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1 Introduction
Suppose that K is a compact Riemann surface.

As it is known, K may be represented as a quo-
tient of the upper half plane H+ by a discontinuous
group Γ.

It is assumed that H+ is endowed with the metric
y−2

(
(dx)2 + (dy)2

)
.

Denote by A the volume of K.
As it is also known, the Riemann hypothesis for

the Selberg zeta function in this setting is almost true,
which means that any possible exceptional zeros are
all located in the real interval (0, 1).

In this scenario, the Selberg zeta function Z (s) is
for Re (s) > 1, defined by the product

∏
γ

∞∏
n=0

(
1− e−lγ(s+n)

)
,

where lγ runs through the set of lengths of primitive
closed geodesics on K.

The known fact is thatZ (s) is uniformly bounded
and bounded away from zero in any half-plane of the
form Re (s) > 1 + ε (ε > 0).

Applying the fact that Z (s) is of order 2, the
Phragmén-Lindelöf theorem, and the functional equa-
tion for Z (s), the author in [1], proved that

Z (σ + i t) = eO(|t|),

uniformly in any bounded strip b1 ≤ σ ≤ b2.
There, the number of zeros of (Z (s))2 in the rect-

angle R, defined by the inequalities 1− a≤ Re (s)≤
a, −T ≤ Im (s) ≤ T , where a is a positive number
satisfying 1< a < 5

4 , and T is selected so that no zero
occurs on the boundary of R, is denoted by 2N (T ).

Consequently, the number of zeros of Z (s) itself
in this rectangle is N (T ).

Thus, it is proved that

N (T ) =
AT 2

2π
+ 4S (T ) +O (1) ,

where

S (T ) =
1

π
Im

∫
C

Z
′
(s)

Z (s)
ds

 ,

the O (1) term is continuous and tends to a limit as T
→∞, S (T ) is the 1

π times the variation of the argu-
ment of Z (s) along C, where C is the portion of ∂R
consisting of the vertical segment from a to iT , plus
the horizontal segment from a+ iT to 1

2 + iT (S (T )
plays the same role in this setting as does its counter-
part from the theory of the Riemann zata function).

By [1, p. 212, Lemma 3], S (T ) = O (T ).
Moreover, by Theorem 1 in [1, p. 216] (see also,

[2], [3]), S (T ) = O
(
T (log T )−1

)
.
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The main purpose of this research is to derive
analogous results of the results described above, for
the case of compact, higher-dimensional, locally sym-
metric Riemannian manifolds of strictly negative sec-
tional curvature. In other words, our goal is to de-
rive asymptotic formulas for the number of singular-
ities of the zeta functions naturally attached to this
setting. The singularities of these zeta functions are
described by Theorem 3.15 in [4, p. 113]. Thus, the
singularities are generated by the eigenvalues of the
corresponding differential operators. This means that
the knowledge about the number of the singularities
implies the knowledge about the number of the corre-
sponding eigenvalues (the Weyl law) and vice versa.
Note that the locally symmetric spaces in this research
are compact ones. Assume for a moment that S is
a Riemannian symmetric space of noncompact type,
with the gruop of motions G of S. Then the algebra
LDiff (S) of G-invariant differential operators on S
is comutative, and its spectrum Λ (S) can be canoni-
cally identified with F/w, where F is a complex vec-
tor space with dimension equal to the rank of S, and
w is a finite subgroup of GL (F ) generated by reflex-
ions. Let Γ be a discrete subgroup ofG that acts freely
on S, and let X = Γ \ S. Then (see [5]), the members
ofLDiff (S) may be regarded as differential operators
on X . Let us now assume that X is compact, and de-
fine the spectrum Λ of X as the set of those elements
of Λ (S) for which one can find a nonzero eigenfun-
cion defined on X . By Theorem 9.1 in [5, p. 89], the
Weyl asymptotic law states that

∑
λ∈Λp, ‖λ‖≤t

m (λ)

=
(
2
√
π
)−n

Γ
(n

2
+ 1
)

vol (X) tn+

O
(
tn−1 (log t)−1

) (1)

as t→+∞, where m (λ) is the multiplicity of λ ∈ Λ,
and Λp is the principal spectrum of Λ. Having in mind
this result and Theorem 3.15 in [4], we know that the
number of desired singularities in this research must
be of the form (1). However, our goal is to derive the
formulas explicitly (with the constants determined ex-
plicitly) by following the classical approach of Randol
[1] in the case of compact Riemann surfaces. Thus,
the results derived in this paper will confirm the ex-
pected form (1) with the leading coefficients deter-
mined explicitly (which is the fact that might be used
very well in the future research, like during deriving of
approximate formulas for the logarithmic derivative of
the zeta functions, during estimation of the error terms
in the prime geodesic therems, etc).

2 Preliminaries
Through the rest of the paper, we assume that Y is a
compact, n-dimensional, locally symmetric Rieman-
nian manifold of strictly negative sectional curvature.

