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Abstract: The memoryless or non-aging property of systems is of special relevance in reliability theory, which 
implies that the hazard function is constant in time, and the corresponding mean residual life function takes a 
reciprocal value. The only known continuous distribution with that property is the exponential distribution. 
However, many other distributions exist whose asymptotic behavior of underlying hazard functions approaches 
a constant, while the mean residual life function approaches a reciprocally constant value. Here we provide an 
analysis which enables us to study a class of distributions that asymptotically approach the memoryless 
property, and which include gamma, Erlangian, exponential resilience, exponential geometric, hyper 
exponential, logistic exponential and the inverse Gaussian distribution. 
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1 Introduction 
Modeling lifetime data usually involves the hazard 
function in conjunction with other lifetime 
measures, particulraly the mean residual life 
function. The hazard function, ℎ(𝑡), defined at a 
point in time 𝑡 provides information about operation 
of an item in a short time interval immediately after 
𝑡. The mean residual life function, 𝑚(𝑡), at a point 
in time 𝑡 considers information which spread over 
the complete future operation of an item. This 
intuition explains difference between two functions. 

Both of them are conditional functions and are 
needed in reliability theory and its practical 
applications. 

The main properties of ℎ(𝑡) and 𝑚(𝑡), which 
include their probabilistic interpretation, 
relationship with the reliability function, mutual 
relationship, mathematical properties and 
descriptive shapes are given in Table 1. Information 
shown in the table is mainly based on Leemis [1], 
Singpurwalla [2], Lai and Xie [3], Finkelstein [4], 
Rinne [5] and O’Connor et al. [6]. 

Table 1 The main properties of the hazard function and the mean residual life function 

Property 𝒉(𝒕) 𝒎(𝒕) 

Probabilistic 
interpretation 

Approximately equal to the probability of failure 
in a small unit of time 𝑑𝑡, given that no failure 
occurred up to time t. 

Expected remaining life of an item that has been 
operating without failure up to time 𝑡. 

ℎ(𝑡)𝑑𝑡 ≈ 𝑃𝑟(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝑑𝑡|𝑇 ≥ 𝑡) 𝑚(𝑡) = 𝐸 ൤
𝑇 − 𝑡

𝑇 > 𝑡
൨ 

Relationship with the 
reliability function ℎ(𝑡) =

𝑓(𝑡)

𝑅(𝑡)
 𝑚(𝑡) =

∫ 𝑅(𝜏)𝑑𝜏
∞

௧

𝑅(𝑡)
 

Mutual relationship ℎ(𝑡) =
1 + 𝑚′(𝑡)

𝑚(𝑡)
 

Mathematical 
properties 

1. ℎ(𝑡) ≥ 0 
2. ∫ ℎ(𝑡)𝑑𝑡

∞

଴
→ ∞ 

1. 𝑚(𝑡) ≥ 0 
2. 𝑚(0) = 𝜇 
3. 𝑚′(𝑡) ≥ −1 

4. ∫
ଵ

௠(௧)
𝑑𝑡

∞

଴
→ ∞ 

Shapes 

Right continuous. Constant (CFR), increasing 
(IFR), decreasing (DFR), bathtub curve (BTFR), 
up-side-down bathtub curve (UBTFR), roller-
coaster curve and different oscillatory curves. 

Right continuous. Constant (CMRL), increasing 
(IMRL), decreasing (DMRL), bathtub curve 
(BTMRL) and up-side-down bathtub curve 
(UBTMRL). 
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Note that Table 1 uses following abbreviations: 

 Hazard function (usually abbreviated as HF) is a 
term used across different scientific disciplines. 
In reliability theory this function is commonly 
known as the failure rate and is abbreviated as 
FR which is used in the table. 

 MRL is abbreviation commonly used for the 
mean residual (remaining) life function. 

