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Abstract: This work is aiming to show the advantage of using the Lie algebraic decomposition technique to solve for
Schrödinger’s wave equation for a quantum model, compared with the direct method of solution. The advantage is a
two-fold: one is to derive general form of solution, and, two is relatively manageable to deal with the case of
time-dependent system Hamiltonian. Specifically, we consider the model of 2-level optical atom and solve for the
corresponding Schrödinger’s wave equation using the Lie algebraic decomposition technique. The obtained form of
solution for the wave function is used to examine computationally the atomic localization in the coordinate space.
For comparison, the direct method of solution of the wave function is analysed in order to show its complication
whendealingwithtime-dependentHamiltonian.ThepossibilityofusingtheLiealgebraicmethodforaqubitmodel

(a driven quantum dot model) is brie�y discussed, if Schrödinger’s wave function is to be examined for the qubit 
 localization.
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1 Introduction

In basic quantum mechanics[1] , Schrödinger’s wave
function ψ

�
q, t
�

for a quantum model as a function of
the system coordinates q at a fixed time t = t0 has the

physical significance that
��ψ
�
q, t0

���2 is proportional
to the probability of the quantum system localized at
a point in the coordinate space q. For example, for an

atomic model,
��ψ
�
q, t0

���2 is related to atomic local-
ization in the coordinate space. Indeed, high precision
position measurements are vital to physical phenom-
ena in macroscopic systems, like Bose-Einstein con-
densation and laser cooling and trapping, e.g., [2]-[4].
Further, phase components of a composite wave func-
tion have their measurable effect in interference phe-
nomena. In the present work, we examine the atomic
localization related to a Hamiltonian model describ-
ing optical 2-level atom. By optical 2-level atom we
mean the representation of the 2-levels by two distinct
modes in an optical cavity distinguishable by their po-
larizations or direction of propagations. Indeed, the
idea and the implementation of the new novel tech-
niques of manipulating atom beams and atomic trajec-

tories like light present considerable interest in funda-
mental and applied research (see [5]-[8]). The quan-
tum state evoluation of the concerned model is inves-
tigated via Schrödinger’s wave function. We use the
Lie algebraic procedure of decomposition technique
to solve for the Schrödinger’s wave equation. A de-
tailed study on the use of Lie algebraic methods of
the type developed by Baker, Campbell, Hausdorff
and Zassenhaus (BCHZ) (see ref. [9] and references
therein), have been presented by Steinberg [10] and
[11], to derive explicit solutions to certain class of par-
tial differential equations. The essence of the method
is the use of Lie algebraic exponential decomposition
formulas of BCHZ and their matrix realization. The
method was adopted to obtain general solutions of
Schrödinger’s wave equations for some Hamiltonian
models in the field of quantum optics [12]-[16]. The
advantage of the method is, its generality compared
with classical methods , as we indicate in detail at the
end of the paper, Sec. 6.

The algebraic technique referred to above and
used in the present work may be spelled as follows
(cf. [12]):
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(i) The given Schrödinger’s equation generates a Lie
algebra, for which we choose a basis. Hence,
we seek a faithful matrix representation of low
dimension for this Lie algebra (cf. [17]). For
each matrix of these matrices, we find the one-
parameter subgroup in order to identify the struc-
ture of the Lie group.

(ii) The initial value problems for each element of the
chosen basis, are solved separately.

(iii) The matrix realization equation corresponding
to Schrödinger’s equation with respect to the
faithful representation in (i) above, leads to time-
dependent system of ordinary differential equa-
tions for the wave function components.

(iv) The evolution operator of the wave equation is
decomposed exponentially into product of one-
parameter subgroup corresponding to the basis
elements (generators), noting that each of these
one-parameter subgroup satisfies the same form
of a corresponding initial value problem for the
basis, solved in step (ii) above. Hence, by com-
parison we finally get the explicit solution of
Schrödinger’s equation.

