

A Method for Normalization of Relation Schema Based on Data to
Abide by the Third Normal Form

HYONTAI SUG

Department of Computer Engineering
Dongseo University

47 Jurye-ro, Sasang-gu, Busan 47011
REPUBRIC OF KOREA

Abstract: - Databases play an important role in applied mathematics, and normalization for relational databases
is very important to avoid anomalies of relations which may not be in normalized forms of the third normal
forms. But, normalization may be a difficult task, since the designers of the databases may not fully understand
the domain of each attribute that are contained in the relation schema or they may not have full understanding
about the concept of normalization. In this paper an efficient method that checks the possibility of the need of
further normalization using stored data in relations is presented based on possible functional dependencies
between attributes in the relations. By checking possible functional dependencies, the database designers can
determine the need of further normalization, and may improve the structure of the relation schemas. Experiments
were performed for an example of relational database that can be found in the organization of tutorial of MySQL
which is a representational database management system, and the experiments showed good results.

 Key-Words: - Applied Mathematics, Algorithms, Information Theory, Normalization, Relational Databases,
Normal Forms, Functional Dependency, Database Systems

 Received: December 10, 2019. Revised: May 5, 2020. Accepted: May 19, 2020. Published: May 27, 2020.

1 Introduction
Relational databases are very important ingredients
for modern information society. Nowadays, most
operational databases are based on relational
databases [1]. An operational database creates and
updates large amounts of data in real time, and
transaction processing is a key technology to
support concurrency, integrity, and recoverability
[2]. Data integrity is very important for operational
databases of enterprises, because incorrect data will
generate incorrect outputs, as a results, the incorrect
outputs may lead to bad or wrong decisions.
Duplicate data in relations may cause inconsistent
data if we miss updating anyone of them, as the data
are updated with time. The inconsistent data may
cause to generate incorrect information. In order to
avoid data inconsistency and other anomalies, it is
recommended that a relation schema should be at
least in the third form.

Designing the structures of relation schemas
requires allocating appropriate attributes for each
relation schema, and requires checking functional
dependencies between the attributes in the relational
schema for possible future data inconsistency and
anomalies. The checking process is usually done
manually so that there is always some possibility
that there are unnoticed functional dependencies
between non-key attributes or functional

dependency of non-key attributes on a part of the
primary key when the key is a composite key.
Inappropriate functional dependencies make the
relational schemas not in the third or second normal
forms, and the design mistakes could make the
related relation schemas have inconsistent data, and
could generate anomalies as the data are updated,
inserted, and deleted with time. But, it may not be
easy to detect such design mistakes, because
humanities are not accustomed to recognize their
own mistakes.

A lot of research has been done to discover
functional dependencies efficiently for large data
sets in table form as an optimization problem of
time complexity, because we can have 2m
combinations of attributes for a table having m
attributes. The algorithms for discovering functional
dependencies can be categorized into three or four
approaches; top-down, bottom-up, and hybrid
approach, and some others [3, 4]. Top-down
approach like TANE [5] or TANE-based
incremental algorithm [6] generate the lattice of
attributes first to generate candidate functional
dependencies, and the candidate functional
dependencies are tested for validity using real data.
Bottom-up approach algorithm like FastFD
generates so called difference sets and agree sets of
attributes based on some tuple pairs in the table [7].

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 216 Volume 19, 2020

The sets are used to drive all functional
dependencies. Hybrid approach algorithm mixes the
good points of the two approaches, and reports
better performance [4]. FDEP generates negative
cover and positive cover based on FD-tree by pair-
wise comparison of all tuple pairs in a table [8]. In
[9] sampling-based algorithm is suggested to find
approximate functional dependencies. The time
complexity of the algorithms is polynomial times
because the algorithms except the sampling based
algorithm check the validity of candidate functional
dependencies repeatedly based on data. Moreover,
most of the experiments for the algorithms are based
on data sets not exactly belonging to relations like
the data sets in UCI machine learning repository
[10]. The structure of data sets used for experiments
is similar to views in relational databases. Note that
views are usually made by joining several relations
together so that the possibility of functional
dependencies in the data sets could be increased.

Therefore, in this paper we want to check
possible functional dependencies for relations
efficiently based on data in relations, and want to
check the utility of our suggested method in
improving the structure of relation schemas for them
to be in the third form.