 

2 Conditional reliability and 
 memoryless property 
Conditional reliability of an item at age 𝑡௢ is defined 
with: 

𝑅(𝑡|𝑡௢) =
ோ(௧೚ା௧)

ோ(௧೚)
                         (1) 

If 𝑅(𝑡|𝑡଴) equals 𝑅(𝑡), the item at age 𝑡௢ has the 
same reliability characteristic as it had before 𝑡௢. In 
other words, the operation history of the item is 
irrelevant to its future operation. This is known as 
the memoryless or non-aging property. Important 
consequence of this property is that ℎ(𝑡) is constant 
in time and 𝑚(𝑡) = 1/ℎ(𝑡). 

It is well-known that the memoryless property is 
satisfied only by the exponential distribution in the 
continuous domain. For this distribution the 
following is valid: 

𝑓(𝑡) = 𝜆𝑒ିఒ௧                            (2) 

𝑅(𝑡|𝑡௢) =
௘షഊ(೟೚శ೟)

௘షഊ೟೚
= 𝑒ିఒ௧ = 𝑅(𝑡)           (3) 

ℎ(𝑡) =
௙(௧)

ோ(௧)
= 𝜆                          (4) 

𝑚(𝑡) =
∫ ோ(ఛ)ௗఛ

∞
೟

ோ(௧)
=

ଵ

ఒ
                      (5) 

where 𝜆 is the scale parameter of the exponential 
distribution. It should be noted that 1/𝜆 is the mean 
value of the exponential distribution. So, 𝑚(0) 
equals the mean time of the exponential distribution. 
 

3 Asymptotic reciprocal relationship 
Calabria and Pulcini [7] analyzed asymptotic 
behavior of 𝑚(𝑡) and ℎ(𝑡) functions. By applying 
the L’Hospital rule they derived the following 
asymptotic reciprocal relationship between them: 

lim௧→∞ 𝑚(𝑡) = lim௧→∞
∫ ோ(ఛ)ௗఛ

∞
೟

ோ(௧)
𝜆𝑒ିఒ௧= 

= lim
௧→∞

ିோ(௧)
೏ೃ(೟)

೏೟

= lim
௧→∞

ோ(௧)

௙(௧)
= lim

௧→∞

ଵ

ℎ(௧)
            (6) 

Calabria and Pulcini claim that this relationship 
is in agreement with intuition. Namely, as 𝑡 → ∞, 

the immediate operation of an item tends to coincide 
with its complete future operation. 

Bradley and Gupta [8] devoted a part of their 
paper to the Calabria and Pulcini asymptotic 
reciprocal relationship by showing that 

lim௧→∞[𝑚(𝑡)ℎ(𝑡)] = 1                    (7) 

is not true in general. They provided a simple 
counterexample by considering the class of 
distributions with linear mean residual life function. 
However, they stated that the reciprocal asymptotic 
relationship may be interpreted as an approximation. 

In many cases is not easy to determine 𝑚(𝑡). In 
such cases Calabria and Pulcini used the following 
useful relationship between the asymptotic behavior 
of 𝑚(𝑡) and the probability density function, 𝑓(𝑡): 

lim௧→∞ 𝑚(𝑡) = lim௧→∞ −
ଵ

೏

೏೟
௟௡[௙(௧)]

            (8) 

which is also given in Lawless [9]. But Calabria and 
Pulcini failed to notice explicitly that their and 
Lawless relationship are equivalent. Namely, by 
appropriate substitution of ℎ(𝑡) in Calabria and 
Pulcini relationship and by applying the L’Hospital 
rule the following is true: 

lim௧→∞
ଵ

ℎ(௧)
= lim௧→∞

∫ ௙(ఛ)ௗఛ
∞

೟

௙(௧)
= lim

௧→∞

ି௙(௧)
೏೑(೟)

೏೟

= 

= lim
௧→∞

−
ଵ

೏

೏೟
௟௡[௙(௧)]

                         (9) 

By applying the similar procedure, we can derive 
asymptotic relationships between 𝑚(𝑡) and other 
popular lifetime representations such as the 
reliability function, the cumulative function and the 
cumulative hazard function. 

