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1 Introduction
It is often of interest to study the ratio of means in
the place of the difference of the means. Researchers
are often interested in the ratio of two measured quan-
tities. An important example is the body mass index
(BMI).The BMI or Quetelet index is a value derived
from the mass (weight) and height of an individual.
It is defined as the body mass (in kilograms) divided
by the square of the body height (in meters). See for
example [4]. In finance, an important ratio is the so-
called Sharpe ratio. It is the ratio of the excess ex-
pected return of an investment to its return volatility
or standard deviation. This ratio introduced in 1966
[22] and revised in 1994 [23] by Sharpe has become
popular to adjust return rates of investments for risk,
allowing the understanding of how the return of in-
vestment compares to its risk. In this way, higher
Sharpe ratios would mean investments would gener-
ate better risk-adjusted returns. See e.g. [13, 16, 17].

In accountancy, accountants use a lot of financial
ratio’s to compare companies with a benchmark, for
instance for predicting failures. See e.g. [2]. In an
earlier paper [19], authors studied central limit theo-
rems for the coefficient of variation and for the ratio
of variances for dependent and for independent sam-
ples.

More applications of ratios of means are recently
found in a diversity of fields. For instance, in environ-
ment we have the called Arctic amplification which
is most often expressed as the quotient between the
mean change in Arctic temperatures and the global
change over a period of analysis [21]; and, in occupa-

tional hygiene we have that a way for evaluating the
effectiveness of implementing a work practice in re-
ducing the concentration of an analyte in the urine of
exposed workers is through the ratio between analyte
concentrations obtained before and after implement-
ing the work practice [15].

Regarding finite variance and large samples, typ-
ical approaches for building confidence intervals for
ratios of means of independent populations have been
based on methods as Fieller’s Theorem [9, 10, 11],
Taylor series [20] and bootstrap [6]. We tackle inde-
pendent as well as dependent populations by applying
the central limit theorem andCramér-Wold device [3].

Regarding infinite variance and large samples, this
fact matters because such a situation often occurs in
many fields likemeteorology, health care, finance and
insurance. However, for the best of our knowledge,
there is no proposals for building confidence intervals
when ratios of means are required. We tackle this
problem by using stable distributions if populations
are independent.

In this paper we study ratios of themean in the case
of large paired (dependent) or large unpaired (inde-
pendent) samples. In the paper we assume that mo-
ments exist whenever needed. In the third section
we give some more comments in the case that the
variance of the underlying distribution(s) is not finite.
The last section presents concluding remarks, includ-
ing future applications.
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2 The ratio of two means
In what follows N(µ, σ2) denotes the normal distri-
bution with mean µ ∈ R and variance σ2 (> 0).

2.1 Unpaired samples
LetX,X1, X2, ..., Xn denote independent identically
distributed (i.i.d.) random variables (r.v.s) with
EX = µ1 and V ar(X) = σ2

1 . Independent of
the X , let Y, Y1, Y2, ..., Ym denote i.i.d. r.v. with
EY = µ2 ̸= 0 and V ar(Y ) = σ2

2 . This case was
treated, among others, by Mahmoudi et al. [18], see
also [24]. Let X and Y denote the sample means.

As n,m → ∞, by the usual Central Limit Theo-
rem (CLT) we have

√
n
X − µ1

σ1
=⇒ Z1 ∼ N(0, 1),

√
m
Y − µ2

σ2
=⇒ Z2 ∼ N(0, 1).

Assume now that n ∼ λm for some λ > 0. In this
case we have

√
n
Y − µ2

σ2
=⇒ Z3 :=

√
λZ2 ∼ N(0, λ),

where Z1, Z2 are independent. Because of the inde-
pendence, for all (a, b) ̸= (0, 0) we have

√
n

(
aX − aµ1

σ1
+

bY − bµ2

σ2

)
=⇒ aZ1 + bZ3,

or

√
n

(
aσ2X − aσ2µ1 + bσ1Y − bσ1µ2

σ2σ1

)
=⇒ aZ1+bZ3.