2 Problem Formulation
The constraints for normal forms are well described
in the textbooks for databases [2, 11]. We should
check the functional dependencies of each relation
schema or relation variable to confirm that the
relation schema is at least in the third form. In order
to check functional dependencies between attributes
in a relation, we need to utilize Armstrong’s axioms
of inference rules.

2.1 Armstrong’s axioms
Armstrong’s axioms have three inference rules
called reflexivity, augmentation, and transitivity.

Let R be a relation schema over the set of
attributes U, and X, Y, Z be any subset of U.

1) Reflexivity: if Y ⊆ X, then X → Y.
2) Augmentation: if X → Y, then XZ → YZ.
3) Transitivity: if X → Y and Y → Z, then X

→ Z.
We can use the above three inference rules to

generate the closure of given set of functional
dependencies of a relation schema.

An additional inference rule for our task of
functional dependency checking is that if the left
hand sides of two functional dependencies are the
same, the two functional dependencies can be
combined together with the same left hand side.

That is, if we have X → Y and X → Z, we have X
→ YZ. Because of X → Z, we have X → XZ by
augmentation, and because of X → Y, we have XZ
→ YZ by augmentation. Therefore, we have X →
YZ by transitivity.

But, we don’t have to combine two functional
dependencies together, if the right hand sides of two
functional dependencies are the same, even though
the two functional dependencies can be combined
together with the same right hand side. That is, if we
have X → Z and Y → Z, we have XY → Z.
Because of Y → Z, we have XY → XZ by
augmentation, and because of X → Z, we have
XZ→ Z by augmentation. Therefore, we have XY
→ Z by transitivity. But, because each left hand side
alone can functionally determine the same right
hand side, we don’t need to combine two functional
dependencies together for simplicity. Note also that
if XY → Z, we don’t have X → Z and Y → Z
automatically.

2.2 Suggested method
We should check whether a given relation schema is
in the third normal form. In order to check it there
are two cases to check. In case of the primary key is
a composite key, functional dependency from part
of the composite key to non-key attributes has to be
checked. After checking it functional dependency
between non-key attributes has to be checked to
make it sure that the given relation schema is in the
third normal form. In case of the primary key is not
composite key, checking functional dependency
between non-key attributes is good enough for the
task. We check functional dependency between
single attributes first. Then, in case we find the same
left hand side in the found functional dependencies,
we combine them together as explained in section
2.1. In addition, checking on non-key multiple
attributes as left hand side of a possible functional
dependency will be performed when the attributes
have close relationship only, because such case is
rare in a relation schema.

2.2.1 Case 1: the primary key is single attribute
When the primary key consists of single attribute,
we should check many to one or one to one
correspondence between chosen non-key attributes
to make it sure that it is in the third normal form.
We may or may not skip a non-key attribute that has
key-like characteristics, like name attribute, to avoid
unnecessary calculation.

PROCEDURE 1:
INPUT: a relation r, chosen set of attributes

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 217 Volume 19, 2020

OUTPUT: many to one correspondence between
attributes
BEGIN

1. Check many to one correspondence for
each pair of input attributes in r in both
directions;

2. Output possible functional dependencies if
found;

3. Combine found possible functional
dependencies together, if they have the
same right had side;

END.

Note that we have nC2 combinations of attribute
pairs for the task numbered 1 in the above procedure.
Checking possible functional dependency in both
directions means that we should check X → Y as
well as Y → X based on stored data in r. We may
use a sorting based algorithm or one of the
algorithms introduced in section 1 for this task.

2.2.2 Case 2: the primary key is composite key
When the primary key consists of multiple attributes,
we should check many to one or one to one
correspondence between each part of the composite
key and non-key attributes to make it sure that it is
in the second normal form. After that we can
perform procedure 1 to check whether the given
relation schema is in the third normal form or not.

PROCEDURE 2:
INPUT: a relation r having composite key
OUTPUT: many to one correspondence between
attributes
BEGIN

1. Check many to one correspondence for
each pair consisting of all parts of
composite key and non-key attributes in r
in one direction of being from the parts of
composite key to non-key attributes;

2. Output possible functional dependencies if
found;

3. Perform procedure 1;
END.

We only have to do checking on possible
functional dependency for the parts of composite
key and non-key attributes in one direction to
regulate the constraints of the second normal form.