Calabria and Pulcini made calculations of ℎ(𝑡) 
and 𝑚(𝑡) asymptotic values for some univariate 
continuous distributions such as the exponential, 
Weibull, gamma, normal, lognormal and the inverse 
Gaussian distribution. According to their results the 
following three classes of distributions may be 
recognized (Table 2). 

Table 2 Distribution classes based on [7] 

Distribution class 𝐥𝐢𝐦
𝒕→∞

𝒉(𝒕) 𝐥𝐢𝐦
𝒕→∞

𝒎(𝒕) 

Exponential, gamma 
and inverse Gaussian 

Constant 
Reciprocally 

constant 

Weibull (𝛽 < 1) and 
lognormal 

0 ∞ 

Weibull (𝛽 > 1), 
normal and distributions 
defined in finite interval 

∞ 0 
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For distributions defined on finite interval [𝑎, 𝑏] 
the following is valid: 

lim௧→௕ ℎ(𝑡) = ∞                        (10) 

𝑚(𝑏) = 0                              (11) 
 

4 Approaching memoryless property 
In this work we analyze the asymptotic behavior of 
several univariate continuous distributions. 
Particular attention is paid to distributions that 
belong to the distribution class for which the 

asymptotic reciprocal relationship between ℎ(𝑡) and 
𝑚(𝑡) holds. To compute the asymptotic form of 
𝑚(𝑡) we use (6) where that is possible, and (8) 
otherwise. In addition to distributions mentioned in 
Table 2 we find also the Erlangian, exponential 
geometric, exponential resilience, hyper exponential 
and the logistic exponential distribution follow this 
rule. Mathematical form of these distributions 
follows Lai and Xie [3], Finkelstein [4], O’Conor et 
al. [6], and Leemis [10]. The results are shown in 
Table 3. 

Table 3 Asymptotic behavior of the univariate continuous distributions analyzed in the paper 

  𝒉(𝒕) 𝒎(𝒕)  

Distribution1) 
Shape 

parameter 
𝒉(𝟎) 𝐥𝐢𝐦

𝒕→∞
𝒉(𝒕) Shape 𝒎(𝟎)2) 𝐥𝐢𝐦

𝒕→∞
𝒎(𝒕) Shape 𝐥𝐢𝐦𝒕𝒐→∞ 𝑹(𝒕|𝒕𝒐)7) 

Exponential - 𝜆 𝜆 CFR 
1

𝜆
 

1

𝜆
 CMRL 𝑒ିఒ௧ 

Gamma 
𝛼 > 1 0 

𝜆 
IFR 𝛼

𝜆
 

1

𝜆
 

DMRL 
𝑒ିఒ௧ 

𝛼 < 1 ∞ DFR IMRL 

Erlangian 𝑛 > 1 0 𝜆 IFR 
𝑛

𝜆
 

1

𝜆
 DMRL 𝑒ିఒ௧ 

Exponential 
resilience3) 

𝛼 > 1 0 𝜆 IFR 
𝐻𝑁(𝛼)

𝜆
 

1

𝜆
 DMRL 𝑒ିఒ௧ 

Exponential 
geometric 

𝛽 > 1 𝜆

𝛽
 𝜆 

IFR 𝛽𝑙𝑛(𝛽)

𝜆(𝛽 − 1)
 

1

𝜆
 

DMRL 
𝑒ିఒ௧ 

𝛽 < 1 DFR IMRL 

Hyper 
exponential4)

 

෍ 𝛼௜

௜

= 1 ෍ 𝛼௜𝜆௜

௜

 𝜆 DFR ෍
𝛼௜

𝜆௜
௜

 1

𝜆
 IMRL 𝑒ିఒ௧ 

Logistic 
exponential5) 

𝛼 > 1 0 
𝜆𝛼 

UBTFR 
- 

1

𝜆𝛼
 

BTMRL 
𝑒ିఒఈ௧ 

𝛼 < 1 ∞ BTFR UBTMRL 

Inverse 
Gaussian6) 

𝜇 > 0 0 
𝜆

2𝜇ଶ UBTFR 𝜇 
2𝜇ଶ

𝜆
 BTMRL 𝑒

ି
ഊ

మഋమ௧
 

 
The footnotes in Table 3 are: 

1) For all distributions listed the scale parameter is 
𝜆. 

