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Abstract: Theoretical physics is taking an increasing part in the universe of mathematics. After calculus, vector
and tensorial analysis, topological theories make their entry into quantum field theories. More precisely, in this
domain, topological theories are the most relevant. A fundamental theorem of the Atiyah has important repercus-
sions in several branches of quantum physics in the geometric approach. We can cite the work of Alain Connes on
non-commutative geometry, but also all the developments due to Donaldson, E. Witten around Gauge theories, su-
perstring and Mirror Symmetry. We present here an historical survey of some topological field theories, especially
Mirror Symmetry to understand the interpenetration between quantum physics and topology.
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1 Introduction
The introduction of supersymmetric theories into two-
dimensional field theories has helped to strengthen the
links between geometry and physics. The formalism
of string theory takes root around two-dimensional
conformal fields theories, the special structure of the
source manifold(Riemann surface) and supersymme-
try which extends Noether symmetry by the addition
of superymetric variables made it possible to extend
the BRST formalism to make these theories topo-
logical. The computation of correlation functions in
which points are replaced by classes of cohomologies,
lead to define spaces of instantons (moduli spaces)
whose dimension calculated by the index theorem can
be made equal to zero by adding certain constraints
and lead to staging enumerative geometry. At the
same moment, Gromov and Witten [1] realize the
importance of the concept of ”curves” in symplectic
geometry, A little later, a very elaborate form of T-
duality, the mirror symmetry, played a decisive role to
calculate some invariants of (Gromov Witten invari-
ants) for the quintics treefold .The presentation will
give some of the stages of this intellectual develop-
ment and the relevance of the coupling between geom-
etry and physics. From the tools that will be exposed
in this paper , our goal is to identify the baground ge-
ometry and physics to understand the T-duality and
mirror symmetry of models A and B. The past re-
cents years have seen the gradual fusion of geometry
and physics. This program initiated at the start of the

twentieth century by Einstein has not stopped grow-
ing since. There are several key period. The first be-
tween 1915 and 1930 sees the birth of Einstein’s gen-
eral relativity and that of the works of Oscar Kaluza
and Felix Klein, the first attempt is to unify the fun-
damental interactions known at this moment: Rela-
tivity and electromagnetism. In addition returns to
Klein the idea taken up by string theorists is then of
rolled dimensions. Then quantum mechanics comes
on the scene making us forgetting geometry a bit in
favor of functional analysis and probabilities. Geom-
etry comes back on the scenein the fifties with the
notions of bundles and connections in differential ge-
ometry. The Yang-Mills theory, an example of a non-
Abelian gauge theory modeled on the bundle SU(2),
comes into play. It prefigures the time of gauges theo-
ries in four dimension. Finally a third period begins
at the start of the adaptation of supersymmetric mod-
els to string theory in the nineties . A first model of
superstrings is born, Theory of superstrings of type
I . it continues until now. Geometry is present ev-
erywhere; A string can be seen as a parameterized
”complex” curve: a map of a Riemann surface in a
Lorentzian manifold (bosonic strings). A superstring
evolves in a richer space, a special complex manifold:
called Calabi-Yau. Thus we can modelise the classi-
cal evolution of a string as the evolution of a point par-
ticle in space time. One of the big differences lies in
the fact that an interval of time the source space of the
classical theory must be replaced by a richer topolog-
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ically space namely a riemann surface. In the same
way the target space is a particular Kahlerian manifold
.That explains why the developments in algebraic ge-
ometry mainly due to Alexander Grothendieck at the
beginning of the sixties, those of Atiyah about in-
dex theorem and developments K-topological the-
ory, those of Kodaira and Spencer on the theory of de-
formations of complex manifold, those of Misha Gro-
mov in the mid-eighties on the theory of holomorphic
curves will play a major role in understanding this
physical theory.
We will discuss a little bit about geometric model-
ing of string theory and especially mirror symme-
try. String theory developed considerably thanks to
the progress of complex geometry and algebraic ge-
ometry in the fifties during the Cartan seminar and
then in the sixties thanks to Alexander Grothendieck.
The beginning of the sixties sees the result of the
demonstration of the Index theorem by Atiyah [2]
which reconciles analysis and topology. This will
later calculate the dimension of spaces, of modulus
of curves. This theorem is in fact a smoother and
more flexible version of the Riemann-Roch theorem
[4] obtained in algebraic geometry. With the proof
of the index theorem, we see the development of the
K-topological theory extending algebraic topology to
fiber bundles and which will be of the greatest im-
portance in open string and branes theory to deal
with the difficult question of topological defaults and
hope to have an intrinsic and non-disturbing vision
of the theory of everything. It should also be noted
that these analytical-topological developments will be
taken up in the symplectic version of string theory.
Faced with the rigidity of the notion of holomorphic
functions, Misha Gromov will enrich the landscape
of complex and symplectic geometry by putting for-
ward the notion of curves before that of functions.
The genial idea comes back to being interested in the
sections: holomorphic curves rather than in holomor-
phic functions, thus the landscape of geometry will
be revisited through parametric curves (the parame-
ters of evolution are found those of the classical string
evolving in a space-time; in parallel algebraic geom-
etry is developed and the theory of deformation born
from Kodaira-Spencer’s [5] work in complex geome-
try, derived functors enrich symplectic developments.
Thus through derived functors algebraic geometers
will provide complementary tools study of stable bun-
dles on algebraic curves and enrich the tools from the
K -theory for the study of branes.