3 Problem Solution
MySQL sample database was used to illustrate the
checking process. Experiments for all the relations
were performed using an example database provided

by the organization of MySQL tutorial. The sample
database can be downloaded from MySQL tutorial
site [12]. MySQL database management system is
especially very popular in databases for websites.
According to Datanyze, it is the number one
database management system in use cases [13] and
freely available. The sample database has eight
relations; productlines, employees, offices, products,
customers, orderdetails, orders, payments. The
primary key is underlined in each relation schema or
relation variable in the followings. Relation schema
or relation variable means the heading part of a
relation where a relation consists of heading and
body part. The schema of each relation is as follows.

Customers(customerNumber, customerName,
contactLastName, contactFirstName, phone,
addressLine1, addressLine2, city, state, postalCode,
country, salesRepEmployeeNumber, creditLimit)
Employees(employeeNumber, lastName, firstName,
extension, email, officeCode, reportsTo, jobTitle)
Offices(officeCode, city, phone, addressLine1,
addressLine2, state, country, postalCode, territory)
Orders(orderNumber, orderDate, requiredDate,
shippedDate, status, comments, customerNumber)
Orderdetails(orderNumber, productCode,
quantityOrdered, priceEach, orderLineNumber)
Payments(customerNumber, checkNumber,
paymentDate, amount)
Products(productCode, productName, productLine,
productScale, productVendor, productDescription,
quantityInStock, buyPrice, MSRP)
Productlines(productLine, textDescription,
htmlDescription, image)

The functional dependency between non-key

attributes were checked for each relation, and many
possible functional dependencies were found based
on stored data in each relation. In addition, because
orderdetails and payments relation schema have
composite key, they were checked additionally
whether they are in the second normal form or not.

3.1 Customers relation
Customers relation has 122 tuples. We check
possible functional dependencies for customers
relation for each combination of non-key attributes.
We check the attribute pair customerName and all
the other non-key attributes first in the set of non-
key attributes, {customerName, contactLastName,
contactFirstName, phone, addressLine1,
addressLine2, city, state, postalCode, country,
salesRepEmployeeNumber, creditLimit}.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 218 Volume 19, 2020

3.1.1 Checking on customerName attribute first
The found possible functional dependencies
between each pair of non-key attributes when we
consider attribute customerName first in relation
customers are as follows.

customerName → contactLastName

customerName → contactFirstName

customerName → phone

phone → customerName

customerName → addressLine1

addressLine1 → customerName

customerName → addressLine2

customerName → city

customerName → state

customerName → postalCode

customerName → country

customerName → salesRepEmployeeNumber

customerName → creditLimit

In short, we found a possible functional
dependency,

customerName → {contactLastName,
contactFirstName, phone, addressLine1,
addressLine2, city, state, postalCode, country,
salesRepEmployeeNumber, creditLimit}, and two
other possible functional dependencies,

phone → customerName, and

addressLine1 → customerName.

Note that non-key attributes of relation schema

customers are customerName, contactLastName,
contactFirstName, phone, addressLine1,
addressLine2, city, state, postalCode, country,
salesRepEmployeeNumber, creditLimit, so that
attribute customerName functionally determines all
the other non-key attributes when we check it based
on stored values in the relation. We may leave this
functional dependency untouched because we may
have the same customer name which has different
data in the rest of the non-key attributes. In other
words, customerName attribute has key-like
characteristics.

3.1.2 Checking on contactLastName attribute
The found possible functional dependencies
between each pair of non-key attributes when we
consider attribute contactLastName first in relation
customers are as follows. Three possible functional
dependencies were found.

phone → contactLastName

addressLine1 → contctLastName

contactLastName → addressLine2

Moreover, by transitivity in Armstrong’s axioms,

we have

phone → addressLine2, and

addressLine1 → addressLine2.

3.1.3 Checking on contactFirstName attribute
The found possible functional dependencies
between each pair of non-key attributes when we
consider attribute contactFirstName first in relation
customers are as follows. Two possible functional
dependencies were found.

phone → contactFirstName

addressLine1 → contctFirstName

3.1.4 Checking on {contactLastName,
contactFirstName} attribute
Because a name consists of last name and first name,
the two related attributes, contactLastName and
contactFirstName can be considered as one attribute,
so the same process was performed to the other non-
key attributes to make pairs in checking possible
functional dependencies. The followings are found
possible dependencies.