As it is known, Y can be represented in the form
Y = Γ\G/K, where G is a connected semi-simple
Lie group of real rank one, K is the maximal compact
subgroup of G, and Γ is a discrete, co-compact, and
torsion-free subgroup of G.

Let a ⊂ p be a one-dimensional subspace of p,
where p is defined by the Cartan decomposition g = k
⊕ p of the Lie algebra g of G.

If Ga is the centralizer of a in G, then we define
M by M = Ga ∩K.

We have the Iwasawa decomposition G = KAN
and the corresponding decomposition g = k ⊕ a ⊕ n,
where n is the sum of the corresponding positive root
spaces [4, p. 18].

As it is usual, we putA+ to be exp (a+)⊂A, and
W = W (g, a) to be the Weyl group.

Let Xd be the compact dual space of X = G/K,
the Riemannian symmetric space of rank one.

The following classical result will be applied in
the sequel [6, p. 138].

Theorem 1. (Phragmén-Lindelöf Theorem) Let G be
a simply connected region and let f be an analytic
function on G. Suppose that there is an analytic func-
tion ϕ : G→ C which never vanishes and is bounded
on G. If M is a constant and ∂∞G = A ∪ B such
that:

(a) for every a ∈ A, lim sup
z→a

|f (z)| ≤M ,

(b) for every b∈B, and η > 0, lim sup
z→b

|f (z)| |ϕ (z)|η

≤M ,

then, |f (z)| ≤M for all z ∈ G.

3 Results
Theorem 2. Functions ZS,χ (s, σ), Sχ (s, σ) and
SS
χ (s, σ) are bounded and bounded away from zero

for Re (s) > ρ. Furthermore, functions ZR,χ (s, σ)
and ZS

R,χ (s, σ) are bounded and bounded away from
zero for Re (s) > 2ρ, where ZS,χ (s, σ) and Sχ (s, σ)
are defined on page 97, SS

χ (s, σ) is defined on page
98, ZR,χ (s, σ) is defined on page 96, and ZS

R,χ (s, σ)
is defined on page 133 in [4], respectively. Further-
more, ρ, χ and σ are introduced on pages 18 and 95
of the same book.
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Proof. The notation S resp. R is used to denote the
Selberg resp. the Ruelle zeta function.

s is a complex variable, and S denotes the super
zeta function.

Suppose that n is an even integer.
Taking into account Proposition 3.4 in [4, p. 99],

we see that it will suffice to prove the result for
ZS,χ (s, σ).

We have that,

logZS,χ (s, σ)

= (−1)n
∑
γ∈Γh

trσ (m) trχ (γ)

det (1−Ad (ma)n)nΓ (γ)
e(ρ−s)l(γ),

where Γh is the set of all Γ-conjugacy classes of hy-
perbolic elements in Γ, nΓ (γ) (for g ∈ Γ) is the num-
ber of classes in Γg/〈g〉, where Γg is the centralizer
of g in Γ, and 〈g〉 is the group generated by g, l (g)
(for g ∈ Γ) is the length of the closed geodesic of Y
corresponding to g, and γ ∈ Γh has the form γ = am
= aγmγ ∈ A+M (see, e.g., [7], [8]).

Put,

Cχ (g, σ) = trχ (g)C (γ, σ) ,

where

C (γ, σ) = (−1)n−1 l (g) trσ (m)

2 det (1−Ad (ma)n)
eρl(g).

It follows that,

logZS,χ (s, σ) = −2×∑
γ∈Γh

(−1)n−1 trσ (m) trχ (γ) l (γ)

2 det (1−Ad (ma)n)nΓ (γ) l (γ)
e(ρ−s)l(γ)

= −2
∑
γ∈Γh

Cχ (γ, σ)

nΓ (γ) l (γ)
e−sl(γ).

Put,

π1
Γ (x) = # {γ ∈ Γh : l (γ) ≤ x} .

It is known that there exist constants C
′

and C
′′
,

such that

Cχ (g, σ) ≤ C ′e−ρl(g)

and

π1
Γ (x) ≤ C ′′e2ρx.

Suppose that σ1 > ρ, where σ1 = Re (s).
Now,

|logZS,χ (s, σ)|

≤2C
′ ∑
γ∈Γh

e−ρl(γ)

l (γ)
e−σ1l(γ)

=2C
′ ∑

γ∈Γh
0<l(γ)<1

e−ρl(γ)

l (γ)
e−σ1l(γ)+

2C
′ ∑
γ∈Γh
l(γ)≥1

e−ρl(γ)

l (γ)
e−σ1l(γ)

=O (1) +O

 ∑
γ∈Γh
l(γ)≥1

e−ρl(γ)e−σ1l(γ)


=O

 +∞∫
1

e−ρte−σ1tdπ1
Γ (t)


=O

 +∞∫
1

e−ρte−σ1te2ρtdt


=O

 +∞∫
1

e(ρ−σ1)tdt

 = O (1) .

