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Abstract: - The traditional automobile insurance bonus-malus system (BMS) merit-rating depends on the 
number of claims. An insured individual who makes a small severity claim is penalized unfairly compared to an 
insured person who makes a large severity claim. A model for assigning the bonus-malus premium was 
proposed. Consideration was based on both the number and size of the claims that were assumed to follow a 
Poisson-Lindley distribution and a Lognormal-Gamma distribution, respectively. The Bayesian method was 
applied to compute the bonus-malus premiums, integrated by both frequency and severity components based on 
the posterior criteria. Practical examples using a real data set are provided. This approach offers a fairer method 
of penalizing all policyholders in the portfolio. 
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1 Introduction 
Automobile insurance is an essential branch of non-
life insurance. A bonus-malus system (BMS) is 
widely used in compulsory automobile liability 
insurance to adjust premiums paid by policyholders 
based on their particular claim history. A bonus as a 
discount is offered as a reward for accident-free 
driving, while a malus results in an increase in the 
premium. BMS premium pricing initially depends 
on the recorded numbers of claims in previous 
years. If the policyholder makes a claim, he or she 
will be charged a higher premium (malus) for the 
next insurance period. On the other hand, if no 
claim is made, a lower premium (bonus) will be 
charged for the renewal. The main goal of this 
system is to reward good drivers and penalize bad 
drivers. Insurance companies take advantage of the 
BMS for two main reasons. The first is to encourage 
policyholders to drive carefully during the year and 
make no claims, while the second is to ensure that 
policyholders pay premiums proportional to their 
risk value based on previous claims. 
 The Bayesian method is a tool to be very useful 
for calculating premiums. The method accepts each 
policyholder has a constant as an unequal 
underlying risk. This constant is called a risk 
parameter which is unknown and is treated as a 
random variable with a particular probability 
distribution. The distribution is called a prior 

distribution or structure-function. This approach is 
convenient to compute premiums in the BMS since 
the premiums are based on the specific transition 
rules which distinguish the policyholders as a bonus 
or malus. The basic Bayesian tool is easily applied 
to Bayes’ theorem by dividing a posterior mean of 
the parameter considering a prior mean. The net 
premium principle is utilized in this tool. This will 
provide an estimate of the risk parameter for 
separating the policyholders between good and bad 
risks. 
 The Poisson distribution is usually used for the 
explanation of independent and random events. It is 
applied to many studies, including a traffic 
modeling, see also [1], and a tracking area planning 
approach, see even [2]. In addition, it is used for the 
description of the random event of claims in 
automobile insurance. The Poisson distribution can 
be used to express the probability of the behavior of 
individual policyholders. However, it cannot 
adequately describe the number of claims in an 
insurance portfolio. A mixed Poisson was proposed 
for claim frequency distribution by [3] who 
designed an optimal BMS by mixing the Poisson 
distribution with the Inverse Gaussian distribution 
for claim frequency. A random number of claims 
that varied with the portfolio was also assumed to be 
Poisson distributed, while the randomly expected 
inherent risks of each insured person followed 
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inverse Gaussian distribution. Here, Bayesian 
methods were applied to estimate the posterior 
portfolio distribution function for a scenario 
covering the past t years. A fair premium was 
determined using the zero-utility principle. 
Reference [4] introduced an optimal BMS 
considering the number of claims in different 
distributions. Mixing Poisson with Gamma 
distributions was considered for the Negative 
Binomial claim frequency distribution. The 
expected premium value was calculated based on 
the BMS principle. Reference [5] extended the 
methods of [3] and [4] who used the three-parameter 
Hofmann’s distribution and showed that this gave a 
better fit for the claim frequency data. Several 
papers have discussed mixing other distributions to 
obtain an optimal premium for the number of 
claims. See, for example, [6]-[8]. 
 Our analysis suggested that previous evaluations 
showed no difference in payment between a claim 
made by a policyholder for a small loss and another 
with a big loss. It seems unfair to penalize all 
policyholders equally. For instance, a claim of 
US$50 by a policyholder should not be penalized by 
the same increase in premium as a claim of US$500. 
Therefore, when assigning the insurance premium to 
be charged, more factors must be taken into account 
than considering only a model frequency 
component. To resolve this discrepancy, an optimal 
BMS was developed by (Reference [9]) taking both 
the frequency and severity component into account,  
followed by Poisson-Gamma distribution and 
Exponential-Inverse Gamma (Pareto distribution), 
respectively.  In particular, the number of claims 
was assumed to be Poisson distributed with mean 𝜆, 
where 𝜆 is the underlying risk that varies depending 
on each policyholder. The underlying risk was 
assumed to be Gamma distributed as a random 
variable. For the severity component, the claim 
amount was assumed to be an Exponential 
distribution, while its mean was assumed to be 
Inverse Gamma distributed. Using the Bayesian 
method, the posterior structure functions of the 
frequency component and the severity component 
were obtained for the number of years that the 
policyholder had been under observation. The 
premium estimate was based on the net premium 
principle, as a product of the mean of the posterior 
distribution function for the frequency component 
and the posterior distribution function for the 
severity component. In particular, the suitable 
premiums based on BMS were derived using the 
following multiplicative formula: 

Premium = E[Frequency component] × E[Severity component].             (1)  