The choice aσ2µ1 = −bσ1µ2 implies that

√
n

(
aσ2X + bσ1Y

σ2σ1

)
=⇒ aZ1 + bZ3.

Choosing a = σ1 we arrive at

√
n

(
X − µ1

µ2
Y

)
=⇒ σ1Z1 − σ2

µ1

µ2
Z3.

Setting µ = µ1

/
µ2 we get at

√
n(X − µY )

=⇒ σ1Z1 − σ2µZ3 =: Z4 ∼ N(0, σ2
1 + σ2

2µ
2λ),

or equivalently

√
n

X − µY√
σ2
1 + σ2

2µ
2λ

=⇒ Z5 ∼ N(0, 1),

or
X − µY√

1
nσ

2
1 +

1
mσ2

2µ
2
=⇒ Z5 ∼ N(0, 1). (1)

We can replace σ2
1 by s21 =

∑
i=1(Xi−X)2

/
(n−1),

σ2
2 by s22 =

∑
i=1(Yi − Y )2

/
(m− 1), and µ by µ̂ =

X/Y with Y ̸= 0 to obtain

A =
X − µY√

1
ns

2
1 +

1
ms22µ̂

2
=⇒ Z5 ∼ N(0, 1). (2)

Formula (2) leads to confidence statements for µ of
the form, for a confidence level 0 < α < 1:

µ =
X ± zν/2

√
1
ns

2
1 +

1
ms22µ̂

2

Y
, (3)

where zν is the ν × 100th percentile of the standard
normal distribution. To test H0 : µ = µ0, we can use
the test statistic

A0 =
X − µ0Y√
1
ns

2
1 +

1
ms22µ

2
0

,

which under H0 has an asymptotic standard normal
distribution as pointed out in (2).

Remark 1

1) If σ2
1 = σ2

2 = σ2 we can estimate σ2 by the
pooled variance s2p and then (2), (3) can be re-
placed by

A =
X − µY

sp

√
1
n + 1

m µ̂2
=⇒ Z5 ∼ N(0, 1),

µ =
X ± zν/2sp

√
1
n + 1

m µ̂2

Y
.

2) If also n = m, we find that

A =
√
n

X − µY

sp
√

1 + µ̂2
=⇒ Z5 ∼ N(0, 1),

µ =
X ± zν/2spn

−1/2
√

1 + µ̂2

Y
.

2.1.1 Application
Consider the blood pressure measurements (30 sec
pulse) collected in the National Health and Nutri-
tion Examination Survey, US, corresponding to 2017-
2018. These measurements are taken for males (X)
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and females (Y ). These data without missing values
concern 3301 observations for males and 3441 for fe-
males. Members of these samples are represented by
Xi and Yi, respectively. We assume that Xi and X
follow the same distribution, and in a similar way for
Yi and Y . Also, we assume thatXi andXj , i ̸= j, are
independent from each other, and the same assump-
tion between Yi and Yj , i ̸= j. Further, we assume
that X and Y are independent from each other. Fi-
nally, forX as well as for Y , we admit that these r.v.s
have at least moment 2.

We are interested on behavior of µ = µm

/
µf with

µm the expected blood pressure for male and µf the
expected blood pressure for female. To this aim, we
formulate the null hypothesis H0: µ = 1 and go to
build the confidence interval given in (3) at ν = 5%.

From those data, we get

µ̂m = 72.45198

µ̂f = 74.99506

s2m = 155.4878

s2f = 148.0352.

These inputs then give the confidence interval
[0.9582443; 0.9739359]. This fact therefore means
that H0 is rejected at ν = 5%. Further, this interval
would suggest that µ < 1.