The paper is presented as follows. In Section 2,
we introduce the Hamiltonian model with its algebra
and matrix realization. The solution for the (separate)
initial value problems for the basis element genera-
tors is given in Section 3 (with some detail in the
Appendix A). The steps concerning the matrix real-
ization of Schrödinger’s equation and the exponen-
tial decomposition are presented in Section 4. The
derived analytical expressions of the wave function
are examined computationally in Section 5 regarding
atomic localization for some initial state of the sys-
tem (with some analytical expressions corresponding
to the initial state given in Appendix B). In Section
6, we present the solution of the Schrödinger’s wave
equation according to the standard method. Finally,
a summary and a conclusion are presented in Section
7, together with a brief reference to another quantum
model, namely, pulsed driven quantum dot spin sys-
tem [18], and its possible faithful matrix realization of
least degree, with some detail in Appendix C.

2 The Model and Its Representation

The basic idea of the "optical 2-level atom" is its anal-
ogy with the system of two coupled optical radiation
modes, represented as two simple harmonic oscilla-
tors, (HOs) in an optical cavity. The advantage of rep-
resenting the 2-level atom by two coupled HOs is its

accurate control of the system parameters on wider
ranges that are feasible for real atomic systems [5].

The Hamiltonian operator model for two-coupled
modes of the electromagnetic field of unperturbed fre-
quencies ωc±ω, where ωc is the carrier frequency and
for mode amplitudes that vary slowly compared with
ωc, is of the form [5] (we take Planck constant � = 1):

H = ω
�
a†a− b†b

�
+ λ (t)

�
a†b+ ab†

�
(1)

where λ (t) is an arbitrary time-dependent coupling
parameter and the Boson operators obey the commu-
tation relations,

�
a, a†

�
= 1 =

�
b, b†

�
. (2)

(the symbol † denotes the Hermitian conjugate).
Note that, within the context of the anti-crossing

or Landau-Zener transitions phenomenan [19] and
[20], the avoided crossing of the two atomic levels is
governed by the frequency tuning parameter ω, while
λ (t) represents the opposite process of avoided cross-
ing.

The Hamiltonian (1) may be written as combina-
tion of three operators,

H = ωK0 + λ (t) (K+ +K−) (3)

where,

K0 = a†a− b†b, (4)

K+ = a†b = K†
−.

The Lie algebra generated by these three opera-
tors is sl (2) algebra,

[K+,K−] = K0, [K0,K±] = ±2K± (5)

with the faithful representation [21],

K+ =

�
0 1
0 0

	
, K− =

�
0 0
1 0

	
,

K0 =

�
1 0
0 −1

	
. (6)

Note that these nontrivial traceless representation ma-
trices preserve the physical property in which the sys-
tem Hamiltonian is Hermitian (rigorous discussion re-
garding this point is presented in [21]-[24] ).

3 Equations for The Generators

Schrödinger’s equation for the (c-number) wave func-
tion ψ (q, t) (in the coordinate representation) for the
present Hamiltonian model is
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i ∂∂tψ = Hψ (7)

with arbitrary initial condition,

φ (q, 0) = ψ0 (q) . (8)

For later use in the following section, we solve here
the initial value problems for the three generators,
K0,K±, namely,

i∂f∂t = K+f ; f (q, 0) = f0 (q)

i∂g∂t = K−g ; g (q, 0) = g0 (q) (9)

i∂h∂t = K0h ;h (q, 0) = h0 (q)

To solve (9) we use the familiar transformation for the
Boson operators (cf. [25])

a =



1
2ω (ωq1 + ip1) ; p1 = −i ∂

∂q1

(10)

b =



1
2ω (ωq2 + ip2) ; p2 = −i ∂

∂q2
.