 The useful multiplicative formula proposed in 
(1) was interested in many researchers with 
considering different distributions in frequency and 
severity components. Reference [10]  considered 
both frequency and severity components in the 
design of an optimal BMS by assuming that claim 
frequency had a Geometric distribution (mixed 
Poison with Exponential distribution), and claim 
severity was Pareto distributed. Reference [11]  
considered the design of optimal BMS based on 
both frequency and severity components using 
mixed Poisson with Exponential distribution and 
mixed Poisson with Gamma for the frequency 
component. The number of claims was assumed to 
be Poisson distributed, while the underlying risk of 
each policyholder was taken to be Exponential and 
Gamma distributed called the prior distribution. 
Claim size was modeled as a Pareto distribution, 
where the claim size for the 𝑘𝑡h claim was assumed 
to be exponentially distributed, and the mean claim 
amount was assumed to be Inverse Gamma 
distributed. Reference [12] assumed a Negative 
Binomial distribution for the frequency component. 
For the severity component, they focused on 
modeling claim severity as a Weibull distribution by 
mixing an Exponential with a Levy distribution. 
Results for these models were compared for Weibull 
severity and Pareto severity. Reference [13] allowed 
Negative Binomial distribution for the frequency 
component while mixing the Gamma with Gamma 
distribution was allowed for the severity component. 
The Bayesian method was then applied to derive the 
premium based on the BMS. Reference [14] 
considered the design of an optimal BMS based on 
both frequency and severity components. They 
proposed the Exponential-Lognormal (ELN) 
regression model for severity distribution as a 
competitive alternative to the Pareto.  The number 
of claims was assumed to be classically Negative 
Binomial distributed and Poisson-Inverse Gaussian 
distributed. Reference [15] considered the design of 
an alternative optimal BMS by assuming that the 
distribution of claim frequency and severity had 
Negative Binomial and Pareto, respectively. The net 
premium principle was considered to calculate the 
premiums. 
 Here, we propose a new claim frequency 
distribution and claim severity distribution to 
determine optimal premium based on the BMS. The 
number of claims is considered when mixing the 
Poisson with the Lindley distribution to assess the 
claim frequency distribution. The Lindley 
distribution usually has a thicker tail than an 
Exponential distribution; therefore, it should provide 
a better fit to the claim data set. To increase clarity, 
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we employed the Poisson-Lindley distribution for 
claim frequency distribution, while fitting values 
were compared using the real data set. For claim 
severity distribution, claim size in automobile 
insurance is usually heavy tail distributed. Many 
previous papers used the Pareto distribution to 
model claim severity. However, Pareto distribution 
does not adequately fit the claim data. Other heavy 
tail distributions, for example, Gamma and 
Lognormal are appropriate to model claim severity 
distribution, see also [16]-[18]. In this study, we 
propose the Lognormal-Gamma to model the claim 
severity distribution. The Bayesian method is 
applied to obtain the posterior structure functions 
for claim frequency and claim severity distributions. 
The mean of these functions is used to estimate the 
premiums to be charged to a policyholder who has 
been under observation. Suitable premiums based 
on BMS were derived using the multiplicative 
formula shown in (1). 
 The remainder of this paper is organized as 
follows. Section 2 describes the research 
methodology separated into two subsections of 
claim frequency distribution and claim severity 
distribution. Mixing distributions, parameter 
estimations, the goodness of fit test, the Bayesian 
method, and the premium calculation are also 
explained. In Section 3, the numerical application is 
illustrated and results are discussed using the real 
claim data separated as claim frequency components 
and claim severity components. Finally, conclusions 
are drawn and presented in Section 4. 
 
 
2 Research Methodology 
We assumed that the frequency and severity of the 
claim of each policyholder were independent. The 
claim frequency and claim severity distributions 
were separated into the following subsections. 
 
2.1 Claim Frequency Distribution using 

Poisson-Lindley 
In automobile insurance, all policyholders have a 
constant as an unequal underlying risk that an 
accident will occur.  This constant is called the risk 
parameter and is treated as a random variable that 
depends on each policyholder. The distribution is 
called the prior distribution. Mixing the Poisson 
distribution with the prior distributions gives thicker 
tails than only the Poisson distribution, hence the 
mixed Poisson distribution compared with the 
Poisson distribution provides a better fit to the claim 
frequency data. Thus, we proposed mixing Poisson 

distribution with Lindley distribution to model the 
frequency distribution. 
 
2.1.1 Mixing Distribution 

Assume that the number of claims 𝑘 is distributed 
according to the Poisson given parameter 𝜃 with 
probability mass function  

𝑓(𝑘|𝜃) =
𝑒−𝜃𝜃𝑘

𝑘!
,   𝑘 = 0,1,2,… , 𝜃 > 0. 

The expected value of the Poisson random variable 
is 𝐸[𝐾|𝜃] = 𝜃. 
 All policyholders have a constant representing 
the expected inherent risk of each insured. This is 
the mean of the number of claims of each insured, 
denoted by 𝜃. Assume that 𝜃 is distributed 
according to the Lindley distribution with parameter 
𝛿 (that is, the structure-function of 𝜃 is assumed to 
be Lindley distribution). Then, the probability 
density function (pdf) of 𝜃 can be represented as the 
following form: 

𝜋(𝜃) =
𝛿2

𝛿 + 1
(𝜃 + 1)𝑒−𝛿𝜃,   𝜃 > 0, 𝛿 > 0. 

The mixed Poisson with Lindley distribution is 
obtained as detailed below: 

𝑓(𝑘) = ∫ 𝑓(𝑘|𝜃)𝜋(𝜃)

∞

0

𝑑𝜃 

= ∫
𝑒−𝜃𝜃𝑘

𝑘!
⋅

𝛿2

𝛿 + 1
(𝜃 + 1)𝑒−𝛿𝜃

∞

0

𝑑𝜃 

          =
𝛿2(𝑘 + 𝛿 + 2)

(𝛿 + 1)𝑘+3
,                                          (2) 

where 𝑘 = 0,1,2,… and 𝛿 > 0. 
 
2.1.2 Parameter Estimation 

The maximum likelihood estimation (MLE) is 
widely used to estimate model parameters. The 
basic idea is to choose a parameter value that 
maximizes the likelihood function, which is the 
probability density of the observed data. The 
principle of maximum likelihood is to estimate the 
value of parameters that make the observed data 
most probable. The methodology of MLE for 
Poisson-Lindley distribution is presented as follows: 

 Let 𝑘1, 𝑘2, … , 𝑘𝑛 be a random sample of size 
𝑛 from Poisson-Lindley distribution with pdf in (2).  
To find the most likely value of the parameter 𝛿 
requires maximizing the likelihood function 𝐿 where 

𝐿(𝛿; 𝑘𝑖) = ∏ 𝑓(𝑘𝑖; 𝛿) = ∏
𝛿2(𝑘𝑖 + 𝛿 + 2)

(𝛿 + 1)𝑘𝑖+3

𝑛

𝑖=1

.