2.2 Paired samples
In this section, let (X,Y ), (X1, Y1), (X2, Y2), …,
(Xn, Yn) denote i.i.d. random vectors with EX =
µ1, EY = µ2, V ar(X) = σ2

1 , V ar(Y ) = σ2
2 and

with ρ = ρ(X,Y ). Now consider linear combina-
tions of the form L = aX + bY . Clearly we have

µL = EL = aµ1 + bµ2,
σ2
L = V ar(L) = a2σ2

1 + b2σ2
2 + 2abρσ1σ2.

The CLT for L shows that

√
n
L− µL

σL
=⇒ Z ∼ N(0, 1),

or equivalently that
√
n(aX + bY − aµ1 − bµ2)

=⇒ σLZ

∼ N(0, a2σ2
1 + b2σ2

2 + 2abρσ1σ2), (4)

for all (a, b) ̸= (0, 0). By the Cramér-Wold device, it
follows that

√
n(X − µ1, Y − µ2) =⇒ (U, V ), (5)

where (U, V ) has a bivariate normal law with means
EU = EV = 0 and with variance-covariance matrix

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Taking a = µ2 and b = −µ1 relations (4), (5) show
that

√
n(µ2X − µ1Y )

=⇒ µ2U − µ1V := Q

∼ N(0, µ2
2σ

2
1 + µ2

1σ
2
2 − 2µ1µ2ρσ1σ2).

Note that V ar(Q) = V ar(µ2U −µ1V ). Setting µ =
µ1

/
µ2, we also have

√
n(X−µY ) =⇒ R ∼ N(0, σ2

1+µ2σ2
2−2µρσ1σ2),

or

√
n

X − µY√
σ2
1 + µ2σ2

2 − 2µρσ1σ2
=⇒ Z ∼ N(0, 1).

Replacing the unknown quantities by their respective
estimates, we obtain that

√
n

X − µY√
s21 + µ̂2s22 − 2µ̂rs1s2

=⇒ Z ∼ N(0, 1).

Now we get confidence statements of the form

µ =
X ± zν/2

1√
n

√
s21 + µ̂2s22 − 2µ̂rs1s2

Y
. (6)

Remark 2

1) If σ1 = σ2 = σ we can simplify and find
√
n(X − µY ) =⇒ N(0, σ2(1 + µ2 − 2µρ).

2) If also ρ = 0, then we find
√
n(X − µY ) =⇒ N(0, σ2(1 + µ2))

2.2.1 Application
Consider the height (X) and weight (Y ) measure-
ments (cm and kg) collected in the National Health
and Nutrition Examination Survey, US, correspond-
ing to 2017-2018. For females, these data without
missing values concern 4108 observations (X,Y ).
We assume that (Xi, Yi) and (Xj , Yj), i ̸= j, are
independent. Also, we assume Xi follows the same
distribution than X , and for Yi a similar hypothesis.

We are interested on to evaluate behavior of the
BodyMass Index (BMI)which is calculated as weight
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in kilograms divided by height in meters squared.
To this aim, we formulate the null hypothesis H0:
BMI < 30, because indexes greater or equal than 30
are a concern of health. To evaluate such a hypothe-
sis, we go to build the confidence interval given in (6)
at ν = 5%, adapting it for testing inequalities.

From those data, we get

X = 65.28055

Y = 2.335582

s21 = 808.1152

s22 = 0.273935

r = 0.728730.

These inputs then give the confidence interval
[0.00000; 28.17132]. This fact therefore implies that
H0 is not rejected at ν = 5%.

3 Domains of attraction
In this section we briefly discuss the case where the
variances are possibly not finite.

HereafterRVα denotes the set of regularly varying
functions f with index α ∈ R, i.e. f(tx)

/
f(x) → tα

as x → ∞ for all t > 0. If α = 0, such functions are
the so-called slowly varying functions.