2 Quantum field theory
2.1 Field theory and symmetries

The concept of field is fundamental in physics. A
field ϕ is a function of a source space (world sheet
for string theory ) into a target space, M with a suf-
ficient number of dimensions. So this given a ”pack-
age” (Σ,M, ϕ) and a classical action: S where: Σ is
the source space, often a manifold: for The classical
mechanic of the point is the time axis (world line). For
the conformal field theories like bosonic string theo-
ries: Riemann surface ...
Lagrangian density is a function on one or more fields
and its first derivatives:

L = L(ϕ1, ϕ2, ..., ∂µϕ1, ∂µϕ2...) (1)

Classical action is the integral of the classical La-
grangian density on space S =

∫
Ldn+1x

Principle of least action: The minimization of the ac-
tion: (δS = 0, leads to each field noted just ϕ to the
Euler-Lagrange equation which gives the equations of
motion of the particle

∂L
∂ϕ
− ∂µ(

∂L
∂(∂µϕ)

) = 0 (2)

2.1.1 Noether Symmetries

Symmetry of the action: the role of symmetry in
physics is essential. We want, for example, such ac-
tion invariant through a transformation like transla-
tion, rotation ...: if ϕ→ ϕ+ δϕ alors S → S + δS
Noether’s theorem say: through any symmetry, the ac-
tion is the same: δS = 0 for example, in the case of
the free particle, the symmetry by translation is equiv-
alent to the conservation of momentum p = mẋ

2.2 From Field Theory to Quantum Field
Theory

A quantum field theory can be seen in through a clas-
sical action quantified from the path integral. We can
then define the correlation functions dependent on se-
lected observable. These functions depend, for exam-
ple, the metric that is chosen on the target space.

2.2.1 Quantum fields, QFT

Uncertainty on the position or momentum in quantum
mechanic led to replace the classical solution (least
action) by the partition function or the set of all possi-
ble solutions: It is the path integral

Z =

∫
Σ→M

e−S(ϕ)Dϕ (3)
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Similarly, one can calculate correlation functions, or
functions with n marked points.

< ϕ1(x1), ..., ϕn(xn) >=∫
Σ→M

ϕ1(x1)...ϕn(xn)e−S(ϕ)Dϕ
(4)

The simplest example which is the leitmotif of
the theory of renormalization is the two-dimensional
model on lattice , is the Ising model: Here Σ is a lat-
tice:

∧
and M = +,−

| + | + | + | + |
− − − −

| µ(t1) | − | − | + |
− − − −

| + | + | − | + |
− − − −

| + | + | + | µ(t2) |
− − − −

| µ(t3) | + | + | + |

Figure 1: Ising model

The figure represents the Lattice and correlations
between some marked points.

Here the action is: S(µ) = − β
2π

∑
|t−s|=1 µ(t)µ(s)

Correlators are defined as mean values in some
lattice points :

< µ(x1), µ(x2), ..., µ(xn) >=

ΣMap(Σ,M)µ(x1)...µ(xn)e−S(µ)Dµ
ΣMap(Σ,M)e

−S(µ)Dµ
(5)

3 Quantum field theory for strings
The quantum field theory adapted to string theory is
the conformal field theory [6]. this theory is very com-
plex for the mathematician and it is not our purpose
to describe it completely. Let us remember, however,
that the evolution of a string can be described by a Rie-
mann surface or complex curve. the adapted model is
the sigma model, and particularly, the supersymmet-
ric sigma model. In this model, the source space is a
Riemann surface and for the moment, the target space
supposed to be a complex variety.

3.1 Moduli space of Riemann Surfaces

In the extended field theories used for string theory,
in quantum field theory, the word line that leads to
the definition of Feymann diagrams is replaced by the
world sheet: a Riemann surface. Riemann’s theory of
surfaces can nowadays be considered successful. We
can see them from the angle of symplectic geometry
where an important parameter is the area, or from the
angle of complex geometry , the important parameter
is then the complex structure J adopted. We will see
from the angle of mirror symmetry, these parameters
are in duality. A whole mathematical engineering can
then be carried out, leading to the definition of spaces
of moduli of curves stabilized by the addition of
marked points. These concepts have been well known
since the work of Riemann and Roch. Conformal
field theory uses these results to define the concept
of sigma model, and the concepts of stable curves
and stable maps generalize the Feynman diagrams
and n-point correlation functions of quantum field
theory.

3.2 The Mathematics of Gromov and
Grothendieck

The global study of schemes or varieties is very dif-
ficult. Grothendieck already started studying moduli
of curves, more malleable, as that means study object
through its sections which is much easier. Gromov
noted that. There are very few holomorphic functions
on a complex manifold or almost-complex like sym-
plectic manifolds.
The big idea of Gromov [7] is to consider the study
of a symplectic manifold through its sections that are:
holomorphic curves: In mathematics the worldsheet is
a curve (Riemann surface), the evolution of a bosonic
string that is a field of Σ → X is a parameterized
curve. We can present the Gromov-Witten invari-
ants by one of these two views Symplectic Geometry
(Ruan, Tuan) [1], Algebraic Geometry (Pandaripande,
Katz) [8].