On the other hand,

logZS,χ (s, σ)−1 = 2
∑
γ∈Γh

Cχ (γ, σ)

nΓ (γ) l (γ)
e−sl(γ).

Hence,

∣∣∣logZS,χ (s, σ)−1
∣∣∣ ≤ 2C

′ ∑
γ∈Γh

e−ρl(γ)

l (γ)
e−σ1l(γ)

for σ1 > ρ.
This completes the proof in this case (see also, [9,

p. 74])
Suppose that n is an odd integer.
Taking into account the equations:

Sχ (s, σ) =ZS,χ (s, σ)ZS,χ (s, wσ) ,

SS
χ (s, σ) =

ZS,χ (s, σ)

ZS,χ (s, wσ)
,

ZS
R,χ (s, σ) =

ZR,χ (s, σ)

ZR,χ (s, wσ)
,
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where w ∈ W is a non-trivial element, we see that it
will suffice to prove the result for ZS,χ (s, σ).

However, the result for ZS,χ (s, σ) follows in ex-
actly the same way as in the even-dimensional case.

This completes the proof.

Theorem 3. For zeta functions Zs,χ (s, σ) and
Sχ (s, σ), we have

|Zi (σi + i t)| = eO(|t|n−1),

i= 1, 2, uniformly in any bounded strip b1 ≤ σ1 ≤ b2,
where Z1 (s) and Z2 (s) are entire functions of order
at most n, such that

f (s) =
Z1 (s)

Z2 (s)

for f (s) ∈ {ZS,χ (s, σ) , Sχ (s, σ)} (see, [10, p. 528,
Th. 4.1. (b)] in the even-dimansional case, and [11,
p. 306, Th. 2.] in the odd-dimensional case).

Proof. Suppose that n is an even number.
Let c > max {ρ, |b1| , |b2|}.
It is enough to prove the assertion for a wider strip

−c ≤ σ1 ≤ c.
So far, we have that Z1 (s) and Z2 (s) are of finite

order at most n.
ZS,χ (s, σ) converges for Re (s) > ρ.
By Theorem 2, ZS,χ (s, σ) is bounded and

bounded away from zero on Re (s) = c.
On Re (s) =−c, we apply the functional equation

from Theorem 10 in [11, p. 318].
Notice that g (t) in the functional equation is a

polynomial of degree n − 1.
Thus,

|ZS,χ (−c+ i t, σ)| = eO(|t|n−1).

Now, the assertion of theorem (in this case), fol-
lows by application of Phragmén-Lindelöf theorem
[6, Theorem VI. 4.1.] (Cf. also [9, p. 60] in the quartic
field setting).

Note that we take c > ρ, since for σ1 > ρ, the Sel-
berg zeta functionZS,χ (s, σ), s= σ1 + i t is bounded.

By previously applied functional equation, we
have that

|ZS,χ (s, σ)| = |f (t)| eg(t) |ZS,χ (−s, σ)| .

Therefore,

log |ZS,χ (s, σ)|
= log |f (t)|+ g (t) + log |ZS,χ (−s, σ)| .

(2)

Since f (t) is bounded function, it follows that
log |f (t)| is also bounded.

If σ1 = −c, then Re (−s) > ρ, so ZS,χ (−s, σ) is
bounded for σ1 = −c.

Consequently, log |ZS,χ (−s, σ)| is bounded for
σ1 = −c.

Now, (2), and the degree of g (t), yield that
log |ZS,χ (s, σ)| = O

(
|t|n−1

)
for σ1 = −c.

It follows that ZS,χ (s, σ) = eO(|t|n−1) for σ1 =
−c.

Since ZS,χ (s, σ) = Z1(s)
Z2(s) , and Z1 (s), Z2 (s) are

entire functions of order at most n, we obtain that
Zi (s) = eO(|t|n−1) for σ1 = −c, i = 1, 2.

Now, we prove that |Z1 (s)| = eO(|t|n−1) for −c
≤ σ1 ≤ c (we apply the same reasoning for Z2 (s)).

We apply Phragmén-Lindelöf theorem (Theorem
1), where G is given by−c≤ σ1 ≤ c, A is the line−c
+ i t, and B is the line c + i t.