3.1 Univariate case
Suppose that the real r.v. X is in the domain of at-
traction of a stable law U(α) with exponent α where
1 < α ≤ 2. Notation: X ∈ DA(U(α)). This means
that we can find a sequence of positive numbers (an)
so that

n
X − EX

an
=⇒ U(α). (7)

In the case where α = 2, U(2) has a normal distri-
bution. To characterize (7), we consider the truncated
moment function VX(x) =

∫ x
−x y

2dFX(y). We have
the following result.

Theorem 1 (Chapter XVII.5 in [8])

(i) Suppose that α = 2 and that FX(x) is not con-
centrated at one point. We haveX ∈ DA(U(2))
if and only if VX(x) ∈ RV0.

(ii) Suppose that 1 < α < 2 and that

P (X > x)

P (|X| > x)
→ p,

P (X < −x)

P (|X| > x)
→ q.

Then X ∈ DA(U(α)) if and only if VX(x) ∈
RV2−α.

(iii) In both (i) and (ii) we have

x2P (|X| > x)

VX(x)
→ 2− α

α
.

Feller’s theorem also shows that in (7) we can take
an in such a way that nVX(an) ∼ a2n. Now define
W (x) = x2/VX(x) ∈ RVα. Since α > 0, W (x) ∼
W ◦(x) where W ◦(x) ∈ RV1/α is increasing. Then
we find that n ∼ W (an) and an ∼ W ◦(n). Among
others it follows that (an) is regularly varying with
index 1/α. The finite variance case corresponds to
the case where VX(x) ↑ EX2 < ∞, and then we can
choose an so that a2n ∼ nEX2.

3.2 Independent random variables
Now suppose that X ∈ DA(U(α)) and Y ∈
DA(V (β)) where 1 < α, β ≤ 2, and where X and
Y are independent. This means that there exist se-
quences (an), (bn) so that

n
X − µ1

an
=⇒ U(α),mY − µ2

bm
=⇒ V (β).

Ifm ∼ λn, λ > 0, we have

n
X − µ1

an
=⇒ U(α), nY − µ2

bn
=⇒ c(λ)V (β),

where c(λ) is a positive constant depending on λ.

If bn = o(an), then for all (a, b) ̸= (0, 0) we have

n
aX − aµ1 − bY + bµ2

an
=⇒ aU(α).

Choosing a = 1, b = µ = µ1/µ2 we get that

n
X − µY

an
=⇒ U(α).

If an = o(bn) we have a similar result.

Next suppose that VX(x) ∼ cVY (x) where c > 0.
This implies thatα = β and that we can take an = bn.
Now we find that for all (a, b) ̸= (0, 0) we have

n
aX − aµ1 − bY + bµ2

an
=⇒ aU(α)− bc(λ)V (β).

Choosing a = 1, b = µ = µ1/µ2 we get that

n
X − µY

an
=⇒ U(α)− µc(λ)V (β).

From some of the previous results, we have the
following one, which will be used later.
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Proposition 1 Let X and Y be r.v.s belonging to do-
mains of attraction of stable laws U(α) and V (β)
with 1 < α, β < 2, respectively. If VX(x) ∼ cVY (x)
for some c > 0, where VZ(x) =

∫ x
−x y

2dFZ(y), then
c = 1.
Proof. Because X and Y belong to domains of at-
traction of stable laws U(α) and V (β), respectively,
there exist sequences an and bm such that

n
X − µ1

an
=⇒ U(α),mY − µ2

bm
=⇒ V (β),

as n → ∞ and m → ∞, respectively. Hence, Theo-
rem 1 implies that

nVX(an) ∼ a2n and mVY (bm) ∼ b2m,
as n → ∞ and m → ∞, respectively. On the other
hand, by the hypothesis VX(x) ∼ cVY (x), we can
take an = bn. Hence, we deduce that
a2n ∼ nVX(an) ∼ ncVY (an) = ncVY (bn) ∼ cb2n,