𝑛

𝑖=1

 

Then, the log-likelihood function is 

ln 𝐿(𝛿; 𝑘𝑖) = ∑ln [
𝛿2(𝑘𝑖 + 𝛿 + 2)

(𝛿 + 1)𝑘𝑖+3
]

𝑛

𝑖=1

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.46

Adisak Moumeesri, 
Watcharin Klongdee, Tippatai Pongsart

E-ISSN: 2224-2880 445 Volume 19, 2020



= 2𝑛 ln 𝛿 + ∑ ln(𝑘𝑖 + 𝛿 + 2)

𝑛

𝑖=1

− ln(𝛿 + 1)∑(𝑘𝑖 + 3)

𝑛

𝑖=1

. 

The estimator  𝛿 of the parameter 𝛿 can be obtained 
by solving the equation: 

𝑑

𝑑𝛿
ln 𝐿(𝛿; 𝑘𝑖) = 0. 

We have  
𝑑

𝑑𝛿
(2𝑛 ln 𝛿 + ∑ln(𝑘𝑖 + 𝛿 + 2)

𝑛

𝑖=1

− ln(𝛿 + 1)∑(𝑘𝑖 + 3)

𝑛

𝑖=1

) = 0. 

Thus 

  
2𝑛

𝛿
+ ∑(

1

𝑘𝑖 + 𝛿 + 2
)

𝑛

𝑖=1

−
1

𝛿 + 1
∑(𝑘𝑖 + 3)

𝑛

𝑖=1

= 0.              (3) 

Since the estimation of the parameters 𝛿 cannot be 
found in closed form, the numerical iteration 
technique, bisection method, is used to solve (3). 
 
2.1.3 Goodness of Fit Test 

For the frequency component, the Chi-Square 
goodness of fit test was used to describe how the 
observation of a given phenomenon is significantly 
different from the expected value. Chi-Square is 
used to compare the observed sample distribution 
with the expected probability distribution, and how 
well the theoretical distribution is suited to the 
empirical distribution. The sample data were 
divided into intervals. Then the numbers of points 
that fell into each interval were compared with the 
expected number of points in each interval. The 
value of the Chi-Square goodness of fit test was 
computed using the following formula: 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

, 

where 𝜒2 is the value of the Chi-Square goodness of 
fit test, 𝑂𝑖 is the observed frequency count for the 
𝑖th level of the categorical variable and 𝐸𝑖 is the 
expected frequency count for the 𝑖th level of the 
categorical variable. 
 
2.1.4 Bayesian Method 

The bonus-malus premium calculation has been 
studied using several methods, with Bayesian 
methodology as one of the most popular methods. 
The main purpose of this approach is to obtain the 
posterior distribution function. The Bayesian 
methodology can be applied when the data for each 
policyholder is available, whether based on claim 
history for previous periods or policyholder profiles. 
 Let 𝑘 = (𝑘1, 𝑘2, … , 𝑘𝑡) be a sample, where 𝑡 
is the sample size. Let 𝑁 = ∑ 𝑘𝑖

𝑡
𝑖=1  be the total 

number of claims made by a policyholder over 

𝑡 years, where 𝑘𝑖 is the number of claims that the 
policyholder made in years 𝑖, 𝑖 = 1,2, … , 𝑡. The 
likelihood function is   

 𝐿(𝜃; 𝑘1, 𝑘2, … , 𝑘𝑡) = 𝑃(𝑘1, 𝑘2, … , 𝑘𝑡|𝜃) 

                      = ∏
𝑒−𝜃𝜃𝑘𝑖

𝑘𝑖!

𝑡

𝑖=1

 

                 ∝  𝑒−𝜃𝑡𝜃𝑁. 
The prior distribution is 

𝜋(𝜃) ∝ (𝜃 + 1)𝑒−𝛿𝜃. 
Then, the posterior distribution function for a 
policyholder, or a group of policyholders, with 
claim history 𝑘1, 𝑘2, … , 𝑘𝑡 can be obtained by 
applying Bayes’ theorem. The posterior distribution 
function is proportional to the product of prior 
distribution and the likelihood function. 

𝜋∗(𝜃|𝑘1, 𝑘2, … , 𝑘𝑡) ∝  𝑃(𝑘1, 𝑘2, … , 𝑘𝑡|𝜃)𝜋(𝜃) 
                            = 𝑒−𝜃𝑡𝜃𝑁(𝜃 + 1)𝑒−𝛿𝜃 

                          = 𝑒−(𝑡+𝛿)𝜃(𝜃 + 1)𝜃𝑁. 
Consider  

∫ 𝜋∗(𝜃|𝑘1, 𝑘2, … , 𝑘𝑡)

∞

0

𝑑𝜃 ∝  ∫ 𝑒−(𝑡+𝛿)𝜃(𝜃 + 1)𝜃𝑁

∞

0

𝑑𝜃,  

then 

∫ 𝜋∗(𝜃|𝑘1, 𝑘2, … , 𝑘𝑡)

∞

0

𝑑𝜃 =  ∫ 𝐴 𝑒−(𝑡+𝛿)𝜃(𝜃 + 1)𝜃𝑁

∞

0

𝑑𝜃 = 1, 

where 𝐴 is a constant. It results in  

𝐴 =
(𝑡 + 𝛿)𝑁+2

Γ(𝑁 + 1)(𝑁 + 1 + 𝑡 + 𝛿)
. 

Therefore, the posterior distribution function for the 
frequency component can be expressed as 
𝜋∗(𝜃|𝑘1, 𝑘2, … , 𝑘𝑡) =  

(𝑡 + 𝛿)𝑁+2

Γ(𝑁 + 1)(𝑁 + 1 + 𝑡 + 𝛿)
𝑒−(𝑡+𝛿)𝜃(𝜃 + 1)𝜃𝑁 .        (4) 

 
2.1.5 Premium Calculation 

Many principles are involved in pricing insurance 
premiums. In this article, we determine the net 
premium principle. This is the basic principle in the 
sense that premiums should be the expected value of 
losses. The net premium in such a situation is the 
expected number or mean of the number of claims 
that occur from each policyholder. 