3.3 Symplectic geometry and pseudoholo-
morphic curves

Recall that a symplectic manifold is a differential
manifold equipped with a 2-closed form ω : (M,ω).
The simplest example is R2n and ω =

∑
dxi ∧ dyi,

We can also consider the space Cn or create new com-
plex structures J which are all integrable. Thus R2n

can be endowed with a structure of simplectic man-
ifold which is not always the case. A parameterized
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curve is a map: ϕ : (Σ, j)→ (M,J), where j is an al-
most complex structure on Σ, J be an almost complex
structure on the target. A parametrized curve is holo-
morphe if its differential verifies equations of Cauchy-
Riemann: J ◦ dϕ = dϕ ◦ j, (the differential is C lin-
ear).

3.4 Riemann-Roch formula moduli space of
curves

For now we place ourselves in the more general
context of algebraic geometry. We recall here the
Riemann-Roch formula for a curve, is the case of
Riemann surfaces or Riemann surfaces with marked
points which interests us here: Mg, Mg,n respec-
tively. That need to define The moduli space of curves
of genus g, and the moduli space of curves of genus g
with n marked points:
Riemann Roch formula for a curve
The Riemann-Roch formula gives:

dimCH
0(TΣ)−dimCH

1(TΣ) =

∫
Σ
ch(TΣ)td(TΣ)

(6)
Specifically, dimCH

0(TΣ), consider the infinitesimal
automorphisms, dimCH

1(TΣ) is the complex dimen-
sion of moduli space of curves. For a Riemann surface
of genus g yields: Dimension ofMg:

dimCH
0(TΣ)− dimCH

1(TΣ) = 3− 3g (7)

dimCMg = 3g − 3 + dimCH
0(TΣ) (8)

Riemann-Roch formula for a map, curves, stable
maps Make first application of the formula above:
H0(TΣ) count the number of marked points need to
stabilize the curve thus:

g ≥ 2 : dim(H0(TΣ)) = 0): dim(H1(TΣ)) =
dim(Mg) = 3g − 3
if g = 1 : H0(TΣ) = C: dim(H1(TΣ)) =
dim(Mg) = 1
if g = 0 : dim(H0(TΣ)) = 3: H1(TΣ) = Mg is a
point.
We will therefore focus our attention on stable curves
(and maps) . Let φ : Σ→ X be a holomorphic curve
The Riemann-Roch formula gives in this case:

dimCH
0(φ∗TX)− dimCH

1(φ∗TX)

=

∫
Σ
ch(φ∗TX)td(Σ) = n(1− g) +

∫
Σ
φ∗c1(TX)

(9)

3.5 Curves, stable maps, moduli spaces

In genus 0, an automorphism of P 1(C) is determined
by the images of three distinct points, that is to say au-
tomorphisms which fix two points form a no discrete
subgroup PGL(2,C),
we will therefore infinitesimal automorphisms. To
get rid of infinitesimal automorphisms: stabilize the
curve, we must add ”marked points” doing the curve
is stabilized.
A stable curve is a curve on which we added enough
marked points to kill the infinitesimal automorphisms.
A stable map is a parametric curve (Σ, (x1, ..., xk), ϕ)
for which Σ is stable. We can now give the defini-
tion of the moduli space of stable maps with k marked
points:Mg,n(X,β).
We define the space:
Mg,n(X,β) = {(Σ, (x1, ..., xn), ϕ), ϕ : Σ →
X,ϕ∗(Σ) = β}/ ∼ where ∼ are quotient by the
group of reparameterization.
The space considered above is not compact in gen-
eral, we denoteMg,n(X,β) its compactification, this
amounts to add singular curves .

3.6 (Virtual) dimension space of holomor-
phic curves

From the two previous formula (Riemann-Roch for
curve and parametric curve), we can deduce the
”virtual” dimension of moduli space of holomorphic
curves. For this we can use an exact sequences.
Consider the long exact sequence in cohomology
associated to the exact sequence:
0→ TΣ → f∗TX → NΣ/X → 0
For details see Pandharipande works [9]
The Dimension ofMg(X) is given by combining the
two forms of the Riemann-Roch previous:
dimvirtMg,n(X,β) = (dimX)(1 − g) +∫
f∗(Σ) c1(TX) + 3g − 3 + n

We could find directly this result in symplectic case
(varieties that are treated are thus symplectic Kahler)
relying on the index of a Fredholm operator for an
elliptic complex adhoc.

The spaces of modules of curves are compacted
to take account of singularities, and stabilized by quo-
tient by a group of automorphism. They correspond
to orbifolds for physicists . In the language of alge-
braic geometry, the adapted structure is that of alge-
braic stack. We can determine a (virtual) dimension to
these spaces given by Riemann Roch’s theorem which
is a rigid version of the Atiyah Singer index theo-
rem. One application in mathematics is the counting
of curves passing through a certain number of marked
points. it is enumerative geometry. In Mathematical
Physics, the correlation functions resulting from this
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theory leads to the invariants of Gromov Witten (The-
ory of supersymmetric strings, A- Model of Witten),
or the invariants of Donaldson [10] For the study of
four manifolds.

