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 Abstract: - Some methods for estimating VARMA models, and Multivariate Time Series Models in general, 
rely on the use of a Hankel matrix. Some authors suggest taking a larger dimension than theoretically necessary 
for this matrix. If the data sample is populous enough and the Hankel matrix dimension is unnecessarily large, 
this may result in an unnecessary number of computations, as well as in worse numerical and statistical results. 
We provide some theoretical results to know which is the Hankel matrix with the lowest dimension that is 
theoretically necessary and illustrate, with several simulated VARMA models, that using a d imension of the 
Hankel matrix greater than the theoretical minimal dimension proposed as valid does not necessarily lead to 
improved estimates. Although we use two algorithms, our main contributions are independent of the estimation 
method considered. We note that our paper does not include any comparisons between different algorithms for 
estimating VARMA models, as this is not our aim. 
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1 Introduction 
In general, the algorithms to estimate models for 

data analysis need to improve numerical and 
statistical efficiency. In particular, multivariate time 
series models, for example, vector autoregressive 
moving-average (VARMA) models, receive 
considerable attention by numerous authors. These 
models have a w ide range of applications in 
industry, economy, biomedicine, physics… Many of 
the methods and techniques available are given, i.e., 
in [1] and in the reference therein. In this wide 
context, the efficiency condition presumably 
includes an important element, namely, reducing the 
dimension of the matrices involved in the 
calculations. Some methods for estimating the 
parameters of multivariate linear stochastic systems 
and, in general, for identifying and estimating 
multivariate models in time series analysis, involve 
a Hankel matrix of covariances (see, for instance, 
[1-12]). The rank of this matrix (the system order or 
McMillan degree) must be obtained and it is an 
important parameter for these different methods. In 
particular, it is used to set the dimension of certain 
matrices that intervene in various statistical 
algorithms proposed to estimate the models.  

Our contribution concerns the influence of the 
choice of the Hankel matrix dimension on 

identifying and estimating the model. This was 
driven by the observation that in the context of linear 
systems, VARMA models and so on, s ome authors 
proposed from the theoretical point of view 
unnecessary large for the dimensions of certain 
Hankel matrices, in particular, without being 
exhaustive:  

In [2, p.216] we can read “the determination of 
the first basis of rows of the Hankel matrix ρs,s , 
where the integer s represents an upper bound on the 
dynamic  di mension n of  the process Z” . In [5, 
p.2097] we can read, “Typically, one takes m≈(2 to 
4)n. If no a priori guess of n is available, one can 
start with m≈N/10” and in [6, Section 4.1.1], on 
System Identification (System ID), it s tates: “Note 
that in theory, we require the r used in determining 
the size of the Hankel matrix to be larger than the 
true order of the system. However, in practice, we 
often don’t know the true system order (…) 
Therefore, when we set the size of the Hankel 
matrix in our problems, as a rule of thumb, we use 
roughly twice the estimated order”. And, in Section 
5, on Stochastic System Realization, “(…) as in the 
System ID problem, we need the Hankel matrix to 
be large enough, that is, j and k should be large than 
the rank” where j and k are the number of block-row 
and block-columns respectively. Also, in [6, 
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Appendix C] we can read “Assume further that r is 
larger than the true order of the system”. In [11, 
p.48] we can read “It may be useful to exploit the 
information contained in covariances corresponding 
to higher order lags in order to improve the quality 
of the estimator”.  

Some theoretical results provided an insight into 
the properties of Hankel matrices associated with 
some models for multivariate time series and are 
useful to determine the bounds of theoretical/practical 
interest for the dimensions of these matrices.  

By way of example, in this paper we have chosen 
two algorithms, in Section 2 the algorithm in [5] and 
in Section 4 the algorithm in [7], to illustrate, with 
simulated examples, the influence that the Hankel 
matrix dimension selected has on estimating 
VARMA models. Our conclusions are independent 
of the estimation method considered. 

We do not intend to compare the algorithms, only 
to show that given a method that uses the 
aforementioned Hankel matrix, choosing a 
dimension greater than the minimum required does 
not always lead to better estimates for the 
parameters of the model in question. Therefore the 
computational work could be substantially reduced 
by using the considerations proposed in this paper. 

As in other similar contexts, it is very important 
to have a reasonably reliable algorithm to calculate 
the rank of the matrix and to stabilize the matrices 
involved in the process. 
This paper contains four sections. In Section 2, we 
present the use of a Hankel matrix in one of the 
algorithms for estimating VARMA models ([5]). In 
Section 3 we propose a set of criteria and indicators 
that allow us to illustrate that if the sample size is 
large enough and the dimension chosen for the 
Hankel matrix is unnecessarily large, this may result 
in a superfluous number of computations as well as 
in numerical problems. In Section 4, we present 
Extended Yule Walker (XYW) method so as to 
illustrate with another algorithm (see [7]) the 
influence of the Hankel matrix dimension in 
practice. We finalize with the conclusions, 
acknowledgements and references. 
 