 The expected number of claims of a 
policyholder with a claim history 𝑘1, 𝑘2, … , 𝑘𝑡 or the 
mean of the posterior distribution function from (4) 
for Poisson-Lindley distribution will be 
𝜃𝑡+1 = 𝐸[𝜃|𝑘1, 𝑘2, … , 𝑘𝑡] = 𝐸[𝑘1, 𝑘2, … , 𝑘𝑡|𝜃] 

= ∫ 𝜃

∞

0

(𝑡 + 𝛿)𝑁+2

Γ(𝑁 + 1)(𝑁 + 1 + 𝑡 + 𝛿)
𝑒−(𝑡+𝛿)𝜃(𝜃 + 1)𝜃𝑁𝑑𝜃 

=
(𝑡 + 𝛿)𝑁+2

Γ(𝑁 + 1)(𝑁 + 1 + 𝑡 + 𝛿)
[

Γ(𝑁 + 3)

(𝑡 + 𝛿)𝑁+3 +
Γ(𝑁 + 2)

(𝑡 + 𝛿)𝑁+2] 

=
(𝑁 + 1)(𝑁 + 2 + 𝑡 + 𝛿)

(𝑡 + 𝛿)(𝑁 + 1 + 𝑡 + 𝛿)
.                                                 (5) 
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 Assume that the initial premium or base 
premium at time 𝑡 = 0 is 100. Then, at time 𝑡 + 1, 
the premium can be determined from the number of 
claims and expressed as the following form: 
Premium𝑡+1 = 100 ⋅

𝛿(1 + 𝛿)(𝑁 + 1)(𝑁 + 2 + 𝑡 + 𝛿)

(2 + 𝛿)(𝑡 + 𝛿)(𝑁 + 1 + 𝑡 + 𝛿)
.            (6) 

  
2.2 Claim Severity Distribution using 

Lognormal-Gamma   
In an insurance portfolio, heavy tail distributions 
such as Gamma, Lognormal, Weibull, Pareto, and 
Burr are commonly used to model claim severity 
distribution. Since mixing these claim severity 
distributions with the prior distribution gives thicker 
tails, the mixed claim severity distribution provides 
a better fit to the claim severity data.  
 
2.2.1 Mixing Distribution 

In the literature, mixed Exponential distribution has 
been widely used to model severity distributions, 
see also [9]-[12]. In this article, we propose a mixed 
Lognormal distribution with Gamma prior 
distribution to model severity distribution as 
follows: 
 Let 𝑋 be a random variable of the claim size 
of each insured person. Assume that the size of 
claim 𝑥 follows a Lognormal distribution. Then, 
given that parameter 𝜆 =

1

𝜎2, the pdf of Lognormal 
distribution is given by 

𝑓(𝑥|𝜆) =
√𝜆

𝑥√2𝜋
𝑒−

𝜆

2
(ln𝑥−𝜇)2

,   𝑥 > 0, 𝜇 > 0, 𝜆 > 0. 

The expected value of 𝑋 will be 𝐸[𝑋|𝜆] = 𝑒𝜇+
1

2𝜆. 
 The parameter 𝜆 has different values 
according to each policyholder; therefore, it is 
reasonable to express 𝜆 as a distribution. The 
Gamma prior distribution for 𝜆 with parameters 𝛼 
and 𝛽 has the pdf as the following form: 

𝜋(𝜆) =
𝛽𝛼

Γ(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆,   𝜆 > 0, 𝛼 > 0, 𝛽 > 0. 

Unconditional distribution of the claim size 𝑥 can be 
obtained as following below. 

𝑓(𝑥) = ∫ 𝑓(𝑥|𝜆)𝜋(𝜆)

∞

0

𝑑𝜆 

= ∫
√𝜆

𝑥√2𝜋
𝑒−

𝜆

2
(ln 𝑥−𝜇)2

⋅
𝛽𝛼

Γ(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆

∞

0

𝑑𝜆 

=
𝛽𝛼

𝑥√2𝜋Γ(𝛼)
⋅

Γ (𝛼 +
1

2
)

(𝛽 +
1

2
(ln 𝑥 − 𝜇)2)

𝛼+
1

2

,                   (7) 

where 𝑥 > 0, 𝛼 > 0, and 𝛽 > 0. 
 
2.2.2 Parameter Estimation 

The methodology of the MLE for Lognormal-

Gamma distribution is presented as follows: 
 Let vector 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 be an 
identically independent observation for Lognormal-
Gamma distribution with pdf in (7). To find the 
most likely value of parameters 𝛼 and 𝛽 that 
produce outcome 𝑋, the likelihood function 𝐿  must 
be maximized, where 

𝐿(𝛼, 𝛽; 𝑥𝑖) = ∏𝑓(𝑥𝑖; 𝛼, 𝛽)

𝑛

𝑖=1

 

= ∏[
𝛽𝛼

𝑥𝑖√2𝜋Γ(𝛼)
⋅

Γ (𝛼 +
1

2
)

(𝛽 +
1

2
(ln 𝑥𝑖 − 𝜇)2)

𝛼+
1

2

]

𝑛

𝑖=1

. 

Then, the log-likelihood function is provided as 
follow: 

ln 𝐿(𝛼, 𝛽; 𝑥𝑖) = ∑ln

[
 
 
 𝛽𝛼

𝑥𝑖√2𝜋Γ(𝛼)
⋅

Γ (𝛼 +
1

2
)

(𝛽 +
1

2
(ln 𝑥𝑖 − 𝜇)2)

𝛼+
1

2

]
 
 
 𝑛

𝑖=1

. 

= 𝑛 [𝛼 ln 𝛽 + ln Γ (𝛼 +
1

2
) − ln √2𝜋 − ln Γ(𝛼)] − ∑ln 𝑥𝑖

𝑛

𝑖=1

− (𝛼 +
1

2
)∑ln (𝛽 +

1

2
(ln 𝑥𝑖 − 𝜇)2)

𝑛

𝑖=1

. 