4 Gromov Witten invariant, A-Side
of mirror symmetry

Witten [11], to show that the introduction of super-
symmetry, made it possible to localize incalculable
path integrals around the critical configurations.

that are instantons. In the case of the superstring
theory, the A-model shows that these instantons
are precisely the holomorphic curves satisfying the
Cauchy Riemann conditions. Suddenly the path inte-
grals become computable in particular, the correlation
functions can be seen as the invariants of Gromov
Witten. In the appropriate cases, those where the
instabilities have been killed, these invariants become
numbers. is called Gromov-Witten invariant quantity:

< [ω1], ...[ωn] >β=

∫
[Mg,n(X,β)]

ev∗([ω1])∧...∧ev∗([ωn])

(10)
In this script we used an evaluation map:

evi :Mg,n(X,β)→ X : (Σ, x1, ..., xn, ϕ) 7→ ϕ(xi)
(11)

and the dual map:

ev∗i : H∗(X)→ H∗(Mg,n(X,β)) : [ωi] 7→ ev∗i ([ωi])
(12)

Kontsevich [12], early nineteen nineties gave an
elementary model by considering the holomorphic
curves of P 1(C) in P 2(C), he thus obtained an iter-
ative formula allowing to know by how many point
passes a curve of any degree: Inspired by Feymann
diagram he showed that There Nd the number of
curves of degree d through 3d− 1 points, given by:

Nd =
∑

d=d1+d2

Nd1Nd2(d2
1d

2
2C

3d−4
3d1−2 − d

3
1d2C

3d−4
3d1−1)

(13)
By applying this formula, we find: N2 = 1, N3 = 12,
N4 = 620

4.1 Back physics!

We return now to our case for the supersymmetric A
model of Witten, take X Calabi-Yau 3 included in
P4(C)
It is known that Calabi Yau Ricci-flat is that means:

∫
Σ ϕ
∗(c1(X)) = 0 In These conditions, the dimen-

sion ofMg,n(X,β) is given by:

dim(Mg,n(X,β)) = −3 + 3g + dimX(1− g) + n
(14)

If g = 0 and dimX = 3 we get: dim(M0,n(X,β)) =
n
In M0,n(X,β)) as deg([H]) = codim[H] = 1 it
takes n hyperplanes in< [H], ..., [H] >β to make this
non-trivial correlation function.
For n = 3, we have the three points correlation func-
tion or ”pant”: n = 3, < [H], [H], [H] >β , basic
”lego” of topological fields theory .

4.2 Example 2: Calculating the correlation
function at three points: the problems,
the mirror symmetry

The calculation of correlation functions by direct
methods namely ’A’side of the mirror is not easy: if
you expand you have:
< [H], [H], [H] >=

∑
β < [H], [H], [H] >β

e−
∫
β ω.

A conjecture of Clemens [13] said we cannot calcu-
late this number due to a problem of multiple cover-
ings, which contradicts the expected dimension of 0
for space applications module with 0 runs scored.
To survive we must work on the other side of the mir-
ror. mirror symmetry The objects we work with in
enumerative geometry are Kahler forms and param-
eterize deformations of this form. Mirror symmetry
says that one can express the same physical setting
deformations of complex structure on a variety mirror
and identifying the correlation functions from the two
models.

5 Mirror symetry for closed strings
The mirror symmetry postulate that there are two
viewpoints to represent the physics of fermionic
strings. The relevance comes from the fact that some
problems not solvable from a certain point of view are
on the other. Mirror symmetry is a very accomplished
form of T-duality: appeared in bosonic theory which
states that the partition function remains unchanged

in the change R ↔ 1

R
, where R denotes the radius

of compactification of extra dimension. In a bosonic
field theory, where the source space is the cylinder
and target a torus, one can notice that the T-duality
exchange symplectic structure deformation (area) and
deformation of complex structure. In this ”survey”,
we will introduce tools from physics and mathemat-
ics for understanding some aspects of mirror symme-
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try. Especially we construct the mirror map locally
as historically Morrison [14] has presented this theory
for closed strings. In addition, we briefly explain the
implications in enumerative geometry.

5.1 Theory ϕ4 and complex geometry

The model of Ginzburg Landau plays a decisive role
on the B-side of the mirror. We will look at the admis-
sible deformations ( marginal distortions ) preserving
certain symmetries. Starting from the Lagrangian in
ϕ4:
LLG = ∂µφ∂µφ − V (T, φ) where V (T, φ) =
1
4!λ(t)φ4 + 1

2!µ
2(t)φ2 At the critical temperature Tc

”mass”, µ2(Tc) = 0, so the correlation length (in-
verse mass) is infinite. At this temperature the field

φ0, solution of
∂

∂φ
V (T, φ) is zero three times degen-

erated. A small perturbation V (Tc, φ) → V (Tc, φ) +
δµ2(T )φ2, solves the singularity and the is ”symme-
try breaking”. The challenge is to find ways to per-
turb marginally a potential in order to preserve the
symmetry and defined by the fact a critical family of
superpotentials.