Since Z1 (s) = eO(|t|n−1) for σ1 = −c, we con-
clude that there exists a constant C1, such that

|Z1 (s)|
eC1|t|n−1 ≤ 1 = M1 (3)

for σ1 = −c.
Since the order of Z1 (s) is at most n, we have

that Z1 (s) = eO(|t|n) for σ1 = c.
Thus, there is a constant C2, such that

|Z1 (s)|
eC2|t|n

≤ 1 (4)

for σ1 = c.
Note that the function 1

eC1|t|n−1 is bounded on G.
In particular, it is bounded for σ1 = c.
Therefore, there exists a constant M2, such that

1

eC1|t|n−1 ≤M2 (5)

for s ∈ G.
In particular, (5) is satisfied for σ1 = c.
Now, we put f (s) = Z1(s)

eC1|t|n−1 , ϕ (s) = 1
eC2|t|n

into Theorem 1.
Note that f (s) is analytic function on G, while

the function ϕ (s) is analytic on G (without zeros),
and is bounded on G.
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The fact that ϕ (s) is bounded on G implies that
there is a constant K, such that

ϕ (s) = |ϕ (s)| ≤ K (6)

for s ∈ G.
Now, if σ1 = −c, the inequality (3) yields that

|f (s)| ≤M1 (7)

for σ1 = −c.
Thus, the condition (a) in Theorem 1 is satisfied.
If σ1 = c, then (4), (6) and (5), give us

|f (s)| |ϕ (s)|η

=
|Z1 (s)|
eC1|t|n−1

1

eηC2|t|n

=
|Z1 (s)|
eC2|t|n

1

e−C2|t|n
1

eC1|t|n−1

1

eηC2|t|n

=
|Z1 (s)|
eC2|t|n

1

e(η−1)C2|t|n
1

eC1|t|n−1

=
|Z1 (s)|
eC2|t|n

(
1

eC2|t|n

)η−1 1

eC1|t|n−1

=
|Z1 (s)|
eC2|t|n

(ϕ (s))η−1 1

eC1|t|n−1

≤Kη−1M2.

(8)

Now, we proceed as in [6, p. 139].
The inequality (8) means that the condition (b) in

Theorem 1 is satisfied.
The inequalities (7) and (8) mean that the condi-

tions (a) and (b) in Theorem 1, hold true (at the same
time) for M = max

{
M1,K

η−1M2

}
.

Thus, by Theorem 1, we have that |f (s)| ≤
max

{
M1,K

η−1M2

}
for s ∈ G.

If we let η → 1 in the last inequality, we end up
with |f (s)| ≤ max {M1,M2} = M

′
for s ∈ G.

In other words, |Z1(s)|
eC1|t|n−1 ≤M

′
for −c ≤ σ1 ≤ c,

i.e., |Z1 (s)| = eO(|t|n−1) for −c ≤ σ1 ≤ c.
This completes the proof in this case.
Now suppose that n is an odd integer.
Proof is the same as in the even-dimensional case.
In particular, we apply the functional equations

from Theorems 11 and 12 in [11].
Note that h (t) in these equations is a polynomial

of degree n − 1.
Thus,

|ZS,χ (−c+ i t, σ)| =eO(|t|n−1),

|Sχ (−c+ i t, σ)| =eO(|t|n−1).

Proceeding in exactly the same way as in the
even-dimensional case, we obtain the claim.

This completes the proof.

Theorem 4. Let n be an even integer. If γ is σ-
admissible, then

N (t) =
dim (χ)χ (Y )

χ (Xd)T
×

×

n
2
−1∑

k=0

(−1)
n
2
−k pn−2k−1

tn−2k

n− 2k
+

1

π
S (t) +O (1) ,

where the concept of admissible elements is intro-
duced by [11, p. 305, Def. 1.], T and the coeffi-
cients pn−2k−1 are described by [11, p. 307, Lemma
4.], N (t) denotes the number of singularities of
ZS,χ (s, σ) on the interval ix, 0 < x < t, and S (t)
is the variation of the argument of ZS,χ (s, σ) along
C.

Here, C denotes the portion of ∂R, consisting of
the vertical segment from a to a+ i t plus the horizon-
tal segment from a + i t to i t, where R is the rectan-
gle defined by the inequalities −a ≤ Re (s) ≤ a, −t
≤ Im (s) ≤ t for some a > ρ.

Let n be an odd integer. Suppose that r = 1 in the
case (a) and r = 2 in the case (b). Then,

N (t) =
1

π

n−1
2∑

k=0

(−1)
n+1
2
−k c 2k−n

2
Γ

(
2k − n

2

)
tn−2k

+
1

π
S (t) +O (1) ,

where the cases (a) and (b), and the coefficients c 2k−n
2

are described by [11, p. 307, Lemma 5.], and N (t)
denotes the number of singularities ZS,χ (s, σ) (case
(a)) resp. Sχ (s, σ) (case (b)) on the interval ix, 0 <
x < t, and S (t) is the variation of the argument of
ZS,χ (s, σ) (case (a)) resp. Sχ (s, σ) (case (b)).

Here, C is defined in the same way as in the even-
dimensional case.

Proof. Let n be an even integer.
We adjust the argumentation from [1] to our situa-

tion, inserting some elements from [9] (see also, [12]).
Define,

ξ (s) = (ZS,χ (s, σ))2 eφ(s),
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where

φ (s)

=K

s∫
0

Pσ (w)

{
tan

(
πw
T

)
, εσ = 1

2
− cot

(
πw
T

)
, εσ = 0

}
dw,

K =
2π dim (χ)χ (Y )

χ (Xd)T
.

