4]. His subsequent laboratory 
work, and that of Stokes,  Boussinesq, and Rayleigh, 
further probed the nature of solitary waves (nonlinear 
waves that do not change shape as they travel), 
describing them in terms of equations from fluid 
dynamics [1-8].  
The question as to whether equations for water waves 
allowed for the existence of solitary-wave solutions was 
finally answered in 1895. 
 when the Dutch physicist  Diederik Johannes Korteweg 
and his student Gustav de Vries derived an equation that 
supported the existence of solitary waves, which now 
bears their names. Despite this early derivation of the 
Korteweg-de Vries (KdV) equation, it was not until 
1960 that any new application of the equation was 
discovered [9]. 
In 1965, from detailed numerical study, Zabusky and 
Kruskal [10] found that stable pulse-like waves could 
exist in a system described by the KdV equation. A 
remarkable property of these solitary waves was that 
they could collide with each other and yet preserve their 
shapes and speeds after the collision. Solitary waves 
with that property are called solitons. This discovery 
created renewed interest in the equations for solitary 
waves and the special properties of their solutions. New 
more powerful methods for describing the waves 
mathematically have been developed, and many   

 

 
 
 
 
equations have been found to have solitary waves and 
solitons as solutions [11-20]. 
In the mid 1920‟s, Oskar Klein and Felix Gordon [21- 
23] derived an equation for a charged particle in an 
electromagnetic field, using thennew ideas in the realm 
of quantum theory. From their work several equations 
addressed in this paper arise. Perhaps the most 
well-known example, the sine-Gordon equation, has 
been seen in the propagation of a dislocation in a crystal, 
in the modulation of wave packets in a moving medium, 
and in the propagation of magnetic flux in 
superconductor equations, among other areas of modern 
research. Solitary waves have been observed in a variety 
of natural realms: in the atmosphere, in oceans, in 
plasmas, and possibly in nervous systems of living 
organisms. Finally, solitons started playing an important 
technological role in modern telecommunications.  
Their persistent shape and immunity to distortion make 
them suitable carriers of long-distance signals [24]. 
Typically, autonomous evolution equations with 
translation invariance (such as the KdV equation) have 
only the three „classical‟ conserved quantities, namely 
the mass, the momentum, and the energy. However, the 
KdV equation has infinitely many conserved quantities. 
The existence of an infinite sequence of conservation 
laws for a given system of  partial differential equations 
(PDEs) suggests that it is completely integrable, though 
such a condition is not required [25]. Indeed, there are 
systems (such as the Burgers equation) 
that can be directly integrated, though possess only a 
finite number of conservation laws [26]. Additionally, 
conservation laws provide a simple and efficient method 
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to study both quantitative and qualitative properties of 
solutions. A comprehensive definition of the term 
integrable is proving to be elusive. Integrable systems 
are in some sense exactly solvable and exhibit globally 
regular solutions for all initial conditions. In contrast, 
the term nonintegrable is, generally, taken to imply that 
a system can not be solved exactly and that its solutions 
can behave in an irregular  fashion due to sensitivity to 
initial conditions [27]. 
The method of solution, however, is complex. Though 
many physical problems are modeled by nonlinear 
evolution equations (NLEEs), the Fourier transform 
method is insufficient to solve the problem [28]. In fact, 
the method of solution for NLEEs, the Inverse 
Scattering Transform (IST), would come from a 
classical scattering problem of quantum mechanics. 
The computational mechanics of the IST are similar to 
those involved in the Fourier transform (for solving 
linear equations), except that the final step of solving 
the IST is “highly nontrivial”.  In this paper, I  present a 
method for computing conservation laws for systems of 
nonlinear evolution equations. 
 
 
 
2. A  Local Polynomial  Conservation Law:
 
 
The focus of this research and the determination of 
conservation laws for nonlinear systems of PDEs of the 
form: 

  

A conservation law for (1) is an equation of the form  

 

Which is satisfied for all solutions of (1), where ƿ the 
conserved density, and – (pu) the associated flux, in 
general are functions of x, t, u  and the partial derivatives 
of u (with respect to).  denotes the total derivative with 
respect to t 

 the total derivative with respect to x . 