 
2 Some Considerations on the 
Algorithm in [5] 

In [5] the authors work with a discrete-time 
square–integrable stationary, vector-valued 
stochastic process y(t), for t integer. They assume 
that this process has a rational spectral density 
although it will be apparent in the sequel that the 
identification method will return valid finite-

dimensional models even when this nontestable 
assumption fails. Under these conditions, the 
process admits a f inite-dimensional state-space 
innovation representation as follows: 

 

�
𝑢𝑢(𝑡𝑡 + 1) = 𝐴𝐴𝑢𝑢(𝑡𝑡) + 𝐾𝐾𝐾𝐾(𝑡𝑡)      (𝑛𝑛 × 1)
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑢𝑢(𝑡𝑡) + 𝐾𝐾(𝑡𝑡)                 (𝑑𝑑 × 1)

�        (1) 

 
Here u(t) is the state vector, and A, K, C are 

matrices of appropriate dimensions, whereas the 
vector-valued sequence e(t) is the white innovation 
sequence. They assume zero-mean processes 
throughout. The innovation covariance matrix is 
denoted by Q 

 
E[e(t)eT(s)]=Q δt,s 

 
where E denotes the expected value with respect to 
the underlying probability measure, and δt,s is the 
Kronecker delta function. It is assumed that Q is 
strictly positive definite and that (1) is a minimum 
degree representation of y(t) in the stochastic sense, 
i.e., n is the McMillan degree.  
It is well-known ([1]) that, for certain non negative 
integers p and q, the process y(t) could be written as 
a VARMA(p,q) representation 
  

y(t)+A1y(t-1)+...+Apy(t-p)=  
e(t)+B1e(t-1)+...+Bqe(t-q)  

 
where, Ai and Bi are dxd matrices and, denoting 
Ap(z) =I+A1z+...+Apzp and Bq(z)=I+B1z+...+Bqzq, the 
VARMA transfer matrix could be written as 
F(z)=Ap

-1(z)  Bq(z)   or,   in   equivalent   way,  
F(z)=C(zI-A)-1K+I if we consider (1).  

In [5] a VARMA parameter estimation method is 
introduced. The problem is to estimate the order n 
and the matrices A, K, C and Q, from N observations 
of a sample realization of y(t), in such a way that the 
estimated model matches the second order 
properties of the process y(t). 

The process covariances in [5] are denoted by 
Rk=E[y(t)yT(t-k)] for t,k integers, and the Hankel 
matrix of covariances by R, that is [5, p.2095]: 
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The method in [5] involves a series of steps. We 
focus on a part of the first step. Specifically, the first 
step is done through a Singular Value 
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Decomposition (SVD) of the Hankel matrix R 
which is a resource common to an important vein of 
so-called subspace methods (see, for instance, 
references in [5]). 

The authors consider the SVD, R = UΣVT, where 
Σ is a n×n nonsingular diagonal matrix and 
UUT=VTV=In, the observability and the 
controllability matrices, Ω=UΣ1/2 and 
 ΓT=Σ1/2VT, respectively. In particular, the matrix A 
is obtained as the solution to the following system: 

 
( =A)U / 21Σ  UΣ1/2  (2) 

 
where U  and U are the matrices made from the 
first and the last m-1 block rows of U, respectively. 
 
2.1 Theoretical Considerations on Matrix 
Hankel Dimension in the Algorithm in [5] 

Note that the Hankel matrix R depends on m. 
Therefore, in our paper we prefer to denote this 
matrix by R(m). 
Remark: For our aim, we denote  
s*={min m / rank R(m)=n} and remark that:  s* does 
not represent an upper bound on the dynamic 
dimension n of the process because for some 
VARMA process s*<n. We can  observe it in the 
following example: 
 
Example 1. We consider, Q=�4 1

1 1� and  

F(z)=∑ 𝐹𝐹𝑖𝑖∞
𝑖𝑖=0 𝑧𝑧𝑖𝑖  where F0=I, F1= -I, F2=�

6 2
2 0� and 

Fi=0.5Fi-2 if i≥3. The autocovariance matrices of the 
VARMA(2,2) process y(t) are:  
 

00
500
050

22120 ≥=







== ++ iifR,

.
.R,IR ii

i

i .  

 
In this example n=4, s*=2, therefore s*<n, and 

s* does not represent an upper bound on t he 
dynamic dimension.  
In this context, the possibility s*≤n could have some 
consequences on the theory-practice duality. For 
instance, the theoretical condition m≥n included in 
[5, p.2094-2095] could be improved to m≥s*+1.  

With the following propositions we propose the 
minimum value of m such that (2) has a unique 
solution for A i.e., the algorithm in [5] works. 

 
Proposition 1: Considering R with m=s*+1, i.e., 
R(s*+1) in the first step of the procedure in [5], we 
can ensure that the observability and the 
controllability matrices are both full rank, n. 