The polynomial Pσ (w), and values εσ ∈
{

0, 1
2

}
are also introduced by Definition 1 in [11, p. 305].

Now, we specify φ (s) in the open upper and
lower half-planes to be the value obtained by carry-
ing out the integration along the line segment joining
the origin to s.

Furthermore, if εσ = 1
2 resp. εσ = 0 and s is on

the real line, s 6= ±T
2 , ±3T

2 , ±5T
2 ,... resp. s 6= 0, ±T ,

±2T ,... , we define φ (s) by the requirement of conti-
nuity as s is approached from the upper half-plane.

By [11, p. 308, eq. (6)],

ZS,χ (−s, σ) = eφ(s)ZS,χ (s, σ) .

Hence,

ξ (−s) = (ZS,χ (−s, σ))2 eφ(−s)

= (ZS,χ (s, σ))2 e2φ(s)e−φ(s)

= (ZS,χ (s, σ))2 eφ(s)

=ξ (s) .

As usual, ξ (s) is real on the real axis and so ξ (s)
= ξ (s).

Assume that t is selected so that no singularity of
ZS,χ (s, σ) occurs on the boundary of R.

We have,

N (t)

=
1

4
· 1

2π i

∫
∂R

ξ
′
(s)

ξ (s)
ds− 1

2
N0

=
1

4
· 1

2π
Im

∫
∂R

ξ
′
(s)

ξ (s)
ds

− 1

2
N0,

where N0 = O (1) is the number of singularities of
ZS,χ (s, σ) on the real line.

From the functional equation for ξ (s) and the fact
that ξ (s) = ξ (s), one obtains in a classical way that

N (t) =
1

2π
Im

∫
C

ξ
′
(s)

ξ (s)
ds

+O (1) .

By (41) and (42) in [11, p. 318] (see also, [13]),

φ (σ1 + it)

=

n
2
−1∑

k=0

pn−2k−1
t

|t|
K i

n− 2k
×

×

n
2
−k∑
l=0

(
n− 2k

2l

)
(−1)l σn−2k−2l

1 t2l+

n
2
−1∑

k=0

pn−2k−1
K

n− 2k
×

×

n
2
−k∑
l=1

(
n− 2k

2l − 1

)
(−1)l σn−2k−2l+1

1 |t|2l−1

+O (1) .

Now,

ξ
′
(s)

ξ (s)
= φ

′
(s) + 2

Z
′
S,χ (s, σ)

ZS,χ (s, σ)
,

so

N (t) =
1

2π
Im

∫
C

φ
′
(s) ds

+

1

π
Im

∫
C

Z
′
S,χ (s, σ)

ZS,χ (s, σ)
ds

+O (1)

=
1

2π
Im (φ (i t)− φ (a))

+
1

π
S (t) +O (1)

=
1

2π
Imφ (i t) +

1

π
S (t)− 1

2π
φ (a) +O (1)

=
K

2π

n
2
−1∑

k=0

(−1)
n
2
−k pn−2k−1

tn−2k

n− 2k

+
1

π
S (t) +O (1) .

This completes the proof in this case.
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Suppose that n is an odd integer.
Define,

ξ (s) = (f (s))2 eφ(s),

where

φ (s) = −2

n−1
2∑

k=0

c 2k−n
2

Γ

(
2k − n

2

)
sn−2k,

and f (s) = ZS,χ (s, σ) (case (a)), f (s) = Sχ (s, σ)
(case (b)).

By Theorem 3.17 in [4, p. 116] (see also page
125), it follows that

f (−s) = eφ(s)f (s) .

Reasoning in exactly the same way as in the even-
dimensional case, we obtain that

ξ (−s) = ξ (s) .

Assume that t is chosen such that no singularity of
f (s) appears on the boundary of R (now, N0 = O (1)
is the number of singularities of f (s) on the real line).

By the identity given in the proof of Theorem 11
in [11, p. 319], we have that

φ (σ1 + i t)

=− 2

n−1
2∑

k=0

c 2k−n
2

Γ

(
2k − n

2

)
×

×

n−1
2
−k∑

l=0

(
n− 2k

2l

)
(−1)l σn−2k−2l

1 |t|2l

=− 2 i

n−1
2∑

k=0

c 2k−n
2

Γ

(
2k − n

2

)
×

×

n+1
2
−k∑

l=1

(
n− 2k

2l − 1

)
(−1)l−1 σn−2k−2l+1

1 t2l−1.

Now,

ξ
′
(s)

ξ (s)
= φ

′
(s) + 2

f
′
(s)

f (s)
,

so

N (t)

=
1

π

n−1
2∑

k=0

(−1)
n+1
2
−k c 2k−n

2
Γ

(
2k − n

2

)
tn−2k

+
1

π
S (t) +O (1) .

This completes the proof.