The estimators  �̂� and  �̂� for 𝛼 and 𝛽 respectively 
are obtained by 

𝜕

𝜕𝛼
ln 𝐿(𝛼, 𝛽; 𝑥𝑖) = 0    and  

𝜕

𝜕𝛽
ln 𝐿(𝛼, 𝛽; 𝑥𝑖) = 0. 

Then 
𝜕

𝜕𝛼
ln 𝐿(𝛼, 𝛽; 𝑥𝑖) = 𝑛 [ln 𝛽 +

𝜕

𝜕𝛼
ln Γ (𝛼 +

1

2
) −

𝜕

𝜕𝛼
Γ(𝛼)]

− ∑ln (𝛽 +
1

2
(ln 𝑥𝑖 − 𝜇)2)

𝑛

𝑖=1

= 0                (8) 

and  
𝜕

𝜕𝛽
ln 𝐿(𝛼, 𝛽; 𝑥𝑖) =

𝛼𝑛

𝛽
− (𝛼 +

1

2
)∑(

1

𝛽 +
1

2
(ln 𝑥𝑖 − 𝜇)2

)

𝑛

𝑖=1

= 0. 

We have  

𝛼 =

𝛽

2
∑ (

1

𝛽+
1

2
(ln𝑥𝑖−𝜇)2

)𝑛
𝑖=1

𝑛 − 𝛽 ∑ (
1

𝛽+
1

2
(ln𝑥𝑖−𝜇)2

)𝑛
𝑖=1

.                       (9) 

Replacing (9) in (8), we get the parameter 𝛽. Since 
the estimation of the parameter 𝛽 cannot be found in 
closed form, the numerical iteration technique, 
bisection method, is used to solve (8). 
 
2.2.3 Goodness of Fit Test 

Akaike Information Criterion (AIC) was used as the 
model selection criteria. The minimum AIC 
illustrated a good model among all the others with a 
better fit to the claim data. The equation used to 
estimate the AIC of the model can be represented as 

AIC = −2 ln(𝐿) + 2𝑚, 
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where 𝐿 is the value of the likelihood function of the 
model, and 𝑚 is the number of estimated parameters 
in the model. 
 In this study, we used the AIC to measure the 
relative quality of the statistical models for claim 
severity distributions. 
 
2.2.4 Bayesian Method 

The total number of claims that a policyholder made 
in 𝑡 years was represented as 𝑁 = ∑ 𝑘𝑖

𝑡
𝑖=1 . Let 𝑥𝑘 

denote the size of claim 𝑘 for 𝑘 = 1,2,… ,𝑁. Then 
his/her claim size history in 𝑡 years can be displayed 
in the form of a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁). The total 
claim size over 𝑡 years is ∑ 𝑥𝑘

𝑁
𝑘=1 . The likelihood 

function is  
 𝐿(𝜆; 𝑥1, 𝑥2, … , 𝑥𝑁) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁|𝜆) 

                                             = ∏
√𝜆

𝑥𝑘√2𝜋
𝑒−

𝜆

2
(ln𝑥𝑘−𝜇)2

𝑁

𝑘=1

 

                                      ∝ 𝜆
𝑁

2𝑒−
𝜆

2
∑ (ln𝑥𝑘−𝜇)2𝑁

𝑘=1 . 
The prior distribution is 

𝜋(𝜆) ∝ 𝜆𝛼−1𝑒−𝛽𝜆. 
By applying Bayes’ theorem, the posterior 
distribution function is proportional to the product 
of prior distribution and the likelihood function, that 
is 

   𝜋∗(𝜆|𝑥1, 𝑥2, … , 𝑥𝑁) ∝  𝑓(𝑥1, 𝑥2, … , 𝑥𝑁|𝜆)𝜋(𝜆) 

                                       = 𝑒−(𝛽+
1

2
∑ (ln 𝑥𝑘−𝜇)2𝑁

𝑘=1 )𝜆𝜆
𝑁

2
+𝛼−1. 

Consider  

∫ 𝜋∗(𝜆|𝑥1, 𝑥2, … , 𝑥𝑁)

∞

0

𝑑𝜆 ∝  ∫ 𝑒−(𝛽+
1

2
∑ (ln 𝑥𝑘−𝜇)2𝑁

𝑘=1 )𝜆𝜆
𝑁

2
+𝛼−1

∞

0

𝑑𝜆,  

then 

∫ 𝜋∗(𝜆|𝑥1, 𝑥2,… , 𝑥𝑁)

∞

0

𝑑𝜆 =  ∫ 𝐵 𝑒−(𝛽+
1

2
∑ (ln𝑥𝑘−𝜇)2𝑁

𝑘=1 )𝜆𝜆
𝑁

2
+𝛼−1

∞

0

𝑑𝜆 = 1. 

where 𝐵 is a constant. We get 

𝐵 =
(𝛽 +

1

2
∑ (ln 𝑥𝑘 − 𝜇)2𝑁

𝑘=1 )

𝑁

2
+𝛼

Γ (
𝑁

2
+ 𝛼)

. 