Proof. In the first step of the procedure in [5], to 
estimate the linear system parameter, a Singular 
Value Decomposition (SVD) of R is obtained. 
Given any matrix G, if we obtain a SVD, G=XSYT, it 
is well known that X is full (column) rank and YT is 
full (row) rank. 
 
Let us denote a SVD of R(m)=U(m) Σ (m)VT(m) and, 
in a similar way of [5], Ω(m)=U(m)Σ1/2(m) and 
ΓT(m)=Σ1/2(m)VT(m). Therefore, ∀ 𝑚𝑚 ≥ 1, 
 

rank R(m)=rank Ω(m) = rank ΓT(m)         (3) 
 

Note that, rank R(m)<n if m<s*, and  
rank𝑅𝑅(𝑚𝑚) = 𝑛𝑛 if m>s*. From (3),  
rank Ω(m)= rank ΓT(m)=n, ∀𝑚𝑚 ≥ 𝑠𝑠 ∗. Since 𝑠𝑠 ∗≤ 𝑛𝑛, 
then rank Ω(m)=rank 𝛤𝛤𝑇𝑇(𝑚𝑚)=n, ∀𝑚𝑚 ≥ 𝑛𝑛. Taking 

into account that in [5], Ω(s*)= �
𝐶𝐶
𝐶𝐶𝐴𝐴
⋮ 

𝐶𝐶𝐴𝐴𝑠𝑠∗−1

� and 

)AK...K(*)s( *sT 1−=Γ , the condition m≥s* ensures 
that the extended observability matrix Ω(m) has full 
(column) rank and that the extended controllability 
matrix ΓT(m) has full (row) rank.   � 
 
Proposition 2. Considering the SVD of R(s*+1), the 
system (2) has a unique solution for A. 
Proof. Note that R(s*+1) is the Hankel matrix with 
the lowest dimension that is theoretically necessary 
in the procedure in [5]. It is because 
rank R(s*)=rank R(m) for any m>s*. Therefore in [5, 
p.2095], the system 2121 // UA)U( ΣΣ =  has a 
single solution, if U  and U are the matrices made 
from the first and last s* block rows of U, 
respectively.     � 

 
Remarks: 

• In theory, all the series of real covariances are 
necessary to calculate n, and, as a consequence, 
in practice a l arge number of estimated 
covariances is necessary to obtain a su itable 
estimate of n. However, if s* is known, only the 
2s*+1 covariances included in R(s*+1) are 
sufficient to calculate (A, K, C, Q) with the 
theoretical procedure in [5]. 

• Note that Propositions 1 and 2 a bove could be 
used to improve the algorithm in [5]. Of course, 
it does not contradict it. For instance, in Example 
1, A can be estimated from the Hankel matrix 
R(3) and 3<n. 

• Throughout our paper we do not question that 
rank R(m)=n, ∀ m>n. This is true. What we 
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affirm is that there exists s*<n such that rank 
R(m)=n    ∀m>s*. 
 

2.2 Practical Considerations on Hankel 
Matrix Dimension in the Algorithm in [5] 

To illustrate that given a method that uses the 
aforementioned Hankel matrix, choosing a 
dimension greater than the minimum required does 
not always lead to better estimates for the 
parameters of the model in question, several 
VARMA models were computed. Since all of the 
models showed that our theoretical-practical 
proposal is valid, we thought it unnecessary to 
provide detailed results of every example, instead 
selecting three that we regard as r epresentative of 
what we are proposing.  

In every example we simulated, e(t) is a v ector 
white-noise  process  with  covariance  matrix  

Q= 







11
14

 and we used a file with the simulated set 

{e(1),…,e(35000)}. The number of executions for 
each example was S=[35000/T], where T denotes the 
sample size chosen for e(t) in each execution. For 
instance, if T=350, we have 100 executions for each 
example. Moreover, for each execution, we ignored, 
as is customary, the first values of the process to 
have N=T-10. We consider several sample sizes (N). 

Now, we illustrate that if n̂  is a suitable value of 
n, estimated using some previous statistical 
procedure, and *ŝ =min{m/rank R̂ (m)= n̂ }, then the 
2 *ŝ +1 estimated covariances in R̂ ( *ŝ +1) are 
sufficient to estimate (A, K, C, Q) with the practical 
procedure in [5]. However, if in practice there is 
uncertainty as to the value of *ŝ , then we propose 
considering R̂ ( n̂ +1) to estimate (A, K, C, Q).  

The MATLAB algorithm mentioned in [5] 
considers R(m*), where m*=[u/2], u=min{ 6n, 
[3(N/log10N)1/2] }, n the order of the model and N the 
sample size. 

We will use several simulated examples to 
illustrate that our proposal to use the Hankel matrix 
with the lowest dimension that is theoretically 
required, namely R̂ ( *ŝ +1), remains valid for at 
least certain criteria and indicators. We will use the 
algorithm proposed in [5], changing only the 
dimension of the Hankel matrix used but 
considering several dimensions, from R(s*+1) to 
R(m*), that is, from the one that we propose up to 
the default value m* in the MATLAB procedure in 
[5]. As we will see, there are no substantial 
improvements as a consequence of using Hankel 

matrices with a h igher dimension than the one we 
propose. 