i.e. c = 1. The proposition then follows.
Further, let F andG be the distributions functions

associated to X and Y , respectively. Assume there
exist a slowly varying functionLX at infinite and con-
stants cX,1, cX,2 ≥ 0, cX,1 + cX,2 > 0, such that

xα(1− F (x)) = (cX,1 + o(1))LX(x)
xαF (−x) = (cX,2 + o(1))LX(x), (8)

as x → ∞, and there exist a slowly varying function
LY at infinite and constants cY,1, cY,2 ≥ 0, cY,1 +
cY,2 > 0, such that

xα(1−G(x)) = (cY,1 + o(1))LY (x)
xαG(−x) = (cY,2 + o(1))LY (x), (9)

as x → ∞.
Consider the following result proved by Ibragimov

and Linnik [12], see also e.g. [1].
Theorem 2 (Theorem 2.6.5 in [12]) If F belongs to
the domain of attraction of a stable law U(α) with
0 < α < 2, and satisfies (8) for some constants c1
and c2 and L being slowly varying function, then the
logarithm of the characteristic function of 1 − F as
t → 0 is

itδ − c|t|αL(|t|−1)

[
1− iβ

t

|t|
tan
(απ

2

)]
+o(|t|αL(|t|−1)),

where

β =
c1 − c2
c1 + c2

,

c = Γ(1− α)(c1 + c2) cos
(απ

2

)
,

δ = E[X].

A consequence of this result is the following one.
Proposition 2 Let X1, …, Xn be a sample of r.v.s of
a r.v. X , which follows a distribution function F . Let
Y1, …, Ym be a sample of r.v.s of a r.v. Y , which fol-
lows a distribution functionG. Assume thatX and Y
are independent and that they satisfy the hypothesis of
Proposition 1 with E(Y ) ̸= 0. Assume that F and G
satisfy (8) and (9) for some constants cX,1, cX,2 and
cY,1, cY,2 and LX and LY being slowly varying func-
tions, respectively. If n = λm for some λ > 0 and
taking µ = µ1

/
µ2 with µ1 = E(X) and µ2 = E(Y ),

then we have, for some stable lawW ,

n
X − µY

an
=⇒ W (α) = W (α, βW , cW , δW ),

where

βW =
cXβX + cY |µλ |

αβY

cX + cY |µλ |α
,

cW =
(
cX + cY

∣∣∣µ
λ

∣∣∣α)1/α ,
δW = 0,

with cX = Γ(1 − α)(cX,1 + cX,2) cos
(
απ
2

)
, βX =

(cX,1 − cX,2)
/
(cX,1 + cX,2), cY = Γ(1− α)(cY,1 +

cY,2) cos
(
απ
2

)
and βY = (cY,1 − cY,2)

/
(cY,1 + cY,2),

which describe the logarithm of the characteristic
function ofW given by, as t → 0,

iδW t− cαW |t|α
[
1− iβW

t

|t|
tan
(απ

2

)]
+ o(|t|α).

Proof. Let X and Y be r.v.s satisfying VX(x) ∼
cVY (x) and belonging to domains of attraction
DA(U(α)) and DA(V (α)), respectively. Hence and
by hypothesis, there exist sequences an and am such
that

TX,n = n
X − µ1

an
=⇒ U(α),

and
TY,m = m

Y − µ2

am
=⇒ V (α),

as n → ∞ andm → ∞. Hence, Theorem 2 indicates
that when t → 0, the logarithm of the characteris-
tic function of TX,n is, after straightforward compu-
tations, as n → ∞,

logφTX,n
(t)

= −ncX

∣∣∣∣ tan
∣∣∣∣α LX

(∣∣∣∣ tan
∣∣∣∣−1
)

×
[
1− iβX

t

|t|
tan
(απ

2

)]
+o

(
n

∣∣∣∣ tan
∣∣∣∣α LX

(∣∣∣∣ tan
∣∣∣∣−1
))