Therefore, the posterior distribution function for 
severity distribution can be presented in the 
following form: 
𝜋∗(𝜆|𝑥1, 𝑥2, … , 𝑥𝑁)

=  
(𝛽 +

1

2
∑ (ln 𝑥𝑘 − 𝜇)2𝑁

𝑘=1 )

𝑁

2
+𝛼

Γ (
𝑁

2
+ 𝛼)

𝑒−(𝛽+
1

2
∑ (ln 𝑥𝑘−𝜇)2𝑁

𝑘=1 )𝜆𝜆
𝑁

2
+𝛼−1. (10) 

 
2.2.5 Premium Calculation 

For claim severity distribution, we used the net 
premium principle for computing the premium, 
similar to the claim frequency distribution. The 
expected value in (10) of Lognormal-Gamma 
distribution was 
�̂�𝑡+1 = 𝐸[𝜆|𝑥1, 𝑥2, … , 𝑥𝑁] 

= ∫ 𝜆

∞

0

(𝛽 +
1

2
∑ (ln 𝑥𝑘 − 𝜇)2𝑁

𝑘=1 )

𝑁

2
+𝛼

Γ (
𝑁

2
+ 𝛼)

𝑒−(𝛽+
1

2
∑ (ln𝑥𝑘−𝜇)2𝑁

𝑘=1 )𝜆𝜆
𝑁

2
+𝛼−1 𝑑𝜆 

=
(𝛽 +

1

2
∑ (ln 𝑥𝑘 − 𝜇)2𝑁

𝑘=1 )

𝑁

2
+𝛼

Γ (
𝑁

2
+ 𝛼)

[
 
 
 Γ (

𝑁

2
+ 𝛼 + 1)

(𝛽 +
1

2
∑ (ln 𝑥𝑘 − 𝜇)2𝑁

𝑘=1 )

𝑁

2
+𝛼+1

]
 
 
 
 

=

𝑁

2
+ 𝛼

𝛽 +
1

2
∑ (ln 𝑥𝑘 − 𝜇)2𝑁

𝑘=1

. 

From 𝐸[𝜆|𝑥1, 𝑥2, … , 𝑥𝑁] = �̂�,  

then 𝐸[𝑥1, 𝑥2, … , 𝑥𝑁|𝜆] = 𝑒
𝜇+

1

2�̂�. 
Therefore, 

𝐸[𝑥1, 𝑥2, … , 𝑥𝑁|𝜆] = exp [𝜇 +
𝛽 +

1

2
∑ (ln 𝑥𝑘 − 𝜇)2𝑁

𝑘=1

𝑁 + 2𝛼
].   (11) 

 The suitable premium that each policyholder 
pays must be proportional to both his/her number 
and size of the claims. The exact loss 𝑥𝑘 occurring 
from each claim results in different premiums for 
policyholders with the same number of claims. The 
Bayesian bonus-malus premium that must be paid 
fairly for all policyholders in the portfolio is equal 
to the product of the Bayesian premium based both 
on the frequency component in (5) and the severity 
component in (11) and can be expressed by 
Premium𝑡+1 =

(𝑁 + 1)(𝑁 + 2 + 𝑡 + 𝛿)

(𝑡 + 𝛿)(𝑁 + 1 + 𝑡 + 𝛿)

⋅ exp(𝜇 +
𝛽 +

1

2
∑ (ln 𝑥𝑘 − 𝜇)2𝑁

𝑘=1

𝑁 + 2𝛼
).       (12) 

  To determine the bonus-malus premiums for a 
policyholder that must be paid according to the 
proposed model, we need to know the number of 
claims, age of the policy, claim amounts, and total 
claim amounts. All these values are generally shown 
in the portfolio. 
  The Bayesian bonus-malus premium at time 
𝑡 = 0 is called the base premium. This is the initial 
premium that a new policyholder who joins the 
insurance must pay. Because of no claims at time 
𝑡 = 0, in this study we considered ln 𝑥0 = 𝜇. 
Therefore, the base premium can be expressed as 

Premium0 =
(2 + 𝛿)

𝛿(1 + 𝛿)
⋅ exp (𝜇 +

𝛽

2𝛼
).            (13) 

 
 
3 Numerical Application 
A data set was applied based on one-year 
automobile insurance policies taken out in 2004 or 
2005 to calculate the model premiums introduced in 
this paper. This data set can be found on the website 
of the Faculty of Business and Economics, 
Macquarie University (Sydney, Australia), see also 
[19]. There were 67,856 policies in the total 
portfolio that at least one claim was 4,624. There 
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were also 4,333 policyholders who made claims 
once, 271 twice, 18 three times, and 2 at four times. 
 
3.1 BMS based on the Claim Frequency 

Component 
Claim frequency distribution was applied by the 
Poisson-Lindley distribution introduced in this 
article. The maximum likelihood estimator of the 
parameter of the Poisson-Lindley distribution 
was   𝛿 = 14.6238, with Chi-Square goodness of fit 
test 𝜒2 = 2.1624. We compared values of observed 
claim frequency between traditional Poisson-
Exponential distribution and a Poisson-Lindley 
distribution. Results showed that the Poisson-
Lindley distribution gave a better fit to the data than 
the Poisson-Exponential distribution. The expected 
claim frequencies were also compared as shown in 
Table 1. 

Table 1. Observed frequency and expected frequency for 
estimated parameter values of Poisson-Exponential and 
Poisson-Lindley distributions 
Number 

of claims 
Observed 
frequency 

Expected frequency 
Poisson-Exponential Poisson-Lindley 

0 63232 63253.85 63253.69 
1 4333 4290.03 4292.02 
2 271 290.96 290.30 
3 18 19.73 19.58 
4 2 1.34 1.32 
5 0 0.09 0.09 

Total 67856 67856 67856 
Estimated parameter 13.7444 14.6238 

𝜒2 2.2866 2.1624 
AIC 36102.8938 36102.7548 

 
The Bayesian bonus-malus premiums based 

only on the frequency component were determined 
and calculated from (6), with results shown in 
Table 2. 

Table 2. Bonus-malus premiums based on the Poisson-
Lindley distribution for the frequency component 

𝑡 Number of claims 
0 1 2 3 4 

0 100.00     
1 93.26 185.92 278.08 369.81 461.17 
2 87.37 174.23 260.67 346.74 432.50 
3 82.17 163.92 245.30 326.37 407.17 
4 77.56 154.75 231.63 308.24 384.61 
5 73.43 146.55 219.40 292.01 364.41 
6 69.72 139.18 208.39 277.39 346.21 
7 66.37 132.50 198.42 264.16 329.74 

 
 From results in Table 2, a bonus with no claims 
in the first year represented 6.74% of the base 
premium. On the other hand, policyholders who 
made one claim during the first year must pay a 
malus at 85.92% of the base premium. Premiums 
decreased if the policyholders had a claim-free year 

and increased if claims occurred. 
 For comparative purposes, we computed the 
Bayesian bonus-malus premiums achieved under the 
traditional Poisson-Exponential model. The results 
are provided in Table 3. 