So, equations (9) are of the form,

�
1
2ω

� �
ωq1 − ∂

∂q1

��
ωq2 +

∂
∂q2

�
f = i∂f∂t , (11)

�
1
2ω

� �
ωq2 − ∂

∂q2

��
ωq1 +

∂
∂q1

�
g = i∂g∂t , (12)

�
1
2ω

�
[(ωq1 − ∂

∂q1
)(ωq1 +

∂
∂q1
)

−(ωq2 − ∂
∂q2
)(ωq2 +

∂
∂q2
)]h = i∂h∂t . (13)

The solutions of (11)-(13) are readily obtained
(see Appendix A) in the following forms,

f (q1, q2; t) =
∞�

n,m=−∞
anm e

i
4(n

2−m2)t

×e
ω
2 (q

2
1−q22) ei

�
ω
2 [(n+m)q1−(n−m)q2] (14)

g (q1, q2; t) = f (q2, q1; t) (15)

h (q1, q2; t)

=
∞�

n,m=−∞
cnm e−i(n−m)te−

ω
2 (q

2
1+q

2
2)

×Hn (
√
ωq1)Hm (

√
ωq2) (16)

where the coefficients anm and cnm are given by

anm =
ω
4π2

� π/√2ω
−π/

√
2ω
dq′1
� π/√2ω
−π/

√
2ω
dq′2f0 (q

′
1, q

′
2)

×e
ω
2 (q

′2
2 −q′21 ) ei

�
ω
2 [(n+m)q

′

1−(n−m)q′2] (17)

and

cnm =
ω
π 2
−(n+m) (n!m!)−1

�∞
−∞dq

′
1

�∞
−∞dq

′
2

×h0 (q′1, q′2) e−
1
2ω(q

′2
1 +q

′2
2 )Hn (

√
ωq′1)Hm (

√
ωq′2)

(18)

and Hn (x) is Hermite polynomial of order n.

4 Matrix Realization and Exponen-

tial Decomposition

4.1 Matrix Realization

With the Hamiltonian form (3) and the faithful rep-
resentation (6), Schrödinger’s equation (7) in matrix
form reads,

∂ψ
∂t = −iHψ

= −i
�
ω λ (t)
λ (t) −ω

	
. (19)

In components form, ψ =

�
ψ1
ψ2

	
, we have the fol-

lowing coupled differential equations:

∂ψ1
∂t = −iωψ1 − iλ (t)ψ2 (20a)

∂ψ2
∂t = iωψ2 − iλ (t)ψ1, (20b)

where the coupling parameter λ (t) being arbi-
trary function of time. The solutions of equations (20)
are given in the following two cases:

(i) Constant Coupling.

In this case we put λ (t) = λ0 (constant) and
the solutions of (20) are easily obtained in the matrix
form,

ψ (q, t) =

�
a11 (t) a12 (t)
a21 (t) a22 (t)

	
ψ (q, 0) (21a)

≡ Aψ (q, 0) (21b)

where, a11 (t) = cos (κt) − iω
κ sin (κt) , a12 (t) =

a21 (t) = − iλ0
κ sin (κt) , a22 (t) = a∗11 (t) and κ =


λ20 + ω
2.

(ii) Harmonic Coupling.

In this case we take λ (t) = λ0 cos (2νt) ; ν =
π
T .

The solutions of (20) can be obtained within the rotat-
ing wave approximation (RWA) in which the rapidly
oscillating terms in e±i(ω+ν)t, are dropped. We then
get, in matrix form,

ψ (q, t) =

�
b11 (t) b12 (t)
b21 (t) b22 (t)

	
ψ (q, 0) (22a)

≡ Bψ (q, 0) (22b)

where b11 (t) = cos (δt)− i∆δ sin (δt) e−iνt, b12 (t) =
− iλ0
2δ sin (δt) e

−iνt, b21 (t) = − iλ0
2δ sin (δt) e

iνt,
b22 (t) = b∗11 (t),

∆ = ω − ν and δ =



∆2 + λ20

4 .
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4.2 Exponential Decomposition

The formal solution of Schrödinger’s equation (19) is,

ψ
�
q, t
�
= e−iHtψ

�
q, 0
�

(23)

with ψ
�
q, 0
�
= f0

�
q
�
g0
�
q
�
h0
�
q
�
.

Since the Hamiltonian operatorH, in (3), belongs
to the Lie algebra sl (2) spanned by the three oper-
ators, K0,±, the evolution operator e−iHt is decom-
posed as [4],

e−iHt = e−iα0(t)K0 e−iα+(t)K+ e−iα−(t)K− (24)

where the functions α0 (t) and α± (t) are to be deter-
mined.