Theorem 5. S (t) = O
(
tn−1 (log t)−1

)
.

Proof. Let n be an even integer.
Firstly, we extend the definition of S (t) to those

values of t for which it is a pole or zero of ZS,χ (s, σ),
by defining it to be

lim
ε→0

1

2
(S (t+ ε) + S (t− ε)) .

Then, we have

S (t) = h (t) +O (1) ,

where h (t) is the variation of the argument of
ZS,χ (s, σ) along the segment from a + i t to i t.

Proceeding in accordance with a custom, one eas-
ily concludes that

h (t)

=O

( ∫
∂S

log |ZS,χ (w + i t, σ)|+

log |ZS,χ (w − i t, σ)| dw

)

=O

( ∑
i=1,2

∫
∂S

log |Zi (w + i t)| dw+

∫
∂S

log |Zi (w − i t)| dw

)
,

(9)

where S is the closed disc, centered at a, of radius a
+ 1

4 .
By Theorem 3 and (9), it follows that S (t) =

O
(
tn−1

)
.
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From this point on, the improved bound S (t) =

O
(
tn−1 (log t)−1

)
is obtained by the same reasoning

as in the case n = 2 [1, pp. 213-218].
If n is an odd integer, then the proof of the asser-

tion is quite the same, with the only difference that we
have to distinguish between cases f (s) = ZS,χ (s, σ)
(case (a)), and f (s) = Sχ (s, σ) (case (b)).

This completes the proof.

Theorem 6. If n is an even integer, then

N (t) =
dim (χ) vol (Y )

nT vol (Xd)
tn+

O
(
tn−1 (log t)−1

)
.

If n is an odd integer, then

N (t) =
1

π
(−1)

n+1
2 Γ

(
−n

2

)
c−n

2
tn+

O
(
tn−1 (log t)−1

)
.

Proof. Let n be an even integer.
By [4, p. 36]

χ (Y )

χ (Xd)
= (−1)

n
2

vol (Y )

vol (Xd)
. (10)

Now, the assertion is an immediate consequence
of (10), Theorem 4, and Theorem 5.

More precisely, we deduce

N (t) =
dim (χ)χ (Y )

χ (Xd)T
×

×

n
2
−1∑

k=0

(−1)
n
2
−k pn−2k−1

tn−2k

n− 2k
+

1

π
S (t) +O (1)

=
dim (χ)χ (Y )

χ (Xd)T
(−1)

n
2 pn−1

tn

n
+

dim (χ)χ (Y )

χ (Xd)T
×

×

n
2
−1∑

k=1

(−1)
n
2
−k pn−2k−1

tn−2k

n− 2k
+

1

π
O
(
tn−1 (log t)−1

)
+O (1)

=
dim (χ)

T
(−1)

n
2

vol (Y )

vol (Xd)
×

× (−1)
n
2 · 1 · t

n

n
+

O
(
tn−1 (log t)−1

)
=

dim (χ) vol (Y )

nT vol (Xd)
tn+

O
(
tn−1 (log t)−1

)
.

If n is an odd integer, we apply Theorem 4 and
Theorem 5, to obtain

N (t)

=
1

π

n−1
2∑

k=0

(−1)
n+1
2
−k c 2k−n

2
Γ

(
2k − n

2

)
tn−2k+

1

π
S (t) +O (1)

=
1

π
(−1)

n+1
2 c−n

2
Γ
(
−n

2

)
tn+

1

π

n−1
2∑

k=1

(−1)
n+1
2
−k c 2k−n

2
Γ

(
2k − n

2

)
tn−2k+

1

π
O
(
tn−1 (log t)−1

)
+O (1)

=
1

π
(−1)

n+1
2 Γ

(
−n

2

)
c−n

2
tn+

O
(
tn−1 (log t)−1

)
.

This completes the proof.

Theorem 7. Let −ρ ≤ a ≤ b ≤ ρ. Then, there exists
a constant C, such that

NR (t) = Ctn +O
(
tn−1 (log t)−1

)
,

where NR (t) denotes the number of singularities of
ZR,χ (s, σ) in the rectangle a ≤ Re (s) ≤ b, 0 <
Im (s) < t.

Proof. Trivial consequence of Proposition 3.4 in [4,
p. 99], and Theorem 6.
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Examples: Analogous formulas of the formu-
las derived in Theorem 6 and Theorem 7 are already
known and are very well applied in literature for vari-
ous settings of locally symmetric spaces. Let us recall
some of them.

(a) In the classical arithmetic case, N (T ), T >
0, denotes the number of zeros of the Riemann zeta
function ζ (s) in the region 0 ≤ σ ≤ 1, 0 < t ≤ T . By
Theorem 9.3 in [14, p. 212],

N (T ) =
1

2π
T log T − 1 + log 2π

2π
T+

7

8
+ S (T ) +O

(
1

T

)
,

where S (T ) denotes the value of π−1 arg ζ
(

1
2 + iT

)
obtained by continuous variation along the straight
lines joining 2, 2+iT , 1

2 +iT , starting with the value
0. As it is proven by Theorem 9.4 in [14, p. 214],
S (T ) = O (log T ), so

N (T ) =
1

2π
T log T − 1 + log 2π

2π
T+

O (log T ) .