,
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where cX = Γ(1 − α)(cX,1 + cX,2) cos
(
απ
2

)
and

βX = (cX,1 − cX,2)
/
(cX,1 + cX,2). Because TX,n

converges to U(α), then logφTX,n
(t) converges to

the logarithm of the characteristic function of U(α)
as n → ∞. Hence we deduce, as n → ∞,

nLX(| t
an
|−1)

aαn
→ 1. (10)

In a similar way, we deduce, asm → ∞,

mLY (| t
am

|−1)

aαm
→ 1. (11)

Next, we analyze TW,n = n(X − µY )
/
an. After

straightforward computations, we get that, as t → 0,
the logarithm of its characteristic function is

logφTW,n
(t)

= −ncX

∣∣∣∣ tan
∣∣∣∣α LX

(∣∣∣∣ tan
∣∣∣∣−1
)

×
[
1− iβX

t

|t|
tan
(απ

2

)]
+o

(
n

∣∣∣∣ tan
∣∣∣∣α LX

(∣∣∣∣ tan
∣∣∣∣−1
))

−ncY

∣∣∣∣ tµλan
∣∣∣∣α LY

(∣∣∣∣ tµλan
∣∣∣∣−1
)

×
[
1− iβY

t

|t|
tan
(απ

2

)]
+o

(
n

∣∣∣∣ tµλan
∣∣∣∣α LY

(∣∣∣∣ tµλan
∣∣∣∣−1
))

.

Taking n → ∞ and then applying (10) and (11) give

logφTW,n
(t)

→ −
(
cX + cY

∣∣∣µ
λ

∣∣∣α) |t|α
×
[
1− i

cXβX + cY |µλ |
αβY

cX + cY |µλ |α
t

|t|
tan
(απ

2

)]
+o(|t|α).

The proposition then follows.

3.2.1 Application
In this application we evaluate the null hypothesis that
µ is equal to a given µ0 when data would not have
variance but do mean. To this aim, we consider log-
arithmic variations of exchange rates rt between US
and Indonesia (US-I) and US and Malaysia (US-M),
from first January 1994 to 18thMay 2020. These log-
arithmic variations are expressed as log(rt/rt−1).

To this aim, we assume the distribution function
F for representing logarithmic variations of exchange
rates related to US-I as

F (x) =


1
2

(
1− x

σX

)−α
if x < 0

1− 1
2

(
1 + x

σX

)−α
if x ≥ 0.

F is then continuous and

F ′(x) =


α
σX

(
1− x

σX

)−α−1
if x < 0

α
σX

(
1 + x

σX

)−α−1
if x > 0,

and it is defined F ′(0) = α
/
σX . Then F is also

continuous differentiable, i.e. the involved probabil-
ity density function is continuous. Also, F is clearly
regularly varying with tail indexes, see e.g. [14],

lim
x→∞

− log(1− F (x))

logx

= lim
x→∞

−
log 1

2

(
1 + x

σX

)−α

logx
= α

and

lim
x→∞

− logF (−x)

logx

= lim
x→∞

−
log 1

2

(
1 + x

σX

)−α

logx
= α

On the other hand, we have

xα(1− F (x)) =
1

2
xα
(
1 +

x

σX

)−α

=
σα
X

2
[1 + o(1)]

and

xαF (−x) =
1

2
xα
(
1 +

x

σX

)−α

=
σα
X

2
[1 + o(1)]

This means that LX(x) = σα
X

/
2 and cX,1 =

cX,2 = 1. In particular, we get βX = 0.
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We define Y in a similar way toX , but taking σY
instead of σX .

Thus,W in Proposition 2 becomes

W
(
α, 0, κ1/α, 0

)
,

where

κ = Γ(1− α) cos
(απ

2

)[
σα
X + σα

Y

∣∣∣∣ 1µ
∣∣∣∣α] .