{contactLastName, contactFirstName}
→customerName
customerName → {contactLastName,
contactFirstName}
{contactLastName, contactFirstName} → phone
phone → {contactLastName, contactFirstName}
{contactLastName, contactFirstName} →
addressLine1
addressLine1 → {contactLastName,
contactFirstName}
{contactLastName, contactFirstName} →
addressLine2
{contactLastName, contactFirstName} → city
{contactLastName, contactFirstName} → state

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 219 Volume 19, 2020

{contactLastName, contactFirstName} →
postalCode
{contactLastName, contactFirstName} → country
{contactLastName, contactFirstName} →
salesRepEmployeeNumber
{contactLastName, contactFirstName} →
creditLimit

In short, we found a possible functional
dependency,

{contactLastName, contactFirstName} →
{customerName, phone, addressLine1,
addressLine2, city, state, postalCode, country,
salesRepEmployeeNumber, creditLimit}, and three
other possible functional dependencies,

cunstomerName → {contactLastName,
contactFirstName}, and
phone → {contactLastName, contactFirstName},
and
addressLine1 → {contactLastName,
contactFirstName}.

 In short, attribute set {contactLastName,

contactFirstName} has key-like characteristics,
because they determine the values of all the other
non-key attributes uniquely.

3.1.5 Checking on phone attribute
The found possible functional dependencies
between each pair of non-key attributes when we
consider attribute phone first in relation customers
are as follows. Eight possible functional
dependencies were found.

phone → addressLine1
addressLine1 → phone
phone → addressLine2
phone → city
phone → state
phone → postalCode
phone → country
phone → salesRepEmployeeNumber
phone → creditLimit

In short, we found a possible functional

dependency,

phone → {addressLine1, addressLine2, city, state,
postalCode, country, salesRepEmployeeNumber,
creditLimit}, and one other possible functional
dependency,

addressLine1 → phone.

3.1.6 Checking on addressLine1 attribute
The found possible functional dependencies
between each pair of non-key attributes when we
consider attribute addressLine1 first in relation
customers are as follows. Seven possible functional
dependencies were found.

addressLine1 → addressLine2
addressLine1 → city
addressLine1 → state
addressLine1 → postalCode
addressLine1 → country
addressLine1 → salesRepEmployeeNumber
addressLine1 → creditLimit

In short, we found a possible functional

dependency,

addressLine1 → {addressLine2, city, state,
postalCode, country, salesRepEmployeeNumber,
creditLimit}.

3.1.7 Checking on addressLine2 attribute
No possible functional dependencies were found
between each pair of non-key attributes when we
consider attribute addressLine2 first in relation
customer. Most rows of addressLine2 attribute have
NULL values. The attribute has only 15 different
values in 122 tuples like values in {1 Garden Road,
27-30 Merchant’s Quay, 2nd Floor, 8 Temasek, 815
Pacific Hwy, Alessandro Volta 16, Bronz Apt. 3/6
Tesvikiye, Crowther Way 23, Floor No. 4, Level 11,
Level 15, Level 2, Level2, NatWest Center #13-03,
NULL}.

3.1.8 Checking on city attribute
The found possible functional dependency between
each pair of non-key attributes when we consider
attribute city first in relation customers is as follows.

city → country

The reason why this functional dependency
exists in the relation is that the limitation of data,
because different countries may have the same city
name so that almost no functional dependency exists
between city and country.

3.1.9 Checking on state attribute
No possible functional dependencies were found
between each pair of non-key attributes when we

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 220 Volume 19, 2020

consider attribute state first in relation customer.
Most rows of state attribute have NULL values.

3.1.10 Checking on postalCode, country,
salesRepEmployeeNumber, creditLimit attribute
No possible functional dependencies were found
between each pair of non-key attributes when we
consider attribute postalCode, country,
salesRepEmployeeNumber first in relation customer.

All in all, even though we have found many
possible functional dependencies in customers
relation, there is almost no room for further
normalization, because each customer has unique
non-key attribute values.