(b) In the case of compact Riemannian surfaces
(see section 1),

N (T ) =
A

2π
T 2 + 4S (T ) +O (1) ,

where N (T ) is the number of zeros of the Selberg
zeta function Z (s) in the rectangle R given by 1 − a
≤ σ ≤ a, −T ≤ t ≤ T (1 < a < 5

4 ), and S (T ) is π−1

times the valuation of the argument of Z (s) along the
vertical segment from a to iT , plus the horizontal seg-
ment from a + iT to 1

2 + iT . By Theorem 1 in [1,

p. 216], S (T ) = O
(
T (log T )−1

)
, so

N (T ) =
A

2π
T 2 +O

(
T (log T )−1

)
.

(c) Hejhal [2, pp. 115-119], derived the same
formula for N (T ) as in the case (b). More pre-
cisely, he obtained that N (T ) = cT 2 + S (T ) +
E (T ), where c = 2π (g − 1), E (T ) = O (1), S (T )

= O
(
T (log T )−1

)
. Here, g ≥ 2 is the genus of the

compact Riemann surface. Regarding this formula for
N (T ), we point out the pages 1, 41, 115, and 119
in [2]. Actually, it was pointed out by Randol [1,
p. 210], that he and Hejhal derived similar results in-
dependently.

(d) Pavey [9, pp. 58-60], proved that N (T ) =
O
(
TD
)
, where N (T ), T > 0 is the number of poles

and zeros of the corresponding Selberg zeta function
(in the case of compact symmetric spaces formed as
quotients of the Lie group SL4 (R)), and D is the de-
gree of the polynomialG that appears in the functional
equation of the Selberg zeta function. He proved that

N (T ) =
1

π
S (T ) +O

(
TD
)

+O (1) ,

where S (T ) is the variation of the argument of the
Selberg zeta function along the vertical segment from
a to a + iT plus the horizontal segment from a+ iT
to 1

2 + iT (1 < a < 5
4 ). It was proved that S (T )

= O
(
TD
)
, so the formula N (T ) = O

(
TD
)

was es-
tablished. Regarding the applications of the formulas
N (T )’s, we point out that in the case (a), the formula
for N (T ) is applied in literature further on to derive
the prime number theorem as well as some auxiliary
results, in cases (b) and (c), it is used to obtain approx-
imate formulas for the logarithmic derivative of the
zeta functions of Selberg and Ruelle, and in the end,
to improve the error terms in the prime geodesic theo-
rem. In the case (d), N (T ) was also used as the main
tool for obtaining of the corresponding prime geodesic
theorem.

4 Concluding remarks
Precise estimates on the number of singularities of
zeta functions represent an important tool which plays
the key role in achieving more refined error terms in
prime geodesic theorems.

Thus, some authors consider compact Riemann
surfaces [15], [16], [17], higher-dimensional case
[18], [19], quartic fields [12], [9], modular case [20],
[21], [22].

However, an approach using the Selberg zeta
function is not always sufficient to reach expected er-
ror terms in the prime geodesic theorem. Namely, the
prime geodesic theorem states that

πX (x) ∼ xd−1

(d− 1) log x
, (11)
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where X is a d-dimensional locally symmetric space,
and πX (x) is a function counting prime geodesics
whose norm is not larger that x. The prime geodesic
theorem (11) was proved by Gangolli [23] and De-
George [24] independently when X is compact, and
by Gangolli-Warner [8] when X has a finite volume.
Proofs of Gangolli and Gangolli-Warner are based on
application of the corresponding Selberg zeta funcion.
Similarly, Hejhal [2], [3], proved the prime geodesic
theorem with the error terms for hyperbolic Rieman
surfaces X

πX (x) =
∑

3
4
<sn≤1

li (xsn) +

O
(
x

3
4 (log x)−

1
2

)
,

(12)

where sn is a zero of the corresponding Selberg zeta
function. So, Hejhal also applied the Selberg zeta
function to derive the prime geodesic theorem, and,
recalling that the leading term of li (x) is x

log x , as x
→ ∞, it is easily seen that Hejhal’s theorem (12) is
a refinement of Gangolli’s (Gangolli-Warner’s) theo-
rem (11) (although both of them are obtained via cor-
responding Selberg zeta function). Comparing (11)
with (12), one could try to obtain an analogous er-
ror term in (11) as in (12) for a d-dimensional locally
symmetric space X of rank one. Of course, desired
approach would be the one via Selberg zeta function.
Namely, one may belive that the poles of the loga-
rithmic derivative of the corresponding Selberg zeta
function over the strip 1

2 (d− 1) < Re (s) ≤ d − 1
would provide the expected error terms. However, as
explained in [19], this approach provides only the er-
ror terms corresponding to the poles of the logarithmic
deriivative of the Selberg zeta function which are posi-
tioned in the strip d− 2 ≤ Re (s) ≤ d− 1. Hence, the
Selberg zeta function in this case is not sufficient to
obtain the expected error terms for d > 3. The same
fact can also be seen in [23] and [8] in the view of
the Tauberian theorem of Wiener-Ikehara. Thus, in
case d > 3, the meromorphic continuation of the Ru-
elle zeta function yields more satisfactory results [18],
[19], [17].