Table 3. Bonus-malus premiums based on the Poisson-
Exponential distribution for the frequency component 

𝑡 Number of claims 
0 1 2 3 4 

0 100.00     
1 93.22 186.44 279.65 372.87 466.09 
2 87.30 174.59 261.89 349.19 436.49 
3 82.08 164.17 246.25 328.33 410.42 
4 77.46 154.92 232.37 309.83 387.29 
5 73.33 146.65 219.98 293.30 366.63 
6 69.61 139.22 208.83 278.45 348.06 
7 66.26 132.51 198.77 265.02 331.28 

 
 From the results in Table 3, an insured with a 
no claim in the first year is awarded a bonus of 
6.78% on the base premium. On the other hand, an 
insured who makes one claim during the first year 
must pay a malus at 86.44% of the base premium. 
 We observed that the Bayesian bonus-malus 
premiums computing from the traditional Poisson-
Exponential model are stricter with bad drivers than 
the proposed Poisson-Lindley model. Moreover, the 
premiums obtained from the Poisson-Exponential 
model are more generous with good drivers than the 
proposed Poisson-Lindley model. 
 
3.2 BMS based on Both Claim Frequency 

and Claim Severity Components 
We illustrated the premiums using the proposed 
model as in expression (12). For estimated 
parameters based on the severity component, we 
fitted the unconditional distribution as a Lognormal-
Gamma distribution in (7) to the claim sizes. 
Results gave maximum likelihood estimators 
for   �̂� and  �̂� as 34.3312 and 274.9938, respectively 
with AIC= 82061.81. We considered 𝜇 in the model 
in (12) and (13) as equal to 5.  
 Some symbols were defined for the purpose of 
convenience of explanation. We defined NC as the 
number of claims, CS as the claim size or severity 
of the claim, and TCS as the total claim size (Table 
4-5). 
 We illustrated some cases where the amount of 
claim of an insured was different as shown in Table 
6 in [20]. We considered the case of a policyholder 
who made four claims amounting to 235,  471, 706, 
and 942. The results are shown in Table 4. 
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Table 4. Bonus-malus premiums based on the Poisson-
Lindley distribution for the frequency component and  
Lognormal-Gamma distribution for the severity 
component  

𝑡 
NC 0 1 2 3 4 
CS  235 471 706 942 
TCS  235 706 1412 2354 

0  592.53     
1  552.60 1041.67 1487.29 1905.13 2306.30 
2  517.69 976.18 1394.19 1786.31 2162.93 
3  486.90 918.40 1311.99 1681.35 2036.22 
4  459.56 867.05 1238.89 1587.96 1923.43 
5  435.12 821.10 1173.46 1504.34 1822.40 
6  413.14 779.76 1114.56 1429.04 1731.40 
7  393.26 742.37 1061.26 1360.88 1649.00 
 
 Table 4 shows the premiums due for various 
claims when the age of the policy was up to seven 
years. Claim sizes were 235, 471, 706, and 942. The 
base premium, computed by (13), was equal to 
592.53, and this decreased with a claim-free year. 
On the other hand, if there was an accident with a 
claim size of 235 in the first year of observation, the 
policyholder will pay 1041.67. If a policyholder 
makes two claims in the first year, with the first 
claim of 235 and the second claim of 471, then he or 
she will pay 1487.29. Premiums increase as the 
number of claims increase. If in the second year the 
policyholder does not have an accident, then the 
premiums will reduce to 976.18, 1394.19, 1786.31, 
and 2162.93 for numbers of claims from 1 to 4, 
respectively. If the policyholder no longer has any 
claim, the premiums will again reduce for the third 
year and the fourth year, and so on.   
 For comparison purposes, we computed the 
Bayesian bonus-malus premiums again, which was 
achieved under the traditional Poisson-Exponential 
distribution for the frequency component and  
Lognormal-Gamma distribution for the severity 
component. The results are shown in Table 5. 

Table 5. Bonus-malus premiums based on the Poisson-
Exponential distribution for the frequency component and  
Lognormal-Gamma distribution for the severity 
component  

𝑡 
NC 0 1 2 3 4 
CS  235 471 706 942 
TCS  235 706 1412 2354 

0  592.52     
1  552.33 1044.53 1495.68 1920.87 2330.84 
2  517.25 978.19 1400.68 1798.87 2182.80 
3  486.36 919.77 1317.03 1691.43 2052.44 
4  458.95 867.93 1242.81 1596.11 1936.77 
5  434.47 821.63 1176.51 1510.96 1833.44 
6  412.46 780.02 1116.92 1434.43 1740.59 
7  392.58 742.41 1063.08 1365.29 1656.68 

 From the results in Table 5, The base premium 
was equal to 592.52, and this decreased with a 
claim-free year.  On the other hand, if there was an 

accident with a claim size of 235 in the first year of 
observation, the insured will pay 1044.53. If a 
policyholder makes two claims in the first year, with 
the first claim of 235 and the second claim of 471, 
then he or she will pay 1495.68. Premiums increase 
as the number of claims increase. 
 We observed that the base premiums and the 
premiums with a claim-free year are slightly 
different between bonus-malus premiums proposed 
in Table 4 and traditional bonus-malus premiums in 
Table 5. However, traditional bonus-malus 
premiums in Table 5 are stricter with bad drivers 
than the premiums presented in Table 4 when claims 
occurred. 
 