 
3 Criteria and Indicators based on the 
Innovation Covariance Matrix Q 

To assess the above proposal from a practical 
standpoint, we will use three criteria based on 
certain errors in estimating the innovation 
covariance matrix Q, the white-noise autocovariance 
matrix. These criteria allow us to compare the 
estimates obtained for various sizes of the Hankel 
matrix present in the estimation process, and 
determine whether any improvements result from 
increasing the size of this matrix beyond the bound 
proposed in the theory. 

Given a set of data {y(1),…,y(N)}, to estimate the 
matrix Q=(Qij)i,j=1,2 as per [5], it is necessary to first 
estimate the matrices A, C and K [5, p.2095]. In this 
section, the data come from simulated models. Once 
the model is chosen, assume we carry out S 
executions of the model and let W={1, 2, …, S}. 

For each value m, from s*+1 to m*, we will: 
• Estimate Q for each execution, using the 

algorithm proposed in [5] and taking Hankel 
matrix R(m). This estimate is denoted by Q(m,x), 
for x=1, …, S. 

• Calculate  G(m)={x∈W/ ||Q-Q(m,x)||<90  and 
||Q-Q(m*,x)||<90} where || || denotes the norm 2 
of a matrix. We a rbitrarily chose 90 because, 
with G(m) our goal is to select those executions 
that do not have overly high values, whether we 
consider R(m) or R(m*) in the estimates, without 
quite eliminating all those executions that we 
consider to be “not suitable”.  

• Calculate #G(m) as the cardinal of G(m) set.  
Next, based on these results, we will assess the 

three criteria in Table 1 based on Q, which measure 
the mean error in matrix Q, the mean squared error 
of each element in said matrix and what we define 
as outliers. 

Table 1. Criteria based on Q 
 Criteria 
1 

(Mean error 
in Q) )(#

),(
)( )(

mG

xmQQ
mEM mGx

∑ −
= ∈  

2 
(Mean 

squared error 
in element 

Qij) 

)(#

)),((
)( )(

2

mG

xmQQ
mECMQ mGx

ijij

ij

∑ −
= ∈

for i,j=1,2 
3 

(Outliers) 
Outlier(m)=#{x∈W/||Q-Q(m,x)||>1},  

that is, the number of simulations 
that yielded ||Q-Q(m,x)||>1 
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Note that we eliminated from the formulas 
EM(m) and ECMQij(m) those executions in which 
abnormally large estimates appear. We used #G(m) 
to denote the actual number of executions used to 
calculate the mean errors. 

We used these criteria to attempt to identify the 
goodness of the estimate as a function of the value 
of m by using four indicators. Specifically, we 
assessed the best comparisons that are obtained for 
two different values (m=a and m=b) once the S 
estimates of Q are completed assuming m=a, and 
the S estimates of Q assuming m=b. 

 
Indicator 1: The value m=a is better than m=b in 
terms of the mean error iff EM(a)<EM(b). 
Indicator 2: The value m=a is better than m=b in 
terms of the mean squared error of  
Qij (i,j=1,2) iff ECMQij(a)< ECMQij(b). 
Indicator 3: The value m=a is better than m=b in 
terms of the number of outliers iff 
Outlier(a)<Outlier(b). 
Indicator 4: Percentage of the S executions in 
which m=a is better than m=b, in the sense that, for 
a particular execution x,  
||Q-Q(a,x)||<||Q-Q(b,x)|| iff m=a is better than m=b 
for said execution. Similarly, Indicator 4 i s 
considered for each Qij. 

 
 

4 Simulated Example Results 
The simulated examples we will discuss in 

this section are in Table 2. 
 

Table 2. Simulated Examples 
Example Model n s* 

2 
)2(
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3 2 

 
As for the sample sizes, we started out 

considering T=100 (N=90), 200 ( N=190), 300 
(N=290) and 400 (N=390). As for the order, we 
assumed a p ossible error by letting the estimated 
order be either n-1 or n+1 instead of n, which is its 
true value. 

We noticed that a sample size of N=90 was not 
suitable, since all of the simulated examples yielded 
a high value for Outlier(m) (Criterion 3). As the 
sample size was increased, this value of Outlier(m) 
decreased, as expected, and all of the indicators 
improved. Specifically, and by way of example, 
Tables 3-7 associated with Example 2 are presented: 

 
Table 3. Example 2. Outlier(m) 