With the matrix representation (6) one finds that
the one-parameter subgroup of SL (2,R) associated
with the generators K0,K+ and K− are,

e−iα0(t)K0 =

�
e−iα0(t) 0

0 eiα0(t)

	
,

e−iα+(t)K+ =

�
1 −iα+ (t)
0 1

	
,

e−iα−(t)K− =

�
1 0
−iα− (t) 1

	
. (25)

So from (24) and (25) we get

e−iHt =

�
e11 (t) e12 (t)
e21 (t) e22 (t)

	
(26)

where e11 (t) =

1− α+(t)α−(t)

�
e−iα0(t), e12 (t) =

−iα+ (t) e−iα0(t), e21 (t) = −iα− (t) eiα0(t) and

e22 (t) = eiα0(t).
Note that the evolution operator e−iHt in (23)

given now by (26) is recognized as the matrix A in
(21b) in the case of constant coupling or the matrix
B in (22b) in the case of harmonic coupling. Thus,
comparing (26) with (21b) and (22b) we get, respec-
tively, the expressions for the three functions α0 (t)
and α± (t) as follows.

In the case of constant coupling:

α0 (t) = −i ln

cos (κt) + iω

κ sin (κt)
�
, (27a)

α+ (t) =
λ0
κ sin (κt)

�
cos (κt) + iω

κ sin (κt)
�
,

(27b)

α− (t) =
λ0
κ sin (κt)

�
cos (κt) + iω

κ sin (κt)
�−1

,
(27c)

and in the case of harmonic coupling,

α0 (t) = −i

iνt+ ln

�
cos δt+ i∆δ sin δt

��
,
(28a)

α+ (t) =
λ0
2δ sin δt

�
cos δt+ i∆δ sin δt

�
, (28b)

α− (t) =
λ0
2δ sin δt

�
cos δt+ i∆δ sin δt

�−1
. (28c)

5 Wave Function and Atomic Local-

ization

5.1 Wave Function

With the decomposition formula (24) for the evolu-
tion operator e−iHt one can show that [10], [12] each
of the elements uj = e−iKjαj(t) of the one-parameter
subgroup corresponding with K0 and K±, respec-
tively, satisfies Schrödinger’s type of equation,

i ∂
∂τj

= Kjuj, j = ±, 0 (29)

where τ j = αj (t) .
Equation (29) have the same form of the PDEs

(9). Thus, from the solutions (14)-(16), we get the ac-
tion of each element uj on the time-independent func-
tions for f0, g0, h0 as follows,

e−iK+α+(t)f0 (q1, q2)

=
∞�

r,s=−∞
ars e

i
4(r

2−s2)α+(t) e
ω
2 (q

2
1−q22)

× ei
�

ω
2 [(r+s)q1−(r−s)q2], (30a)

e−iK−α−(t)g0 (q1, q2)

=
∞�

j,k=−∞
bjk e

i
4(j

2−k2)α−(t) e
ω
2 (q

2
2−q21)

× ei
�

ω
2 [(j+k)q1−(j−k)q2], (30b)

e−iK0α0(t)h0 (q1, q2)

=
∞�

n,m=0
cnm e−i(n−m)α0(t) e−

ω
2 (q

2
1+q

2
2)Hn, (30c)

where the normalization constants ars, cnm are
given in equations (17) and (18), respectively, and the
constant bjk = ajk (q1 ↔ q2) .

In view of (23), (24) and (30) we have the solution
of the wave function ψ

�
q, t
�

in the form,

ψ (q1, q2; t)

=
∞�

n,m=0

∞�

r,s=−∞

∞�

j,k=−∞
anmbrscjke

−i(n−m)α0(t)

× e
i
4(r

2−s2)α+(t)e
i
4(j

2−k2)α−(t)

×Hn (
√
ωq1)Hm (

√
ωq2) e

−ω
2 (q

2
1+q

2
2)

× ei
�

ω
2 {[(n+m)q1−(n−m)q2]+[(r+s)q2−(r−s)q1]},

(31)
where the functions α± (t) and α0 (t) are given

by equations (27) in the case of constant coupling, or
equations (28), in the case of harmonic coupling.