5.2 Marginal deformations, Calabi-Yau hy-
persurfaces

The superpotential is an holomorphic function
W : CM → C is chosen as a potential
V (x) =

∑N
1 |∂iW(X)|2 =

∑N
1 ∂iW(X)∂iW(X)∗

if we consider only one field, one can consider the
functionW(X) = 1

(n+1)!X
n+1

The bosonic part of the supersymmetric Lagrangian
is written then:
LLGN=2 = −∂+X

∗∂−X + ∂−X
∗∂+X + V (X)

There is: V (X) = 0 ⇔ ∂iW(X0) = 0, so it is

relevant to define the Chiral ring RW =
C[X]

∂W(X)
where the ratio is proportional to the polynomials
of ∂iW(X) : P (X) = P i(X)∂iW(X) defor-
mations respecting the Chiral ring are given by:
Wdef (X) =W(X) +

∑
P∈RW tPP (X)

If we choose W(X,Y, Z) =
1

3
(X3 + Y 3 + Z3),

the deformed potential is given byWdef (X,Y, Z) =
W(X,Y, Z) + t0 + t1X + t2Y + t3Z + t4XY +
t5Y Z + t6ZX + t7XY Z
Only the non vanishing term µ = t7 preserves the
critical situation, and does not break the Z3 symmetry
(X,Y, Z)→ (exp(2kiπ

3 )X, exp(2kiπ
3 )Y, exp(2kiπ

3 )Z)
we have defined a family of continuous deformations
allowed:
Wdef (X,Y, Z, µ) =

1

3
(X3 + Y 3 + Z3) + µXY Z of

the initial potential. The hypersurface of a complex
projective space obtained by canceling this is the The
simplest example of Calabi-Yau. Is an elliptic curve
or complex torus .Calabi-Yau variety is a Kahlerienne
Ricci flat which is to say: the canonical bundle is
trivial. There are , among other, K3 surfaces involved
in branes theory and the quintic threefold for closed
strings. The easiest way to realize the Calabi-Yau is
to consider an hypersurface of a complex projective
space. There is a strong constraint between the degree
of a hypersurface and the dimension of the ambient
space. Subsection Example of a Calabi-Yau Let us
write the exact sequence associated to a hypersurface
of degree d:
0→ OPn+1(−d)→ OPn+1 → OX → 0
With exact long sequence in cohomology, one can
calculate the cohomology groups associated.

The Result: Hn(X,OX)=CC
d−1
n−1 = C (condition

Calabi-Yau) Necessarily d = n +2

• n = 1 (d = 3): Elliptic Curves

• n = 2 (d = 4): K3 Surfaces

• n = 3 (d = 5): Quintic threefold

5.3 Deformations, mirror symmetry
We can focus on two types of deformations of Calabi-
Yau: the deformations of symplectic structure and
those from its complex structure. The tangent space
of complex structure is H1(X,TX) ' H2,1(X),
can consider the deformation of complex structure
(J deformation). the Kähler structure is governed by
H1,1(X) = H1(X,Ω1

X) There are two field theories
( textbf CFT) supersymmetric duality in satisfactory:
h2,1(X) = h1,1(MX) and h1,1(X) = h2,1(MX):
deform the complex structure of X is equivalent to
deform the volume of his mirror.
diamond Hodge plots the Hodge numbers of a
complex manifold
Hodge Diamond for Calabi-Yau Quintic Threefold

h0,0 = 1

h1,0 = 0 h0,1 = 0

h2,0 = 0 h1,1 = 1 h0,2 = 0

h3,0 = 1 h2,1 = 101 h1,2 = 101 h0,3 = 1

h2,0 = 0 h1,1 = 1 h0,2 = 0

h1,0 = 0 h0,1 = 0

h0,0 = 1

5.4 ”B side” Origin of Physics

On the A Side, supersymmetric constraints lead to
what the action does depends only on the the Kähler
form; instantons are holomorphic curves. The calcu-
lation of correlation functions is difficult because it
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takes into account correction on the degree curves (in-
variants of Gromov-Witten) On the side ”B”, BRST
Formalism explained in the other side of the mirror
applies here: instantons are constants maps from the
world-sheet Σ on a point of target spaceX . The corre-
lation functions are simpler to calculate: they require
no instanton correction.
If X is a Calabi-Yau 3, the 3 points correlation func-
tion is:
〈WAWBWC〉 =

∫
X ΩjklAj ∧Bk ∧ Cl ∧ Ω

A,B,C belong to H1(X,TX) and depend on the
complex structure, Ω is (3.0) top-form holomorphic.
The two numbers h1,1(X)=1 and h2,1(X) = 101,
count the number of deformation structures respec-
tively Kähler and complex. The principle of mirror
symmetry, gives h1,1(MX)=101 and
h2,1(MX) = 1. He said in addition that correlation
functions calculated from both sides of the mirror are
identical . The Mirror map associated parameter of
deformation of Kalher structure with parameter of de-
formation of complex structure. If a problem is diffi-
cult at the A side, we can try to solve it at the B side.
In mathematics passing through the mirror applica-
tion can solves so important old problem of Enu-
merative geometry

5.5 The Quintic and its mirror

Recall that the homogeneous quintic in P4, is
obtained by canceling the superpotential: W=
1
5(X5

0 + ...+X5
4 )

A marginal deformation of this superpotential is
almost the variety expected the variety mirror quintic
is associated with the crepant resolution of:

{(X0, ..., X4) ∈ P4/1
5(X5

0 + ...+X5
4 )−µX0...X4 =

0}/G

with G = {(a0, ..., a4) ∈ Z/5/
∑
ai =

0}/Z/5={(a,a,a,a,a)} ' (Z/5)3

5.6 Program

location The overall construction of the mirror
map is difficult. Should be localize and built the
map at the neighborhood of a point.