 

4 Conclusions 
A model was proposed to determine bonus-malus 
premiums. The model considered both claim 
frequency and claim severity components. Two 
mixing distributions as the Poisson with the Lindley 
distribution, and a mixed Lognormal with a Gamma 
distribution were investigated and employed in the 
model as frequency distribution and severity 
distribution, respectively. The premium was 
calculated by utilizing the Bayesian method.   
 We used an example of real automobile 
insurance data to illustrate our model. The fitted 
results of claim frequency were better than those of 
a traditional Poisson-Exponential model. 
Additionally, when claims occurred, bad drivers 
were liable to severe punishment under a traditional 
model. These may be problems with the insurer 
when the policyholder changes the company in the 
next year due to high premiums.  
 This proposed model is an alternative method for 
penalizing all policyholders in the portfolio. It is 
reasonable for punishing and rewarding both good 
and bad drivers. The obtained premiums could be 
useful for insurers in the competition in an insurance 
market. 
 To increase the impartiality for assigning the 
premium to all policyholders, one could consider 
distinguishing different types of claims. This could 
be a subject of further research. 
 
  
Acknowledgement: 

This research is financially supported by the 
Development and Promotion of Science and 
Technology Talents Project (DPST) of the 
Department of Mathematics, Faculty of Science, 
Khon Kaen University, Thailand. 
 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.46

Adisak Moumeesri, 
Watcharin Klongdee, Tippatai Pongsart

E-ISSN: 2224-2880 450 Volume 19, 2020



References: 

[1] A. Espinal, R. Estrada, and C. Monsalve, 
Modelling TCP/IP Traffic of a Convergent 
Campus Wireless Network, International 

Journal of Circuits, Systems and Signal 

Processing, Vol.13, 2019, pp.611-616. 
[2] S. Tu, Q. Lin, W. Wang, K. Sun, Y. Huang, and 

H.P. Nguyen, NCD-TAP: A Tracking Area 
Planning Approach Based on Newman 
Community Detection for HCN, International 

Journal of Circuits, Systems and Signal 

Processing, Vol.13, 2019, pp.140-147. 
[3] L. Tremblay, Using the Poisson inverse 

Gaussian in bonus-malus systems, Astin 

Bulletin, Vol.22, No.1, 1992, pp.97-106. 
[4] J. Lemaire, Bonus-malus systems in 

automobile insurance, Insurance: Mathematics 

and Economics, Vol.3, No.16, 1995, pp.277.  
[5] J.F. Walhin and J. Paris, Using mixed Poisson 

processes in connection with bonus-malus 
systems, Astin Bulletin, Vol.29, 1999, pp.81-
99. 

[6] I. Simeunovic, M. Balaba, and D. Bodroza, 
Pricing automobile insurance using mixed 
Poisson distributions, Industrija: časopis za 

ekonomiku industrije, Vol.46, No.1, 2018, pp. 
61-78.   

[7] S.E. Bulbul1 and K.B. Baykal1, Optimal 
Bonus Malus System Design in Motor Third 
Party Liability Insurance in Turkey: Negative 
Binomial Model, International Journal of 

Economics and Finance, Vol.8, No.8, 2016, 
pp.205-211. 

[8] G. Tzougas, W.L. Hoon, and J.M. Lim, The 
Negative Binomial-Inverse Gaussian 
regression model with an application to 
insurance ratemaking. European Actuarial 

Journal, Vol.9, 2019, pp.323-344. 
[9] N.E. Frangos and S.D. Vrontos, Design of 

optimal bonus-malus systems with a frequency 
and a severity component on an individual 
basis in automobile insurance, Astin Bulletin, 
Vol.31, No.1, 2001, pp.1-22. 

[10] M. Mert and Y. Saykan, On a bonus-malus 
system where the claim frequency distribution 
is geometric and the claim severity distribution 
is Pareto, Hacettepe Journal of Mathematics 

and Statistics, Vol.34, 2005, pp.75-81. 
[11] A. Ibiwoye, I.A. Adeleke, and S.A. Aduloju, 

Quest for optimal bonus-malus in automobile 
insurance in developing economies, An 

Actuarial Perspective. International Business 

Research, Vol.4, No.4, 2011, pp.74-83. 
[12] W. Ni, C. Constantinescu, and A.A. Pantelous, 

Bonus–Malus systems with Weibull distributed 

claim severities, Annals of Actuarial Science, 
Vol.8, No.2, 2014, pp.217-233. 

[13] A. Emad and I. Ali, Bayesian approach for 
bonus-malus systems with Gamma distributed 
claim severities in vehicles insurance, British 

Journal of Economics, Management, and 

Trade, Vol.14, No.1, 2016, pp.1-9. 
[14] G. Tzougas, W. H. Yik, and M.W. Mustaqeem, 

Insurance ratemaking using the Exponential-
Lognormal regression model, Annals of 

Actuarial Science, Vol.14, 2019, pp.42-71. 
[15] A. Jacob and Z. Wu, An Alternative Pricing 

System through Bayesian Estimates and 
Method of Moments in a Bonus-Malus 
Framework for the Ghanaian Auto Insurance 
Market, Journal of Risk and Financial 

Management, Vol.13, No.7, 2020, pp.143-157. 
[16] A. Moumeesri and T. Talangtam, Transformed 

function based on Wang transform and Log-
transform for insurance premium pricing, 
Proceeding of the International Conference on 

Applied Statistics 2016 (ICAS 2016), Thailand, 
2016, pp.150-157. 

[17] B.W. Mazviona and T. Chiduza. The use of 
statistical distributions to model claims in 
motor insurance, International Journal of 

Business, Economics and Law, Vol.3, Issue 1, 
2013, pp.44-57. 

[18] P. Sattayatham, and T. Talangtam, Fitting of 
finite mixture distributions to motor insurance 
claims, Journal of Mathematics and Statistics, 
Vol.8, No.1, 2012, pp.49-56. 

[19] P. De Jong and G. Heller, Generalized Linear 

Models for Insurance Data. Cambridge 
University Press, 2008. 

[20] E.G. Deniz, Bivariate credibility bonus malus 
premiums distinguishing between two types of 
claims. Insurance: Mathematics and 

Economics, Vol.70, 2016, pp.117-124. 

 
 

Creative Commons Attribution 

License 4.0 (Attribution 4.0 

International , CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en_US 
 
 
 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.46

Adisak Moumeesri, 
Watcharin Klongdee, Tippatai Pongsart

E-ISSN: 2224-2880 451 Volume 19, 2020

https://creativecommons.org/licenses/by/4.0/deed.en_US