3.2 Employees relation
Employee relation has 23 tuples. So, the size of data
is not good enough for possible functional
dependency checking based on stored data in the
relation. Anyway, we check possible functional
dependencies for employees relation for each
combination of non-key attributes. We check the
attribute pair, extension and all the other non-key
attributes first in the set of non-key attributes,
{extension, email, officeCode, reportsTo,
jobTitle}. We do not check possible functional
dependencies of attribute set {lastName,
firstName} because they have key-like
characteristics.

3.2.1 Checking on extension attribute
The found possible functional dependencies
between each pair of non-key attributes when we
consider attribute extension first in relation
employees are as follows.

email → extension

Because different email addresses can share the
same extension number, there exists functional

dependency, email → extension, of many to one.

extension → jobTitle

Because different extension numbers can share
the same job title, for example, ‘sales
representative’, there exists functional dependency
of many to one of the above. By transitivity, we
have additional functional dependency,

email → jobTitle

3.2.2 Checking on email attribute
The found possible functional dependency between
each pair of non-key attributes when we consider
attribute email first in relation employees is as
follows.

email → officeCode

Because different email addresses can share the
same office code, there exists functional
dependency of the above, email → officeCode, of
many to one.

3.2.3 Checking on officeCode, reportsTo,
jobTitle attribute
No possible functional dependencies were found
between each pair of non-key attributes when we
consider attribute officeCode, reportsTo first in
relation employees.

All in all, we have the following possible
functional dependency in employees relation.

email → {extension, jobTitle, officeCode}.

Because we found a possible functional

dependency, extension → jobTitle, further
normalization may be considered.

3.3 Offices relation
Offices relation has eight non-key attributes of {city,
phone, addressLine1, addressLine2, state,
country, postalCode, territory}, but it has only
seven tuples, so that checking possible functional
dependencies for the relation for each combination
of non-key attributes is meaningless. For example,
we may have a possible functional dependency of
many to one, city → {phone, addressLine1,
addressLine2, state, country, postalCode, territory},
but it’s meaningless because of not enough number
of supporting tuples.

3.4 OrderDetails relation
OrderDetails relation has five attributes of
{ orderNumber, productCode, quantityOrdered,
priceEach, orderLineNumber} and 2,996 tuples.
Among them orderNumber and productCode
make a composite key. Therefore, we have to
check possible functional dependencies
between orderNumber and non-key attributes as
well as productCode and non-key attributes to

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 221 Volume 19, 2020

see that the relation schema satisfies the
constraints of the second normal form.
Moreover, possible functional dependencies
between non-key attributes to see that the
relation schema satisfies the third normal form.

3.4.1 Checking on orderNumber, productCode
attribute
There is no functional dependency from
orderNumber to non-key attributes,
{quantityOrdered, priceEach, orderLineNumber}
based on the stored values in the relation, and there
is also no functional dependency from productCode
to non-key attributes, {quantityOrdered, priceEach,
orderLineNumber} based on the stored values in the
relation, so that we can confirm that the relation
schema is in the second normal form.

3.4.2 Checking on quantityOrdered, priceEach,
orderLineNumber attribute
No possible functional dependencies were found
between each pair of non-key attributes when we
consider attribute QuantityOrdered, priceEach first
in orderDetails relation.

3.5 Orders relation
Orders relation has 326 tuples. We check possible
functional dependencies for orders relation for each
combination of non-key attributes, {orderDate,
requiredDate, shippedDate, status, comments,
customerNumber} except the attribute comments,
because the attribute can contain comments in
natural language. We checked all the attribute pair
of non-key attributes, and there are no possible
functional dependencies found between non-key
attributes based on the stored data.

3.6 Payments relation
Payments relation has four attributes of
{ customerNumber, checkNumber, paymentDate,
amount} and 273 tuples. Among them
customerNumber and checkNumber make a
composite key. Therefore, we have to check
possible functional dependencies between
customerNumber and non-key attributes as well as
checkNumber and non-key attributes to see that the
relation schema satisfies the constrains of the
second normal form. Moreover, possible functional
dependencies between non-key attributes
{paymentDate, amount} have to be checked to see
that the relation schema satisfies the third normal
form.

3.6.1 Checking on customerNumber attribute
There is no functional dependency from
customerNumber to non-key attributes,
{paymentDate, amount} based on the stored values
in the relation.