The solution (31) of the wave function for the
Hamiltonian model (1) (or (3)) using the adopted Lie
algebra approach is the principal result of this work.

5.2 Atomic Localization

The probability of finding the system in the coor-

dinate space (q1, q2) ; i.e., |ψ (q1, q2; t)|2 is conve-
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niently presented in terms of the normalized vari-
ables, x1,2 =

√
ωq1,2, τ = ωt at some fixed times

τ = τ0. For the present illustration we consider the
two HOs to be initially (τ0 = 0) in their ground states,

ψ0 (x1, x2) =
�

ω
π e
−12(x

2
1+x

2
2). (32)

Hence, the coefficients anm, brs, cjk in (31) can
be calculated (see Appendix B). In the case of con-

stant coupling λ = λ0;
�
λ0
ω

�
= O

�
10−7

�
in the opti-

cal range, the normalized probability |ψ (x1, x2)|2 =
|ψ (x1, x2; τ0)|2 /max

�
|ψ (x1, x2; τ0)|2

�
at fixed

times τ = 0, π4 is shown in Figs. (1). The sin-

gle Gaussian e−(x
2
1+x

2
2) in the 3D space - Fig. 1a at

τ0 = 0 develops to many symmetric localized peaks
for τ0 > 0, due to the oscillation induced by the in-
teraction of the two HOs - Fig.1b (presented as log
scale). Contours of the maximum localization peaks
in the (x1, x2)-plane are shown in Fig.1c. For larger

values of x1,2, |ψ (x1, x2)|2 tends to vanish. For the
other case of harmonic coupling we have very similar
qualitative results in the optical range. The localiza-

tion peaks of the probability |ψ (x1, x2)|2 along the
x1-axis (Fig. 2a) are dense, compared with that along
the x2-axis (Fig. 2b).

6 Standard Method of Solution

The advantage of the Lie-algebraic method of solving
Schrödinger’s wave equation for the present Hamil-
tonian model may be further justified (for compatison)
if one solves the Schrödinger’s equation in the stan-
dard way with arbitrary time-dependent coupling. To
proceed, Schrödinger’s equation (7) in the coordinate
representation, with the Hamiltonian (1) and the use
of the transformations (10) becomes,

[ ∂
2

∂x22
− ∂2

∂x21
−
�
x22 − x21

�

+2λ(t)ω (x1x2 − ∂2

∂x1∂x2
)]ψ = 2i

ω
∂ψ
∂t , (33)

where x1,2 =
√
ωq1,2.

In order to solve (33) we transform
ψ (x1, x2; t) −→ ψ̄ (x, y; t) where,�

x1
x2

	
=

�
cos θ (t) sin θ (t)

− sin θ (t) cos θ (t)

	 �
x
y

	
(34)

one then gets (33) into the form,

[ ∂
2

∂y2 − ∂2

∂x2 −
�
y2 − x2

�

+ 2iθ̇(t)√
ω2+λ2(t)

(y ∂
∂x − x ∂

∂y )]ψ̄ =
2i√

ω2+λ2(t)

∂ψ
∂t (35)

For the general case of time-dependent coupling
λ (t) , eq. (35) (or indeel eq. (33)) is hard to deal
with, even in the case of harmoinc coupling parame-
ter treated in the previous section. Here, we proceed
further by assuming the integrability condition,

θ̇(t)√
ω2+λ2(t)

= β (constant) (36a)

i. e., θ (t) = β
t�

0



ω2 + λ2 (t′)dt′ + θ0, (36b)

where θ0 is an arbitrary constant.