Plan of the study
X denote the Calabi-Yau, MX its mirror .

• We must first calculate the Yukawa cou-
pling H1(MX,TMX)

• Identify by the mirror map.

• Deduce the Yukawa couplings of H1,1(X)

One can deduce predictions about the number of ratio-
nal curves inX We will briefly describe in the follow-
ing useful mathematics for the B-side the Quintic.

5.7 Mirror-map

The principle of mirror symmetry says that
< H,H,H >=< θ, θ, θ >, if tH denotes an
curve parameter in the module of Kahler X we set
H = d

dt = 2πiq ddq its tangent vector (q = exp(2πit)
Local coordinates for this module.
The problem is to produce an image q(x) in module
complex deformations was: q = q(x), d

dq →
dx
dq

d
dx

Then we can write H = 2πiq ddq )↔ θ = 2πiq dxdq
d
dx

< H,H,H >= (2πiq ddq )3 < d
dx ,

d
dx ,

d
dx >=

(2πi qx
dx
dq )3 < x d

dx , x
d
dx , x

d
dx >

5.8 Mathematical Tools

The simplest examples of Calabi-Yau are elliptic
curves. They will guide us to understand the tech-
niques identified below and set the mirror applica-
tion. Monodromy: For a flat bundle,go around a sin-
gular object centred in t = 0 at constant distance
|t|, (t:deformation parameter of a smooth family) is
namely monodromy in mathematics. In physics we
talk about loop Wilson. Residue map: We can gener-
alize the formula for residues of a complex variables
function around z = 0 by replacing function differ-
ential forms and point by hypersurface. This will be
very useful for calculating periods.

5.9 Elliptic curves

The elliptic curve Eτ = C/(1, τ) is a Calabi-Yau of
complex dimension 1. The volume form is given by
Ω = dz
Hodge Numbers: Hodge diamond is:

h00

h10 h01

h11

=
1

1 1
1

The one parameter family of deformations of an ellip-
tic curve is:
X3 + Y 3 + Z3 − 3ψXY Z = 0
If α and β are homology cycles , they depend then ψ,
we can find τ to from ratio periods:

∫
α Ω,

∫
β Ω.

Solving a differential equation called Picard-Fuchs

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.4 Philippe Durand

E-ISSN: 2224-2880 45 Volume 19, 2020



5.10 Family of elliptic curves, monodromy

degeneration of a family of curves

X [d]π ⊃ Xt[d]t 6= t′Xt ' X ′t
D2 3 tt = 0X0 : sing.

Theoremmonodromy : EitherXt where t varies
along a loop in π1(D2 − {0}, t0) around 0, (Wilson
loop), all elements of this family are diffeomor-
phic .This induces an automorphism on homology:
ϕ? ∈ Aut(Hn(Xt0),Z)) Pratical Example Let’s
illustrate by taking a one parameter family of elliptic
curve Ct = {(Y 2Z = X3 + X2Z − tZ3} ⊂ CP2

which is expressed
in affine coordinates: Ct : y2 = x3 + x2 − t: elliptic
curve defined by an algebraic equation.
The parameter t of the elliptic curve is the signature
of the variation of complex structure, the geometric
expression is Eτ = C/(1, τ(t)) when t revolves
around the origin τ(t)→ τ(t) + 1 with τ function of:
t: τ(t) = lnt

2πi
At the automorphism group:(
τ(t)

1

)
→
(

1 1
0 1

)(
τ(t)

1

)
=

(
τ(t) + 1

1

)
We find that the complex structure varies but the

symplectic structure is unchanged.
We justify the choice of new coordinate q(t) =
e2πiτ(t), because a passage to the limit gives: when
t → 0, Imτ(t) → +∞, so q(t), where q(t) is
an holomorphic function of t which also go to 0;
so it is a local coordinate for this family of elliptic
curves. We spoke in physics: large complex structure
limit(WSCC) in ”bijection” with large volume limit
(LVL) on the A side

5.11 Application to the quintic

Is the quintic
∑4

i=0 x
5
i −ψx0x1x2x3x4 = 0. As with

elliptic curves, Morrison showed by standing near
x = ( 1

ψ )−5 = 0 we could find t (side strain Kähler
) from of ψ (or x).