2) 𝑚(0) = 𝜇 means that value of the 𝑚(𝑡) function 
at 𝑡 = 0 equals the mean value of the supporting 
distribution. 

3) Mathematical form is taken from Finkelstein [4]. 
This distribution has not received much attention 
in the reliability literature. 𝐻𝑁(𝛼) is 
abbreviation for the Harmonic Number function. 

4) Mathematical form is taken from Lai and Xie 
[3]. A two-component distribution is considered 
with 𝛼ଵ + 𝛼ଶ = 1 and 𝜆ଵ = 𝜆ଶ = 𝜆. 

5) Mean value as well as 𝑚(0) is not found 
analytically. Median equals 𝑙𝑛(2)/𝜆. 

6) 𝜇 is the mean value of the inverse Gaussian 
distribution. 

7) The following is true: 

lim௧೚→∞ 𝑅(𝑡|𝑡௢) = 𝑒ି ୪୧୫೟೚→∞ ℎ(௧) =  

= 𝑒
ି ୪୧୫೟೚→∞

భ

೘(೟)                       (12) 

The common characteristics of distributions 
mentioned above are as follows: 

 When the shape parameter equals 1, all 
distributions tend towards the exponential 
distribution. Exception is the inverse Gaussian 
distribution because it is characterized by mean 
value not the shape parameter. 

 As 𝑡௢ → ∞ the conditional reliability for 
distributions tends to exponential reliability, 
meaning that they are approaching memoryless 
property. 
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 The closer shape parameter is to 1, the 
memoryless approaching process is faster. This 
is not valid for the inverse Gaussian distribution. 

It should be noted here that the author’s most 
recent research on this topic shows that the chi-
squared distribution and the extreme value 
distribution (also known as Gumbel maximum) as 
well as the Laplace distribution, in certain 
circumstances exhibit very similar properties as the 
distributions listed in Table 3. 

As an example of the performed calculations 
Fig.1 shows ℎ(𝑡) and 𝑚(𝑡) functions of the 
Erlangian distribution which is a special case of the 
gamma distribution. This distribution plays an 
important role in reliability engineering. For 
example, it is the distribution function of the time to 
failure of a cold standby system where the lifetimes 
of components are exponentially distributed. 

The Erlangian distribution is two-parameter 
distribution with 𝜆 as the scale parameter of the 
exponential distribution while 𝑛 is a positive 
integer. For this distribution the following is true: 

𝑓(𝑡) =
ఒ(ఒ௧)೙షభ

(௡ିଵ)!
𝑒ିఒ                      (13) 

𝑅(𝑡) =
Γ(௡,ఒ௧)

Γ(௡)
                           (14) 

ℎ(𝑡) =
(ఒ௧)೙

௧Γ(௡,ఒ௧)
𝑒ିఒ௧                      (15) 

𝑚(𝑡) =
Γ(ଵା௡,ఒ௧)

λΓ(௡,ఒ௧)
− 𝑡                     (16) 

Γ(𝑛) in the above formulas is gamma function 
while Γ(𝑛, 𝜆𝑡) is incomplete gamma function. To 
determine 𝑚(𝑡) we use the following formula from 
Finkelstein [4]: 

𝑚(𝑡) =
∫ ఛ௙(ఛ)ௗఛ

∞
೟

ோ(௧)
− 𝑡                     (17) 

 
Fig. 1  ℎ(𝑡) (red) and 𝑚(𝑡) (blue) of the Erlangian 

distribution with 𝜆 = 1 and 𝑛 = 2 

It is quite clear from Fig.1 that as 𝑡 → ∞, ℎ(𝑡) 
increases towards 𝜆, while 𝑚(𝑡) decreases towards 

1/𝜆, showing that the Erlangian distribution 
asymptotically approaches memoryless property. 
 