By letting,

ψ̄ (x, y; t) = X (x)Y (y)T (t) eiβxy (37)

one finds from (35),

[ 1Y
d2Y
dy2 − (β

2 + 1)Y ]− [ 1X d2X
dx2 − (β

2 + 1)X]

= 2i
Ω(t)

1
T
dT
dt (38)

where Ω(t) =


ω2 + λ2 (t).
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The solution of (38) (by separation of variables),
then yields the following form for ψ̄ (x, y; t) ,

ψ̄ (x, y; t) =
∞�

n,m=0
Nnme

iβxy−
√
β2+1(x2+y2)

2

×Hn

�
4
�
β2 + 1x

�

×Hm

�
4
�
β2 + 1y

�
e
−i(n−m)

√
β2+1

t�

0

Ω(t′)dt′

.

(39)

In terms of q1,2 we get,

ψ (q1, q2; t) = e−
ω
√
β2+1(q21+q22)

2

× eiβω[q1q2 cos 2θ+
(q21−q22) sin 2θ

2 ]

×
∞�

n,m=0
Nnm

×Hn

�
4



ω2
�
β2 + 1

�
(q1 cos θ − q2 sin θ)

�

×Hm

�
4



ω2
�
β2 + 1

�
(q2 cos θ + q1 sin θ)

�

× e−
i(n−m)

√
β2+1(θ−θ0)
β , (40)

where the normalization constants,

Nnm = (
ω
√
β2+1
π (m!n!)−1 2−(m+n)

×
∞�

−∞
ψ (q′1, q

′
2; 0) e

−ω
√
β2+1(q′21 +q

′2
2 )

2

× e−iβω[q′1q′2 cos 2θ+
(q′21 −q′22 ) sin 2θ

2 ]

×Hn

�
4



ω2
�
β2 + 1

�
(q′1 cos θ − q′2 sin θ)

�

×Hm

�
4



ω2
�
β2 + 1

�
(q′2 cos θ + q

′
1 sin θ)

�
dq′1dq

′
2,

(41)

and θ = θ (t) is given by (36a).

So, within the standard method, solution of
Schrödinger’s wave equation is possible to derive in
the case of time-dependent coupling, with imposed
integrability condition, unlike the Lie algebraic ap-
proach, Sec. 4, it is solved, e.g., for harmonic cou-
pling within the RWA.

7 Summary and Conclusion

We have solved Schrödinger’s wave equation for the
Hamiltonian model of (2-level) optical atom, (1) or (3)
using the Lie-algebraic technique [9]-[12]. Provided
the algebra is simple and manageable, the method has
the advantage of dealing with time-dependent Hamil-
tonian where the matrix realization of Schrödinger’s
equation according to the adopted faithful representa-
tion leads naturally to time-dependent separation for
the one-parameter subgroup associated with the oper-
ator generators K0,±, eqs. (25)-(27). For the case of

time-dependent harmonic coupling we have been able
to solve equations (20) within the rotating wave ap-
proximation.

Solving the wave equation using the standard ap-
proach is more tedious in the case of time-dependent
coupling as compared with the presented algebraic
method. Indeed, it is much convenient to deal with the
coupled DEs, eqs. (20), rather than (33) when adopt-
ing any approximate or perturbative approach.

Atomic localization of the studied model is inves-
tigated computationally using the analytical solution
of the wave function, for initial ground preparation of
the system. Single localized Gaussian peak at initial
time develops to symmetric localized peaks as time
evolves. For initial states other than the ground state,
lengthier analytical calculations of the cefficients in
(31), (see Appendix B), with their computations, are
deffered to separate presentation.

It is worth adding that, the same Lie algebraic
method adopted here, based on finding a faithful
matrix representations for the generators of the sys-
tem Hamiltionian, can be applied to another quantum
model, namely, pulsed driven quantum dot spin in the
Voigt geometry [18]. The faithful matrix representa-
tion of degree 4 for the 16 generators of the system
Hamiltonian are given in Appendix C. For the quan-
tum dot localization purposes, the wave function can
then be calculated similar to the procedure presented
here. More non-trivial faithful matrix representations
associated with generalized forms of the Lie algebra
in (5) are given in [21], [22].