3.6.2 Checking on checkNumber attribute
There are functional dependencies from
checkNumber to non-key attributes, {paymentDate,
amount} based on the stored values in the relation.

checkNumber → paymentDate

checkNumber → amount

amount → checkNumber

Because checkNumber attribute which is a part
of the composite key functionally determines non-
key attributes {paymentDate, amount} based on the
stored values in the relation, further normalization
may be considered. Or, we may think the reason
why is that not enough number of tuples are stored
in the relation, in other words, it’s coincidence.

3.6.3 Checking on paymentDate, amount
attribute
The found possible functional dependency between
the non-key attributes based on stored data in the
relation is as follows.

amount → paymentDate

But, attribute paymentDate does not functionally
determine attribute amount based on the data. The
reason for the above found possible functional
dependency may be that not enough number of
tuples are stored in the relation.

All in all, for payments relation we have an

additional possible functional dependency by
transitivity,

checkNumber → paymentDate

We have two other possible functional

dependencies,

checkNumber →{ paymentDate, amount}

amount → {checkNumber, paymentDate}

3.7 ProductLines relation

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 222 Volume 19, 2020

The relation schema of productLines consists of
attribute set, {productLine, textDescription,
htmlDescription, image} where productLine is the
primary key, and the relation has only seven tuples.
The stored data for attributes htmlDescription and
image are NULLs, and the stored values for
attribute textDescription are explanation in natural
language, so that we don’t have to check possible
functional dependencies for each combination of
non-key attributes.

3.8 Products relation
We check possible functional dependencies for
products relation for each combination of non-key
attributes. The attribute productName is omitted for
the checking because the attribute has key-like
characteristics, and the attribute productDescription
is omitted also, because the attribute has explanation
in natural language. Products relation has 110 tuples.
We check the attribute pairs, productLine and all the
other non-key attributes first in the set of non-key
attributes, {productLine, productScale,
productVendor, quantityInStock, buyPrice, MSRP}.

3.8.1 Checking on productLine attribute
The found possible functional dependency between
each pair of non-key attributes when we consider
attribute productLine first in relation products is as
follows.

quantityInStock → productLine

The above possible functional dependency has
many to one relationship. For example, it has the
mapping of attribute values between
quantityInStock and productLine like {68, 1005, …}

→ {Classic Cars}, and there is no same amount of
quantity in stock for different lines. But, we can
infer that this phenomenon happened because of
relatively small amount of tuples in the relation.

3.8.2 Checking on productScale attribute
The found possible functional dependency between
each pair of non-key attributes when we consider
attribute productScale first in relation products is as
follows.

quantityInStock → productScale

The above possible functional dependency has
many to one relationship. For example, it has the
mapping of attribute values between
quantityInStock and productScale like {68, 1049, …}

→ {1:12} and there is no quantity in stock for
different product scales. But, we can infer that this
phenomenon happened because of relatively small
amount of tuples in the relation.

3.8.3 Checking on productVendor attribute
Two possible functional dependencies between each
pair of non-key attributes were found when we
consider attribute productVendor first in relation
products. The first one is as follows.

quantityInStock → productVendor

The above possible functional dependency has
many to one relationship. For example, it has the
mapping of attribute values between
quantityInStock and productVendor like {68, 600,

…} → {AutoArt Studio Design}, and there is no
same quantity in stock for different product vendors.
But, we can inter that this phenomenon happened
because of relatively small amount of tuples in the
relation. The second one is as follows.

MSRP → productVendor

The above possible functional dependency has
many to one relationship. For example, it has the
mapping of attribute values between MSRP and

productVendor like {60.67, 81.36, …} → {AutoArt
Studio Design}, and there is no same MSRP for
different product vendors. But, we can inter that this
phenomenon happened because of relatively small
amount of tuples in the relation.

3.8.4 Checking on quantityInStock attribute
Two possible functional dependencies was found
between each pair of non-key attributes when we
consider attribute QuantityInStock first in relation
products. The first one is as follows.

quantityInStock → buyPrice

The above possible functional dependency has
many to one relationship. For example, it has the
mapping of attribute values between

quantityInStock and buyPrice like {414, 540} →
{33.3}, and there is no same quantity in stock for
different product vendors. But, we can inter that this
phenomenon happened because of relatively small
amount of tuples in the relation.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 223 Volume 19, 2020

The other possible functional dependency is as
follows.

quantityInStock → MSRP

The above possible functional dependency has
many to one relationship. For example, it has the
mapping of attribute values between

quantityInStock and MSRP like {6645, 8197} →
{50.31}, and there is no same quantity in stock for
different MSRPs. But, we can inter that this
phenomenon happened because of relatively small
amount of tuples in the relation.