As with elliptic curves, t =

∫
γ1

Ω∫
γ0

Ω
, we must calculate

the periods φi(x) =
∫
γi

Ω, i = 1, 2. γ0 is invariant un-
der monodromy around x = 0 (large complex struc-
ture limit (WSCC )), ψ →∞ ψ →∞ γ1 → γ0 + γ1.
Both quantities depend on ψ (or x)
We can compute locally the three forms (*) Ω using a
version ”differential form” of theorem of residue (and
the theorem of implicit function) and deduce by direct

calculation , the first period.
The equation called Picard Fuchs calculates the other
period. Finally, we find:
φ0(x) =

∑∞
n=0

5n!
(n!)5

xn

φ1(x)=φ0(x)log(x) + f(x),
with
f(x) = 5

∑∞
n=0

5n!
(n!)5

(
∑5n

j=n+1
1
j )xn

5.12 Calculation of Yukawa couplings
quoted B

Let Θ(i) = (x d
dx)(i), the equation of Picard-Fuch

written:

Θ(4)y + 2.55x
1+55x

Θ(3)y + 7.54x
1+55x

Θ(2)y + 2.54x
1+55x

Θ(1)y +
2.55x
1+55x

Θy = 0
It is applied to Ω:
If Y =

∫
MX Ω ∧Ω(3),

∫
MX Ω ∧Ω =

∫
MX Ω ∧Ω′ =∫

MX Ω∧Ω” = 0, twice differentiating the last equal-
ity we have:

∫
MX Ω ∧ Ω(4) + 2

∫
MX Ω′ ∧ Ω(3) = 0

We deduce the differential equation (x d
dx)Y =

−55x
1+55x

Y

The solution is Y =< x d
dx , x

d
dx , x

d
dx >= c2

1+55x
We must normalize Y in agreement with (*) and then
divide Ω by Φ0(x) Thus:
< x d

dx , x
d
dx , x

d
dx >= c2

(1+55x)φ0(x)2
For identifica-

tion,
< H,H,H >= (2πi qx

dx
dq )3 < x d

dx , x
d
dx , x

d
dx >=

c2(2πi q
x
dx
dq

)3

(1+55x)φ0(x)2

5.13 Conclusions: Application to enumera-
tive geometry

The parameter t Kahler deformation, expressed as a
function of the ratio of the first two periods, we get:

q = e
2iπ

φ1(x)
φ0(x) Where:

q = c1(x − 770x2 + ...) and conversely
x = q

c1
+ 770( qc1 )2 + ...

We can now calculate everything according to the
variable q:

< H,H,H >= (2πi)3(−c2 − 575( c2c1 )q −
19575( c2

c21
)q2 + ...)

It remains to calculate the constants c1 and c2.
We remember that it was not enumerate rational
curves of degree nd is known for first degrees, which
calculates c1 and c2.
< H,H,H >= 5+

∑∞
d=1 ndd

3 qd

1−qd = 5+2875q+...
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We deduce c2 = −5
(2πi)3

, c1 = −1 Finally, we can
enumerate the number curve of a rational quintic of
P4 all degrees < H,H,H >= 5 +

∑∞
d=1 nd

d3qd

1−qd =

5 + 2875 q
1−q + 609250.23 q2

1−q2 + ...

6 Homological mirror symmetry
It was previously presented a mirror symmetry involv-
ing the closed strings, supposed to translate gravita-
tion. One may wonder if such a theory can be adapted
to open strings: the answer is yes. We have seen that
mirror symmetry was an elaborate form of T -duality.
But how to translate the number of winding in the case
of open strings. The answer to the previous question
exists: you can wind an open string provided that its
ends are fixed on a branes. Thus the mirror symme-
try of the open strings is based on this duality ”open
strings-branes”.
In axiomatic theory of homology, we often consider
the relative homology of a space by a subspace:
H∗(A,B). In fact we can do the same in topologi-
cal field theory; One can replace in theory of fields the
source space Σ by the pair (Σ, ∂Σ), and thus think, for
example of the evolution of an open string whose ex-
tremities are constrained to remain fixed on a brane(s).
This approach would describe all of the particles, not
just gravitation. in this theory, in fact, the particles
of the standard model U(1) × SU(2) × SU(3) are
seen as open strings fixed on a brane: the universe in
which we evolve. A D- Geometric Brane is a triple
(L,E,∇E) where L is a sub-manifold of dimension
real p: L included in (M,E), a vector bundle and
∇E a connection on E. An open string of origin
(L,E,∇E) and target (K,F,∇F ) is a map X from
I = [0, 1] ∈M with X(0) ∈ L, X(1) ∈ K . We also
call ”open string story”, a map from of the open Rie-
mann surface . Σ = I×R ∈M withX(0, t) ∈ L and
X(1, t) ∈ K these fields are supposed to be holomor-
phic curves on the A side: Symplectic side. But why
a bundle E and a connection?: A elementary parti-
cle is charged by a gauge field for the electron it is the
Maxwell field of groupU(1), For a quark the charge is
its color: Yang Mills field, so we associate with an el-
ementary particle a bundle E and its associated con-
nection. By analogy , at each end of an open string, is
associated the couple (E,∇E). In the story of a par-
ticle, or of the ends of an open string, we are led to
consider the holonomy of the connection (linear map)
from E|φ(t1) to E|φ(t2). By identifying the N branes
between them, we can describe the interactions be-

tween open strings. At the origin of an open string
living on the brane i, we specify the target brane k.
we obtain an index called Chan-Paton. the introduc-
tion of N branes therefore introduces a gauge theory
U(N). This theory is non commutative if n > 1. One
brane is necessary to describe the electomagnetism, at
least 2 are necessary to describe interactions involving
the gauge group SU(2). By playing with this, we can
model the different theories of gauges. To find parti-
cles in this modeling, it is necessary to consider inter-
sections of branes: this is the case where the length
of the rope joining two branes tends towards 0

6.1 Categorization of mirror symmetry and
open string theory

To define the mirror symmetry of open strings, Kont-
sevich categorizes the complex-symplectic exchange.
He invents homological mirror symmetry.The main
idea is to replace the objects of mirror symmetry,
namely the symplectic manifolds by objects belong-
ing to two categories ”mirrors of each other”: namely
chain complexes. The Fukaya category contains the
chain complexes on the symplectic side (side A of the
mirror), a subcategory of coherent sheaves, modelize
the complex geometry on side B. The mirror applica-
tion will also be replaced by a functor between these
the two categories. Is not the first example of field
theory to use category language: Chern-Simon theory
uses categorifications from knot-theory. Kontsevich’s
statement in 1994 says that:
There is an equivalence of category between The
bounded derived category of coherent sheaves
Db(X) on Calabi- Yau X and Fukaya category of its
mirror MX .