Further conditions of faithful matrix representa-
tion associated with deformed or non-linear Lie alge-
braic generalization of (5), (e.g., [26]-[29]) that corre-
spond to some non-linear quantum optical models will
be investigated in detail in a separate presentation.

In conclusion, the work in the paper empha-
sizes the significant advantage of using the algebraic
decomposition technique for solving Schrödinger’s
wave equation associated with time-dependent Hamil-
tonian, as well provides generalized solutions com-
pared with the direct method of solution. For higher
order of matrix representation e.g., more than degree 4
or 5, depending on the system Hamiltonian, one may
resort to approximate analytical approaches or com-
putational methods to solve for the wave equation.

Appendix A
Here we outline the derivation of the solutions of

the partial differential equations (PDEs) (11)-(13).

Starting with equation (11), namely,
�
1
2ω

� �
ωq1 − ∂

∂q1

��
ωq2 +

∂
∂q2

�
f

= i∂f∂t (A.1)

and by letting x1 =
√
ωq1 and x2 =

√
ωq2, equa-

tion (A.1) is then of the form,
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[ ∂2

∂x1∂x2
− x1x2 + (x2 ∂

∂x1
− x1 ∂

∂x2
)]f = −2i∂f∂t .

(A.2)
If we put

f = f̄e1/2(x
2
1−x22), (A.3)

then we have,
∂2f̄

∂x1∂x2
= −2i∂f̄∂t . (A.4)

Next, we let
x1 =

ξ+η√
2
, and x2 =

η−ξ√
2
, (A.5)

then (A.4) gives
∂2f̄
∂η2

− ∂2f̄
∂ξ2

= −4i∂f̄∂t . (A.6)

Equation (A.6) is easily solved by the separa-
tion of variables to give finally the solution (14) for
f (q1, q2; t) . The PDE for g, equation (12), is treated
similarly. As for equation (13), this simply reduces to
the form

1
2ω

�
ω2q21 − ∂2

∂q21
−
�
ω2q22 − ∂2

∂q22

��
h = i∂h∂t ,

(A.7)
which is solved by the separation of variables in

terms of the familiar Hermite polynomials, in (16).
Appendix B

Here we present the analytical expressions for the
coefficients anm, brs, cjk given by (17), (18), appear-
ing in the solution of the wave function ψ (q1, q2; t) in
(31).

Introducing the normalized variables,
x1,2 =

√
ωq1,2, τ = ωt, (31) takes the form,

ψ (x1, x2; τ) = e−
1
2(x

2
1+x

2
2)

×
∞�

n,m=0
anme

−i(n−m)α0(τ)e
i(n+m)x1√

2

× e−
i(n−m)x2√

2 Hn (x1)Hm (x2)

×
∞�

r,s=−∞
brse

i(r2−s2)α+(τ)
4 e

i(r+s)x2√
2 e

− i(r−s)x1√
2

×
∞�

j,k=−∞
cjke

i(j2−k2)α−(τ)
4 , (B.1)

where, α0,± (τ) in the case of constant coupling,
eq. (27) have the forms,

α0 (τ) = −i ln (cos τ + iβ1 sin τ) (B.2a)
α+ (τ) = β2 sin τ (cos τ + iβ1 sin τ) (B.2b)

α− (τ) = β2 sin τ (cos τ + iβ1 sin τ)
−1

(B.2c)

with β1 =

�
1 +

�
λ0
ω

�2
and β2 =

1�
1+
�
ω
λ0

�2 .