 
T N m=3 m=4 m=5 m=6 

350 100 90 111 111 110 116 

175 200 190 5 5 5 7 

116 300 290 2 1 1 1 

87 400 390 0 0 0 0 
 

Table 4. Example 2. EM(m) 
S T N m=3 m=4 m=5 m=6 

350 100 90 0.8444 0.8396 0.8384 0.8505 

175 200 190 0.4959 0.5030 0.5058 0.5081 

116 300 290 0.3686 0.3705 0.3718 0.3688 

87 400 390 0.2985 0.3066 0.3052 0.3056 
 

Table 5. Example 2. ECMQ11(m) 
S T N m=3 m=4 m=5 m=6 

350 100 90 0.4849 0.4898 0.4794 0.4860 

175 200 190 0.2051 0.2107 0.2093 0.2146 

116 300 290 0.1115 0.1140 0.1120 0.1116 

87 400 390 0.0706 0.0755 0.0738 0.0740 
 

Table 6. Example 2. ECMQ12(m) 
S T N m=3 m=4 m=5 m=6 

350 100 90 0.1662 0.1629 0.1657 0.1691 

175 200 190 0.0538 0.0531 0.0550 0.0544 

116 300 290 0.0318 0.0307 0.0315 0.0309 

87 400 390 0.0214 0.0223 0.0227 0.0222 
 

Table 7. Example 2. ECMQ22(m) 
S T N m=3 m=4 m=5 m=6 

350 100 90 0.1900 0.1842 0.1832 0.2021 

175 200 190 0.0418 0.0440 0.0417 0.0405 

116 300 290 0.0187 0.0184 0.0194 0.0197 

87 400 390 0.0102 0.0103 0.0100 0.0096 
 

We can state that not only in Example 2, but in 
every case we studied, for any of the sample sizes 
used and the indicators considered, increasing the 
size of the Hankel matrix yielded no substantial 
improvement, meaning there were no reductions in 
any of the criteria used (errors and outliers). 
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In light of the results and since the noise files we 
simulated have 35000 bivariate pieces of data, the 
sample size used from here on is N=340 (T=350), 
which we believe to be an adequate sample size. 

Having set the sample size, let us consider what 
happens if we start with an erroneous value for the 
order of the system, n. If r denotes the estimated 
value of n, the results for Example 2 are in Table 8, 
where the true order is n=2 and the minimum 
theoretical size of the Hankel matrix is s*+1=3. 

 
Table 8. Example 2. Outlier(m) 

  r=1  
m*=3 

r= n=2 
m*=6 

r=3 
m*=9 

r=4 
m*=12 

m=r 100 81 5 12 

m=r+1 100 0 2 12 

m=r+2 100 0 1 18 

m=r+3   0 4 12 

m=r+4   0 5 11 

m=r+5     1 15 

m=r+6     7 12 

m=r+7       14 

m=r+8       15 

 
In this example, the best results based on 

Criterion 3 (smallest number of outliers) were 
obtained for values close to, but not below, the 
actual value of n and the minimum theoretical value 
of m. We obtained too many outliers when we used 
a value for n that was below the true value (100 
outliers), or when we selected a proper n but used a 
Hankel matrix size that was below the minimum 
theoretical value (81 outliers). When we used r 
larger than n, we obtained fewer outliers if r=n+1 
(between 5 and 7). The number of outliers increased 
slightly if r=n+2 was used (between 12 and 18). 
There were no outliers when we used the correct 
value of n and a theoretically valid value of m.  

While the outcome was not exactly the same in 
every example, we can state that in all of them, 
setting r close to the true value n and a matrix size 
higher than the rank value did not yield an 
improvement in terms of Criterion 3 (lower number 
of outliers) after the size of the Hankel matrix was 
increased beyond its theoretically valid value. 

When interpreting the following indicators, it 
makes no sense to consider the cases with many 
outliers in the previous table (the ones in the first 
column, r=1, and in the box r=2 and m=r), which 
are located in positions that precede their 
theoretically proposed positions. 

The results allows us to state that, for a suitable 
sample size, even if the estimated value of n is 
erroneous, but close to the real value, using a 
Hankel matrix of a dimension larger than the 
smallest theoretically valid size does not improve 
any of the indicators analyzed. 

 
Table 9. Example 2. EM(m) 

  r=1 
m*=3 

r= n=2 
m*=6 

r=3 
m*=9 

r=4 
m*=12 

m=r 13.8108 7.6535 4.0162 1.1586 

m=r+1 13.6165 0.3630 0.5293 1.8786 

m=r+2 8.1807 0.3660 0.3941 1.7626 

m=r+3   0.3711 1.0377 0.9093 

m=r+4   0.3675 30.4109 1.6698 

m=r+5     0.3943 0.6395 

m=r+6     0.8124 14.1407 

m=r+7       1.0448 

m=r+8       1.2209 

 
Table 10. Example 2. ECMQ11(m) 

 
r=1 

m*=3 
r= n=2 
m*=6 

r=3 
m*=9 

r=4 
m*=12 

m=r 47.4094 23.6179 0.3174 0.2907 

m=r+1 44.6208 0.1067 0.1408 0.4154 

m=r+2 16.3536 0.1065 0.1128 0.5334 

m=r+3 
 

0.1084 0.1472 0.3189 

m=r+4 
 

0.1065 0.3183 0.5210 

m=r+5 
  

0.1066 0.3929 

m=r+6 
  

0.1544 0.5478 

m=r+7 
   

0.3934 

m=r+8    0.4398 

 
Table 11. Example 2. ECMQ12(m) 