Note that this law W is symmetric. Hence, for a
ν × 100 % of confidence, W(1−ν)/2 and W1/2+ν/2
satisfy W(1−ν)/2 = −W1/2+ν/2. Then, a confidence
interval for µ is

X ±W(1−ν)/2an/n

Y
.

In order to establish the parameters ofW data are
fitted, producing the estimates

α̂US−I = 1.740163811

σ̂US−I = 0.004037815

α̂US−M = 1.827724618

σ̂US−M = 0.002430342

Hence, we take

α = 1.800000000

σUS−I = 0.004037815

σUS−M = 0.002430342

Under these assumptions, at ν = 5 %, Table 1
presents hypothesis tests for some values µ0. These
results imply that hypothesis like µ0 = 1 or µ0 = 2
may be not rejected, but the one µ0 = 3 may be re-
jected.

µ0 Inferior limit of CI Superior limit of CI
1 −2.371444 2.890368
2 −2.058195 2.577119
3 −1.988479 2.507403

Table 1: CI for some µ0

4 Concluding remarks
1) In the paper we used a Central Limit Theorem to

construct confidence statements for the ratio of
means for large samples. We obtained a result
for both the independent and the dependent case.
Also in the infinite variance case, we proved a
result. In the latter, more results are needed to
construct attractive confidence statements.

2) In studying ratio’s there are different approaches
possible. Consider the following three econo-
metric models:

model 1: Y = τX + ϵ;
model 2: Y = (τ + ϵ)X;
model 3: Y = (τ

√
X + ϵ)

√
X .

When we do not take into account the error term
ϵ, we find Y /X = τ in the three cases. However,
when we use data and apply the least squares
method, we find different estimates for τ :

model 1: τ̂1 = XY /X2;
model 2: τ̂2 = Y /X;
model 3: τ̂3 = Y /X.

We notice that the 3 models give a different esti-
mate for τ which ideally represents the same ratio
Y /X .

3) The case of dependency under infinite variance
needs approaches for representing dependence
structures. Copulas have been used for playing
such a role, as for instance e.g. [5] and [7]. In a
forthcoming paper we will present new alterna-
tives for tackling confidence intervals for ratios
of means under those conditions.

4) Further research is needed to estimate parame-
ters in the dependent case/domain of attraction
case. Also we plan to investigate ratio of vari-
ances, skewness and curtosis. Also we have a
plan to apply our results in studying financial in-
dicators like the RSI (relative strenght index).

Acknowledgements:
The authors thanks the reviewers for their valuable
comments and suggestions which helped us to im-
prove the paper.

References:
[1] J. Aaronson and M. Denker, Characteristic func-

tions of random variables attracted to 1-stable
laws, Ann. Probab., Vol. 26, No. 1, 1998, pp. 399–
415.

[2] W.H. Beaver, Financial Ratios As Predictors of
Failure. Journal of Accounting Research, Vol. 4,
1966, pp. 71–111.

[3] P. Billingsley, Probability and Measure, 2nd edi-
tion, Wiley, New York, 1986.

[4] H. Blackburn and D. Jacobs, Commentary: Ori-
gins and evolution of body mass index (BMI):
continuing saga, International Journal of Epi-
demiology, Vol. 43, No. 3, 2014, pp. 665–669.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.45 Edward Omey, Meitner Cadena

E-ISSN: 2224-2880 441 Volume 19, 2020



[5] A.C. Cebrian, M. Denuit and P. Lambert, Gen-
eralized Pareto Fit to the Society of Actuaries’
Large Claims Database, North American Actuar-
ial Journal, Vol. 7, No. 3, 2003, pp. 18–36.

[6] B. Efron and R.J. Tibshirani, An introduction to
the bootstrap, Chapman & Hall, Boca Raton,
1993.

[7] H. Esmaeili and C. Klüppelberg, Parametric esti-
mation of a bivariate stable Lévy process, Journal
of Multivariate Analysis, Vol. 102, No. 5, 2011,
pp. 918–930.