To calculate the constatnts anm, brs, cjk in (17),
(18) we consider the two HOs are in their ground state,

ψ0 (x1, x2; 0) = Q (x1, x2)
≡ f0 (x1, x2) g0 (x1, x2)h0 (x1, x2) (B.3)

where, Q (x1, x2) =
�

ω
π e
−x21+x

2
2

2 .
From (B.3), we may choose
f0 (x1, x2) = Q (x1, x2) , (B.4a)
g0 (x1, x2) = h0 (x1, x2) = 1. (B.4b)

Other choices, such as,

f0 (x1, x2) = h0 (x1, x2) = 1, g (x1, x2) =
Q (x1, x2) ,

f0 (x1, x2) = g0 (x1, x2) = 1, h (x1, x2) =
Q (x1, x2) ,

or, f0 (x1, x2) = g0 (x1, x2) = h0 (x1, x2) =
3
�
Q (x1, x2),

give essentially the same qualitative results for the

probability |ψ (x1, x2; τ)|2 . So, specifically, for the
choice (B.4) and from (17) ,(18) we get the following
expressions,

anm =
1

π3/2
√
2

�
ω
π

�1/4
e
(n+m)2

8

× (erf (q+)− erf (q−))

×
�

π (n = m)
sin[π(n−m)]

n−m (n 
= m)
, (B.5a)

brs =
2i
π3
e−rs (erf (p+)− erf (p−))

× (erf (z+)− erf (z−)) , (B.5b)

cj,k =
π

j! k! (2)
−2(j+k) , (B.5c)

where,

q± = 1√
2

�
±π − n+m

2 i
�
,

p± = 1
2

�
∓πi− r−s

2

�
,

z± = 1
2

�
±π − r+s

2 i
�
,

and

erf (z) = 2√
π

z�

0

e−z
2
1dz1 is the error function of

complex argument (z) ,
and have used [30],
∞�

0

e−
x2

2 H2n (x) dx =
�

π
2
(2n)!
n! .

Appendix C
Here, we refer to another basic quantum model

[18] and show that it has a faithful matrix represen-
tation for the generators of its Hamiltonian model.
The concerned model in [18] considers a quantum dot
electron spin states in the Voigt geometry that can act
as a qubit manipulated by optical pulses to achieve
possible quantum gates. The model Hamiltonian de-
scribing the coupling of the quantum dot system of 4-
level structure with two time-dependent optical fields
can be put in the following form in the electric dipole
and rotating wave approximations, [18].

H =
4�

i=1
ℏωiRi

−h[Ωa (t) e−iωat(R41 +R32)
+Ωb (t) e

−iωbt (R31 +R42) + h.c.] (C.1)

The notations are: ℏωi is the energy of the state
|i� ,Ωa,b (t) are the real time-dependent Rabi frequen-
cies of the two applied fields, with frequences ωa, ωb,
respectively. The operators Ri = |i� i| such that
4�

i=1
Ri = I, Rji = |j� i| = R†ij; i, j = 1 − 4, from
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a closed Lie algebra, satisfying the following commu-
tation relations,

[Ri, Rj] = 0 ; for all i, j = 1− 4,
[Rij , Rji] = Ri −Rj ; i 
= j, i, j = 1− 4
[Ri, Rij ] = Rij ; i 
= j
[Ri, Rji] = −Rji ; i 
= j (C.2)

[Ri, Rjk] = 0 ; i 
= j 
= k
[Rij , Rki] = −Rkj ; j 
= k
[Rij , Rik] = 0 ; i 
= j 
= k

These commutation relations in (C.2) can be sum-
marized in the following lemma.

Lemma 1 Let Ri = Rii for i = 1− 4. The operators
Rij satisfy RijRkl = δjkRil and hence, [Rij, Rkl] =
δjkRil − δliRkj , for i, j = 1− 4.

Further, we mention that, the n× n matrices Eij ,
of the standard basis of the vector space Mn (R) are
called the n× n matrix units. The entries of each Eij

are all zeros and 1 in its (i, j)-entry [31].

Lemma 2 The n × n matrix units Eij satisfy
EijEkl = δjkEil and hence, [Eij , Ekl] = δjkEil −
δliEkj , for i, j = 1− 4.

From the above lemmas, for n = 4, the matrix
unitEij is a representation matrix for the operatorRij

for i, j = 1− 4, respectively, because it satisfy (C.2).
This matrix representation is faithful since, theEij are
linearly independent. Also, this representation is the
least degree because, the dimension of the Lie algebra
is 16.

So, the present algebraic method to solve for the
wave function of the model and hence the quantum
dot localization can then be investigated.
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