As already noted, to achieve such results, one
must obtain precise estimates on the number of sin-
gularities of zeta functions.

Though all terms after the leading one in the sum
on the right-hand side of the expression in Theorem 4
are dominated by the order of S (t), we expect that the
precise knowledge of these might be useful in future
investigations. Moreover, regarding the future work
and the directions of the future research, we want to

note that the estimates in this paper are derived under
assumption that the attached space is compact. This
fact enables us to use the Weyl asymptotic law (1) as
a guarantee that our estimates could be derived at all.
Unfortunately, in the non-compact case, analogous
Weyl asymptotic laws are not available yet. More pre-
cisely, the only known such law is derived by Don-
nelly [25, p. 239] for finite volume symmetric spaces.
In partiular, he proved that

lim sup
λ→∞

N (λ)

λ
d
2

≤ (4π)−
d
2

vol (X)

Γ
(
d
2 + 1

) ,
where d = dim (X), N (λ) is the number of linearly
independent cuspidal eigenfunctions with eigenvalues
less than λ > 0, and X is a non-compact locally sym-
metric space of finite volume. This estimate was ap-
plied in [19, p. 93] in the proof of the prime geodesic
theorem in the case of real hyperbolic manifolds with
cusps. As far as the author knows, analogous esti-
mates are not available for the remaining non-compact
locally symmetric spaces. Since such estimates are
responsible for achieving more refined estimates of
the logarithmic derivative of the corresponding zeta
functions, and ultimately for obtaining improved error
terms in the corresponding prime geodesic theorems,
we shall concentrate our future research in this area
into this direction.

The way we arrived at Theorem 6 is a Randol-
type approach referred to in [5, p. 30].

In the case of compact Riemann surfaces, the esti-
mates forN (T ) are applied in: [26, p. 751], [27, p. 3],
[28, p. 74]. In the case of compact, locally symmetric
spaces formed as quotients of the Lie group SL4 (R),
the approximate formulas for N (T ) are used in: [29,
p. 23], [30, p. 8], [31, p. 6], [32, p. 40], [33, p. 58]. Fi-
nally, in general, in the case of compact locally sym-
metric spaces of real rank one, the applications of such
formulas for N (T ) are found in: [34, p. 315], [35,
p. 181], [36, p. 216].

References:

[1] B. Randol, The Riemann hypothesis for Sel-
berg’s zeta - function and the asymptotic behav-
ior of eigenvalues of the Laplace operator, Trans.
Amer. Math. Soc. 236, 1978, pp. 209–223.

[2] D. Hejhal, The Selberg trace formula
for PSL (2,R). Vol. I. Lecture Notes in Mathe-
matics 548, Springer–Verlag, Berlin–Heidelberg
1976

[3] D. Hejhal, The Selberg Trace Formula for
PSL(2,R), Springer–Verlag, Berlin 1983

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.49 Dzenan Gusic

E-ISSN: 2224-2880 472 Volume 19, 2020



[4] U. Bunke and M. Olbrich, Selberg zeta and theta
functions. A differential Operator Approach,
Akademie–Verlag, Berlin 1995

[5] J. J. Duistermaat, J. A. C. Kolk, and
V. S. Varadarajan, Spectra of compact locally
symmetric manifolds of negative curvature, In-
vent. Math. 52, 1979, pp. 27–93.

[6] J. B. Conway, Functions of One Complex Vari-
able, Springer–Verlag, New York–Heidelberg–
Berlin 1978

[7] R. Gangolli, Zeta functions of Selberg’s type
for compact space forms of symmetric spaces of
rank one, Illinois J. Math. 21, 1977, pp. 1–42.

[8] R. Gangolli and G. Warner, Zeta functions of
Selberg’s type for some noncompact quotients
of symmetric spaces of rank one, Nagoya Math.
J. 78, 1980, pp. 1–44.

[9] M. Pavey, Class Numbers of Orders in Quartic
Fields, University of Tubingen, Tubingen 2006
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rithmic derivative of zeta functions for compact
even-dimensional locally symmetric spaces of
real rank one, Mathematica Slovaca 69, 2019,
pp. 311–320.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.49 Dzenan Gusic

E-ISSN: 2224-2880 473 Volume 19, 2020
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