5 A short note on the oscillatory 
hazard function 

As mentioned in Table 1, the hazard function may 
take different shapes. Among others it may take a 
shape of different oscillatory curves. This has not 
received any attention in the reliability literature so 
far. Let us analyze the following hazard function: 

ℎ(𝑡) = 𝜆 +
ୱ୧୬ గ(௧ି௧భ)

గ(௧ି௧భ)
                     (18) 

which represents attenuated oscillations around 
parameter 𝜆 with maximum amplitude (maximum 
system disturbance) of 𝜆 + 1 at time 𝑡ଵ. The 
corresponding probability density function (or 
supporting distribution) and the reliability function 
are: 

𝑓(𝑡) = ቂ𝜆 +
ୱ୧୬ గ(௧ି௧భ)

గ(௧ି௧భ)
ቃ 𝑒ି௧ି

ೄ಺(ഏ೟భ)షೄ಺[ഏ(೟భష೟)]

ഏ    (19) 

𝑅(𝑡) = 𝑒ି௧ି
ೄ಺(ഏ೟భ)షೄ಺[ഏ(೟భష೟)]

ഏ                 (20) 

where 𝑆𝐼 denotes Sine integral function as described 
by Weisstein [11]. In this particular example the 
following may be shown: 

lim௧→∞ ℎ(𝑡) = 𝜆                        (21) 

lim௧→∞ 𝑚(𝑡) = lim௧→∞ −
ଵ

೏

೏೟
௟௡[௙(௧)]

=
ଵ

ఒ
       (22) 

lim௧೚→∞ 𝑅(𝑡|𝑡௢) = 𝑒ିఒ௧                   (23) 

Therefore, as 𝑡௢ → ∞ the distribution supporting 
attenuated oscillations in ℎ(𝑡), asymptotically 
approaches memoryless property. 

The same results apply to the following 
attenuated oscillatory hazard functions: 

ℎ(𝑡) = 𝑆𝐼(𝑡)                           (24) 

ℎ(𝑡) = 𝐹𝑟𝑒𝑠𝑛𝑒𝑙𝐶(𝑡)                     (25) 

ℎ(𝑡) = 𝐹𝑟𝑒𝑠𝑛𝑒𝑙𝑆(𝑡)                     (26) 
 

6 Conclusions 
In this paper we argue: 

 Both the hazard function, ℎ(𝑡) and the mean 
residual life function, 𝑚(𝑡), are important 
lifetime representations. They provide 
information on short and long-term future 
operation of an item. Determining them is of 
major importance in reliability theory and 
obtaining information on their late-time behavior 
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is useful in many contexts where such functions 
are analytically complex. 

 Asymptotic reciprocal relationship between 𝑚(𝑡) 
and ℎ(𝑡) given by Calabria and Pulcini and 
relationship given by Lawless are equivalent. 

 Important consequence of memoryless property is 
that ℎ(𝑡) has fixed (constant) value in time while 
𝑚(𝑡) has reciprocal value. 

 There is a class of distributions for which  ℎ(𝑡) 
and 𝑚(𝑡) asymptotically approach constant and 
reciprocal values. 

 Distributions that belong to this class are the 
exponential, gamma, Erlangian, exponential 
geometric, exponential resilience, hyper 
exponential, logistic exponential and the inverse 
Gaussian. 

 Distributions that may be constructed on the basis 
of Sine integral and Fresnel functions (these 
distributions support the attenuated oscillatory 
hazard functions) also belong to the mentioned 
distribution class. 

 All the above mentioned distributions approach 
memoryless property at late times. 
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