 
r=1 

m*=3 
r= n=2 
m*=6 

r=3 
m*=9 

r=4 
m*=12 

m=r 48.2302 22.4074 0.2873 0.2305 

m=r+1 47.6787 0.0307 0.0474 0.6718 

m=r+2 17.2733 0.0313 0.0350 2.7610 

m=r+3 
 

0.0331 0.1457 0.4431 

m=r+4 
 

0.0329 0.1542 2.8267 

m=r+5 
  

0.0379 0.2152 

m=r+6 
  

0.1654 3.3151 

m=r+7 
   

0.3602 

m=r+8    0.6236 
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Table 12. Example 2. ECMQ22(m) 

 
r=1 

m*=3 
r=n=2 
m*=6 

r=3 
m*=9 

r=4 
m*=12 

m=r 48.6383 22.4391 1227.7899 27.1625 

m=r+1 50.6689 0.0135 1.1742 116.9012 

m=r+2 18.1347 0.0141 0.0369 101.4346 

m=r+3  0.0137 38.8910 6.9426 

m=r+4  0.0145 89991.183 52.9457 

m=r+5   0.0530 0.1806 

m=r+6   7.8917 12.760.525 

m=r+7    13.284 

m=r+8    37.428 

 
In Tables 9-12, it is important to keep in mind 

that the large values in some boxes are due to the 
outliers associated with them. 

In Table 12 we see that for some cases for which 
the estimated rank is incorrect, the high number of 
outliers significantly distorts ECMQ22. If we omit 
those simulations of x such that ||Q-Q(m,x)||>1 or 
||Q-Q(m*,x)||>1, we obtain the Table 13, in which 
we have ignored the boxes with a large number of 
outliers. 

 
Table 13. Example 2. ECMQ22(m) ignoring outlier 

executions 

 
r=n=2 
m*=6 

r=3 
m*=9 

r=4 
m*=12 

m=r 
 

0.0202 0.0441 

m=r+1 0.0135 0.0275 0.0385 

m=r+2 0.0141 0.0225 0.0210 

m=r+3 0.0137 0.0288 0.0282 

m=r+4 0.0145 0.0335 0.0291 

m=r+5 
 

0.0343 0.0164 

m=r+6 
 

0.0257 0.0247 

m=r+7 
  

0.0273 

m=r+8   
0.0345 

 
Tables 14-21 show a summary of the results from 
the two other examples chosen to illustrate our 
proposal. 
 
 
 
 
 
 
 
 

Table 14. Example 3. n=4, s*+1=3, m*=12 
 Outlier 

(m) 
EM 
(m) 

ECMQ11 
(m) 

ECMQ12 
m) 

ECMQ22 
(m) 

m=3 1 0.3714 0.1429 0.0188 0.0079 

m=4 1 0.3721 0.1429 0.0190 0.0080 

m=5 1 0.3715 0.1412 0.0186 0.0081 

m=6 1 0.3738 0.1422 0.0193 0.0086 

m=7 1 0.3701 0.1391 0.0190 0.0086 

m=8 1 0.3726 0.1390 0.0192 0.0091 

m=9 1 0.3721 0.1409 0.0194 0.0095 

m=10 1 0.3696 0.1400 0.0181 0.0094 

m=11 1 0.3745 0.1437 0.0186 0.0092 

m=12 1 0.3756 0.1475 0.0190 0.0094 
 

Table 15. Example 31. Outlier(m) 

 r=3 r=4 r=5 

m=5 9 1 8 

m=6 9 1 7 

m=7 8 1 10 

m=8 9 1 6 

 
Table 16. Example 3. EM(m) 

 r=3 r= 4 r=5 

m=5 0.6502 0.3802 0.7038 

m=6 0.6371 0.3826 40.7745 

m=7 0.6389 0.3786 24.5716 

m=8 0.6404 0.3813 10.6669 

 
Table 17. Example 3. ECMQ11(m) 

 r=3 r=4 r=5 

m=5 0.2011 0.1522 0.2289 

m=6 0.2095 0.1536 0.2090 

m=7 0.2052 0.1501 0.2021 

m=8 0.2164 0.1500 0.1892 

 
Table 18. Example 3. ECMQ12(m) 

 r=3 r=4 r=5 

m=5 0.0571 0.0198 0.0438 

m=6 0.0538 0.0205 0.1021 

m=7 0.0542 0.0200 0.0506 

m=8 0.0520 0.0205 0.1507 

1 In some of the simulations the MATLAB algorithm was interrupted due to, among other 

reasons, improper conditioning resulting from using a small sample size or an incorrect rank. 

The values shown in the table were calculated without interrupting the execution. 
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Table 19. Example 3. ECMQ22(m) 

 r=3 r=4 r=5 

m=5 0.2485 0.0082 4.4144 

m=6 0.2328 0.0088 148149.7 

m=7 0.2428 0.0087 37353.5 

m=8 0.2406 0.0092 9165.7 

 
The abnormally high values in Table 19 are 
associated with an erroneous rank value. 
 