[8] W. Feller, An introduction to Probability Theory
and Its Applications, Vol. II, 2nd edition, Wiley,
New York, 1971.

[9] E.C. Fieller, The biological standardization of in-
sulin, Supplement to the Journal of the Royal Sta-
tistical Society, Vol. 7, No. 1, 1940, pp. 1–64.

[10] E.C. Fieller, A fundamental formula in the
statistics of biological assays and some applica-
tions, Quarterly Journal of Pharmacy and Phar-
macology, Vol. 17, 1944, pp. 117–123.

[11] E.C. Fieller, Some problems in interval estima-
tion, J. R. Stat. Soc. B, Vol. 16, No. 2, 1944, pp.
175–185.

[12] I.A. Ibragimov and Y.V. Linnik, Independent
and stationary sequences of random variables,
English Trans, edited by J. F. C. Kingman,
Wolters‐Noordhoff Publishing, Groningen, The
Netherlands, 1971.

[13] C.L. Israelsen, A refinement to the Sharpe ra-
tio and information ratio, J. Asset Manag., Vol. 5,
No. 6, 2005, pp. 423–427.

[14] J. Karamata, Sur un mode de croissance
régulière. Théorèmes fondamentaux, Bull. Soc.
Math. Fr., tome 61, 1933, pp. 55–62.

[15] K. Krishnamoorthy, T. Mathew and Z. Xu,
Comparison of Means of Two Lognormal Distri-
butions Based on Samples with Multiple Detec-
tion Limits, J. Occup. Environ. Hyg., Vol. 11, No.
8, 2014, pp. 538–546.

[16] O. Ledoit and M.Wolf, Robust performance hy-
pothesis testing with the Sharpe ratio, J. Empir.
Finance, Vol. 15, No. 5, 2008, pp. 850–859.

[17] A.W. Lo, The Statistics of Sharpe Ratios, Finan-
cial Analysts Journal, Vol. 58, No. 4, 2002, pp.
36–52.

[18] M.R. Mahmoudi, J. Behdoodian and M. Maleki,
Large sample inference about the ratio of means
in two independent populations, J. Stat. Theory
and Appl., Vol. 16, No. 3, 2017, pp. 366–374.

[19] E. Omey and S. Van Gulck, Central limit the-
orems for variances and correlation coefficients,
Unpublished preprint HUBrussel, 2008.

[20] D. Polsky, H.A. Glick, R. Willke and K. Schul-
man, Confidence intervals for cost-effectiveness
ratios: A comparison of four methods, Health
Economics, Vol. 6, No. 3, 1997, pp. 243–252.

[21] M.C. Serreze and R.G. Barry, Processes and im-
pacts of Arctic amplification: A research syn-
thesis, Global Planet. Change, Vol. 77, No. 1-2,
2011, pp. 85–96.

[22] W.F. Sharpe, Mutual Fund Performance, Jour-
nal of Business, Vol. 39, No. 1, 1966, pp. 119–
138.

[23] W.F. Sharpe, The Sharpe Ratio, J. Portf.
Manag., Vol. 21, No. 1, 1994, pp. 49–58.

[24] H. Wang and S.C. Chow, A practical approach
for comparing means of two groups without equal
variance assumption, Stat. in Medicine, Vol. 21,
2012, pp. 3137–3151.

Contribution of individual authors
The authors have equally contributed to the writing,
editing and style of the paper. All authors have read
and agreed to the published version of the manuscript.

Sources of funding for research
This research received no external funding.

Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.45 Edward Omey, Meitner Cadena

E-ISSN: 2224-2880 442 Volume 19, 2020

https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	The ratio of two means
	Unpaired samples
	Application

	Paired samples
	Application


	Domains of attraction
	Univariate case
	Independent random variables
	Application


	Concluding remarks