3.8.5 Checking on buyPrice, MSRP attribute
No possible functional dependencies were found
between non-key attributes when we consider
attribute BuyPriceEach and MSRP in relation
products.

All in all, we have the following possible
functional dependencies for relation products.

quantityInStock → {productLine, productScale,
productVendor, buyPrice, MSRP}, and

MSRP → productVendor

So, the attribute quantityInStock plays like a
candidate key among non-key attributes, and MSRP
functionally determines productVendor according to
stored data. Therefore, further normalization may be
considered.

4 Conclusion
Relational databases are important assets for online
transaction processing in operational databases, for
example, bank databases and airlines databases, and
normalization is very important to avoid anomalies
and data inconsistency in the relations of the
databases. But, normalization may be a difficult task,
since the designers of the databases may not fully
understand the domain of each attribute that
constitutes relation schemas, or they may not have
full understanding about the concept of
normalization. In this paper an efficient method that
checks the possibility of the need of further
normalization is suggested based on discovered
possible functional dependencies between attributes
in relations. The suggested method is examined
using sample relations provided by the organization
of MySQL tutorial, and showed the fact that some
further normalization may be needed. By checking

possible functional dependencies using the
suggested method that investigates stored data in the
relations efficiently, one may determine the need of
further normalization as shown in the experiments.

References:
[1] D. Ramel, Database Trends Report: SQL Beats

NoSQL, MySQL Most Popular,
[https://adtmag.com/articles/2019/03/05/db-
report.aspx], 2019.

[2] R. Elmasri and S.B. Navathe, Fundamentals of
Database Systems, 7th ed., Pearson, 2017.

[3] J. Liu, J. Li, C. Liu, and Y. Chen, Discover
dependencies from data – a review, IEEE
Transactions on Knowledge and Data
Engineering, Vol.24, No.2, 2012, pp. 251-264.

[4] T. Papenbrock and F. Naumann, A Hybrid
Approach to Functional Dependency Discovery,
Proceedings of the 2016 International
Conference on Management Data, 2016, pp.
821-833.

[5] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H.
Toivonen, TANE: An efficient algorithm for
discovering functional and approximate
dependencies, The Computer Journal, Vol.42,
No.2, 1999, pp. 100-111.

[6] L. Caruccio, S. Cirillo, V. Deufemia, and G.
Polese, Incremental Discovery of Functional
Dependencies with a Bit-vector Algorithm,
Proceedings of the 27th Italian Symposium on
Advanced database Systems, 2019, pp. 146-157.

[7] C. Wyss, C. Giannella, and E. Robertson,
FastFD: A heuristic-driven, depth-first
algorithm for mining functional dependencies
from relation instances Extended Abstract,
Proceedings of the International Conference of
Data Warehousing and Knowledge Discovery,
2001, pp. 101-110.

[8] P.A. Flach and I. Savnik, Database dependency
discovery: a machine learning approach, AI
Communications, Vol.12, No.3, 1999, pp. 139-
160.

[9] S. Kruse and F. Naumann, Efficient Discovery
of Approximate Dependencies, Proceedings of
the VLDB Endowment, Vol.11, No.7, 2018, pp
759-772.

[10] D. Dua and C. Graff, UCI Machine
Learning Repository
[http://archive.ics.uci.edu/ml] Irvine, CA,
University of California, School of
Information and Computer Science, 2019.

[11] C.J. Date, Introduction to Database Systems,
8th ed., Pearson, 2003.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 224 Volume 19, 2020

[12] MySQLTUTORIAL.org,
[https://www.mysqltutorial.org/mysql-sample-
database.aspx], 2020.

[13] Datanyze, [https://www.datanyze.com/market-
share/databases--272/mysql-market-share],
2020.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.20 Hyontai Sug

E-ISSN: 2224-2880 225 Volume 19, 2020