If ƿ is a polynomial in  x  derivatives exclusively, then ƿ  
is  
called a local polynomial conserved density. 
  
Example 1: The most famous scalar evolution equation 
from soliton theory,  the Korteweg-de Vries (KdV) 

equation , 

 
is known to have infinitely many polynomial 
conservation laws. The first three polynomial 
conservation laws are given by: 

 
 
Example 2:  the sine – Gordon equation 

 
is known to have infinitely many polynomial 
conservation laws. The first three polynomial 
conservation laws are given by: 

 
The first two express conservation of momentum and 
energy, respectively, and are relatively easy to compute 
by hand. The third one, which is less obvious, requires 
more work. 
 

3.  Conserved Quantities and Fluxes 

For Nonlinear – Evolution Equations 
 
The class of equations of pseudo-spherical type (or 
“describing pseudo-spherical surfaces”) was introduced 
by S.S. Chern and K. Tenenblat [27] in 1986, motivated 
by the following observation by Sasaki: the solutions of 
equations integrable by the Ablowitz, Kaup, Newell, 
and Segur (AKNS) [26] inverse scattering approach can 
be equipped, whenever their associated linear problems 
are real, with Riemannian metrics of constant Gaussian 
curvature equal to .  
I recall the definition [16, 21] of a differential equation ( 
DE) that describes a pss. Let      be a two dimensional 
differentiable manifold with coordinates . A DE for a 
real function u(x ,t ) describes a pss if it is a necessary 
and sufficient condition for the existence of 
differentiable functions 
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depending on   and its derivatives such that the 
one-forms 

 
satisfy the structure equations of a pss, i.e., 

 
As a consequence, each solution of the DE provides a 
local metric on , whose Gaussian curvature is 
constant, equal to −1. Moreover, the above definition is 
equivalent to saying that DE for u is the  integrability 
condition for the problem [14,26]: 

 
where   denotes exterior differentiation,   is a column 
vector and the 2 × 2 matrix   is traceless  

 
Take  

 
from Eqs. (10) and (11), we obtain  

 
where S    and  T  are two 2 × 2 null-trace matrices            

 

 
Here ŋ   is a parameter, independent of  x and t , while q 
and   r are functions of  x and t. Now  

 
 
which requires the vanishing of the two form 

 
or in component form 

 
Or  

 
where  

 
Chern and Tenenblat [27] obtained Eq. (16) directly 
from the structure equations (9). By suitably choosing r, 
A, B and C in (16), I shall obtain various nonlinear 
evolution equation which q must satisfy. Konno and 
Wadati introduced the function [28]  

 
this function first appeared used and explained in the 
geometric context of pseudo spherical equations in 
[11,13],  and see also the classical papers by Sasaki and 
Chern–Tenenblat [27]. Then Eq. (12) is reduced to the 
Riccati equations:  

 
Equations (20)  and (21) imply that   

 
Adding  to both sides and using the expression          

 from (24), equation (22) takes the form 

 
where (rT) are conserved densities and  (-A+ CT ) are 
fluxes 
  
 Example 1: family of equations     

 

 
 
 
The differentiable functions fᵢⱼ depending on u and its 
derivatives are  
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Then, from equation (18), I obtain 

 

 
Then 

The conserved densities =   

And  

The flux =  

 

Example 2:the modified Korteweg-de Vries (MKdV) 

equation 

   
The differentiable functions fᵢⱼ depending on and its 

derivatives are 

 
Then, from equation (18), I obtain 

 
Then  

The conserved densities 

 
and   

The flux = 

 

4. Conclusion 
This geometrical method is considered for NLEEs 
which describe pseudo-spherical surfaces: family of 
equations and the modified  Korteweg-de Vries  
equation.  In this paper, I considered the construction of 
conservation laws to some NLEEs (family of equations 
and the modified  Korteweg-de Vries  equation) by 
inverse scattering method  Next the conservation laws is 
derived for the NLEEs mentioned above are derived in 
this way.  
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