Table 20. Example 4. n=3, s*+1=3, m*=9, T=350 
m Outlier 

(m) 
EM 
(m) 

ECMQ11 
(m) 

ECMQ12 
(m) 

ECMQ22 
(m) 

3 8 662.0904 0.1503 0.1544 43710823.5 

4 2 0.3532 0.1327 0.0176 0.0071 

5 1 0.3378 0.1195 0.01597 0.0063 

6 1 0.3415 0.1251 0.0163 0.0068 

7 2 0.3430 0.1236 0.0166 0.0082 

8 3 87.8 0.1218 0.0506 765116.1 

9 2 0.3438 0.1238 0.0175 0.0077 

 
Regarding Table 20 and its high values, if the 

sample size is increased to 500, onl y one outlier 
results, the simulation of which we omitted from the 
calculation of the criteria to yield the results in 
Table 21. 

 
Table 21. Example 4. n=3, s*+1=3, m*=9, T=500 
m Outlier 

(m) 
EM 
(m) 

ECMQ11 
(m) 

ECMQ12 
(m) 

ECMQ22 
(m) 

3 1 0.3087 0.0886 0.0122 0.0162 

4 0 0.2831 0.0783 0.0123 0.0050 

5 0 0.2783 0.0779 0.0119 0.0041 

6 0 0.2777 0.0786 0.0116 0.0040 

7 0 0.2756 0.0765 0.0115 0.0039 

8 0 0.2754 0.0755 0.0118 0.0042 

9 0 0.2728 0.0755 0.0118 0.0040 

 
We thus deduced that for this example, a sample 

size of 500 is better suited than the 350 we selected 
for the bulk of our experiment, though 350 w as 
adequate for almost all of the examples analyzed. 

To conclude, we will evaluate Indicator 4 using 
m=s*+1 and m=s*+2 in order to compare each of 
the estimates Q(s*+1,x) and Q(s*+2,x), with 
Q(m*,x) for x∈W. 

The Table 22 contains the values obtained for the 
three examples chosen, using T=350. The 
interpretation of the table is as follows. In p% of the 

S executions, Q was estimated better using m=s*+1 
instead of m=m*, if ||Q-Q(s*+1,x)||< ||Q-Q(m*,x)|| 
for the p% of values of x. Similarly, in p% of the S 
executions, Qij was better using m=s*+1 instead of 
m=m*, if |Qij-Qij(s*+1,x)|<|Qij-Qij(m*,x)| for the p% 
of values of x. 

 
Table 22. Results of Indicator 4.Using T=350 

 Q Q11 Q12 Q22 

Example 2, m=s*+1 49% 53% 51% 59% 

Example 2, m=s*+2 44% 45% 56% 59% 

Example 3, m=s*+1 56% 57% 55% 61% 

Example 3, m=s*+2 54% 57% 50% 61% 

Example 4, m=s*+1 42% 48% 47% 42% 

Example 4, m=s*+2 44% 48% 47% 52% 

 
Therefore, for Example 2, the estimate for Q11 

was better using m=s*+1 instead of m=m* in 53% of 
the executions; in other words,  
|Q11-Q11(s*+1,x)|<|Q11-Q11(m*,x)| for 53% of the 
executions. In 45% of the cases m=s*+2 was better 
than m=m*; that is,  
|Q11-Q11(s*+2,x)|<|Q11-Q11(m*,x)| in 45% of the 
executions. In Example 3, the estimate of Q was 
better using m=s*+1 instead of m=m* in 56% of the 
executions, and so on.  

In all of the examples analyzed, we find that these 
values hover around 50%, which confirms, for these 
cases, our hypothesis that the indicators considered 
do not improve as the size of the Hankel matrix is 
increased. 

All of the examples also show that when the 
sample size is increased, the percentages tend to 
stabilize even more, if possible, around 50%. This 
means that given a sufficiently large sample size, 
the same estimate is obtained with R(s*+1) as with 
R(m*), but with considerably less computational 
work, and thus greater efficiency. 

Briefly, and so as to illustrate our contributions 
with another algorithm, in the following section we 
consider XYW method. 
 
 
4 Some Considerations on XYW 
Method 

XYW equations have been proposed in [9], and 
recently considered, i.e., in [7,8,10,11] for 
estimation of VAR and VARMA parameters. Under 
certain conditions, the parameters of a V AR or 
VARMA model are determined uniquely with 
available population covariance of single –or mixed-
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frequency observations on the variables of the 
model.  