6.2 Symplectic geometry side A

Briefly, We will always consider in this context,
holomorphic curves but now the Riemann’s surfaces
will be a surface with boundary We will describe the
curves in this context more precisely. A holomorphic
curve (associated with lagrangians L1, L2) in a
symplectic variety (M,ω) is:
u : R × [0, 1] → M with J an almost complex
structure such as:
∂̄Ju = 0: Cauchy Riemann conditions, u(s, 0) ∈ L0,
u(s, 1) ∈ L1

lims→+∞u(s, t) = p, lims→−∞u(s, t) = q
We can stay on the A side and do enumerative
geometry: Curve counting (holomorphic discs).
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Here the option will be to categorize from Floer’s
homology and to find an equivalent category in the B
side. On the symplectic side, in open string theory the
good theory is Floer’s homology. This homology is a
kind of of Morse homology adapted to the language
of symplectic geometry. It was invented by Floer
to demonstrate Arnold’s conjecture in symplectic
geometry.Formally the Floertheory is an adaptation
of that of Morse in infinite dimension. The starting
manifold is replaced by a path space. Instead of
critical points, we will have to define the notion of
”critical paths ...”
Let P(L0, L1) be the space of the end paths in the two
Lagrangian L0 and L1; We then define a functional of
the space of (homotopies) of paths γ in R:
(γ, [u])→

∫
[0,1]2 u

∗ω
this quantity represents the symplectic area which
replaces the height function of Morse theory.
Let v a vector field, The differential of the previous
expression is dA.v =

∫
[0,1] ω(γ̇, v)dt: critical points

are constant paths (immediate).
The trajectories of the gradient are
J-holomorphic maps

6.2.1 Floer’s Complex

Let: CF (L0, L1) = Λ|L0∩L1|, free module generated
by the points of intersection of the two Lagrangian L0

and L1, we define a differential:
∂p =

∑
deg(q)=deg(p)−1(M(p, q, [u], J)/R)T

∫
u∗ωq

As in Morse homology, we show that ∂ defines a com-
plex:
broken trajectories

∐
r∈L0∩L1

(M(p, r, [u], J)/R) ×
(M(r, q, [u], J)/R)
compacts a space of dimension 1 so add a even num-
ber of points at the edges: the square of the edge is
therefore zero
Note: in the exact Lagrangian case, we can avoid
T
∫
u∗ω and work modulo 2, exactly as in Morse, We

just defined the Floer complex! The physicist will be
able to see that there is an homology managing the
brane intersection points ...

6.2.2 Categorization of Floer’s homology

We can define a product structure on the Floer
complexes:
CF ∗(L0, L1)⊗ CF ∗(L1, L2)→ CF ∗(L0, L2)
The module space will be M(p, q, r, [u], J)) of
dimension deg(r)− (deg(p) + deg(r)
The product:

p.q =
∑

r,deg(r)=deg(p)+deg(q)(M(p, q, r, [u], J)/R)T
∫
u∗ωr

we can reiterate:
CF ∗(L0, L1)⊗CF ∗(L1, L2)...⊗CF ∗(Ln−1, Ln)→
CF ∗(L0, Ln) We can then define a ∞-category
whose objects are Lagrangian, and morphisms are
the Floer complexes, . We categorized the symplectic
side..

7 Complex geometry on B-side

On this side we have already seen that dominates com-
plex geometry. his categorization will lead to define
the category of coherent sheaves. We cannot give
more details here. As in the case of closed strings,
it will be a question of defining an mirror map allow-
ing to go from side B to side A. The first example
that validates this theory was given by Zaslow [15], in
the context of the Lagrangian associated with elliptic
curves (complex torus).

8 Conclusion
Unfortunately, in this paper we cannot mention all
the studies undertaken so far. It seems that the non-
commutativity that we discover in boundary field the-
ories is interesting. it evokes the symmetry groups
of the particles of the standard model. Another ap-
proach proposed by Alain Connes is possible, it is
non-commutative geometry. The theory of the in-
dex can also be considered in this context of non-
commutativity . In his theory, Alain Connes does not
need to speak about supersymmetry. It uses a triplet
(A, H, D), A being the deformation of the algebra of
continuous functions :semi-direct product of algebra
of C∞ functions on a manifold by matrice spaces ac-
counting for the internal symmetries of the particles of
the standard model. It might be interesting to under-
stand the links between the elaborate gauge theories
proposed by Witten using supersymmetry and that of
Alain Connes using non-commutative algebras ...
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