To study mixed-frequency data (MFD) cases, it 
is usual (see for instance [10]) to consider a 
VARMA model of d=d1+d2 variables, whose first d1 
variables are high-frequency variables observed in 
every period and whose last d2 variables are low-
frequency variables observed every certain number 
of periods. Many MFD cases can  be handled as i n 
this MFD case. For mixed-frequency data in a more 
general form, see for instance [11]. 
For our illustrative purpose, we have chosen the 
case of stationary and regular VARMA(p,0) models 
denoted by 

y(t)=A1y(t-1)+…+Apy(t-p)+ e(t)  

and the innovation variance is denoted by Q. Let �̃�𝐶𝑖𝑖  
the first d1 columns of Ri.  
Denoting the Hankel matrix  

𝐷𝐷𝐿𝐿 =  �
�̃�𝐶0
𝑇𝑇 ⋯ �̃�𝐶𝑝𝑝−1

𝑇𝑇

⋮ ⋮
�̃�𝐶𝐿𝐿+𝑝𝑝−1
𝑇𝑇 ⋯ �̃�𝐶𝐿𝐿+2𝑝𝑝−2

𝑇𝑇
�, X=−(𝐴𝐴𝑝𝑝𝑇𝑇 …𝐴𝐴1

𝑇𝑇)𝑇𝑇 and 

E= (�̃�𝐶𝑝𝑝𝑇𝑇 … �̃�𝐶𝐿𝐿+2𝑝𝑝−1
𝑇𝑇 )𝑇𝑇 , if ∃L/rank DL=dp,  we can 

consider the XYW estimator 
X=(𝐷𝐷𝐿𝐿𝑇𝑇𝐷𝐷𝐿𝐿)−1𝐷𝐷𝐿𝐿𝑇𝑇𝐸𝐸𝐿𝐿  (4) 

and vec(Q)=

0
11

2)(
))())()((( CvecGGAAIGG TT

dp
−− ⊗⊗−⊗

with G=(Id, 0, …, 0), A= �

𝐴𝐴1 …
𝐼𝐼𝑑𝑑

    𝐴𝐴𝑝𝑝−1 𝐴𝐴𝑝𝑝
0 0

⋮ ⋱
0      …    ⋮

𝐼𝐼𝑑𝑑   0

�. See, 

for instance, [7]. 
 
4.1 The Influence of the Hankel Matrix 
Dimension in Practice:  XYW Method 

We now consider the influence of the Hankel 
matrix dimension on the estimate for the parameters 
of a VARMA(1,0) model, using the example below. 

 
Example 5:  

y(t)-A1y(t-1)=e(t) with A1= 







− 2174069140

8611095560
..
..

. 

We use the simulated set {e(1),…,e(35000)} in 
Section 2, consider two cases (d1=2 and d1=1) and 
compare the results obtained for different values of 
L with those corresponding to a “sufficiently large” 
arbitrary value, chosen for illustrative purposes 
only, such as 11. 

Since the XYW estimators tend to be used as the 
initial estimators for other estimating methods (see 
for instance [11]), we will use the mean error in A 
for each value of L=1,…,11 

W

xLAA
LEMA Wx

#

),(
)(

11

1

∑
∈

−
=  

where A1(L,x) is the XYW estimate of A1 for 
execution x, considering Hankel matrix DL in (4). 

For Example 5, we find that  
{x∈W / if |I-λA1(L,x)|=0 then |λ|>1}=W, therefore all 
the estimated A1 are stable. 

Case (I): d1=d=2 (i.e., the same frequencies are 
present for both variables) 

In DL we let ∑ = −N
t

T ityty1 )()(  instead of iC~ for  

i=0, …,L+2p-1.  
We include the results in Table 23. N ote that the 
best results are always obtained with the lowest 
value of L, and that essentially, the results are not 
affected if we select another value “sufficiently 
large” for L. 

Table 23. Case (I) d1=d=2 

 
EMA1(L) 

T=350 
EMA1(L) 

T=700 
EMA1(L) 
T=1000 

L=1 0.04391325 0.03232048 0.02512431 

L=2 0.04453883 0.03280759 0.02477276 

L=3 0.04502489 0.0330484 0.02466068 

L=4 0.04543278 0.03334947 0.02470456 

L=5 0.04632424 0.03414898 0.0252193 

L=7 0.04901777 0.03598402 0.02674568 

L=11 0.05168144 0.03835419 0.02920605 
 

Case (II): d1=1, d=2 (assuming we have all the 
frequencies of the first variable and, for example, 
only the odd frequencies of the second variable). 

In DL let 



















−−−

−

∑

∑
+

=

=
2/)1(

1
12

1
11

)12()12(

)()(

N

t

T

N

t

T

ityty

ityty
 instead of 

iC~ for i=0,…,L+2p-1 (see, for instance, [9]).  
We obtain the results in Table 24. 

Table 24. Case (II) d1=1 

 
EMA1(L) 

T=350 
EMA1(L) 

T=700 
EMA1(L) 
T=1000 

L=1 0.08390932 0.06064302 0.0522413 

L=2 0.0569018 0.04406534 0.03614363 

L=3 0.05064516 0.03783381 0.02973002 

L=4 0.05129033 0.03802203 0.03012609 

L=5 0.05276242 0.03827057 0.03069578 

L=7 0.05436977 0.04017285 0.03164954 

L=11 0.0570004 0.04193298 0.03353029 
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Reading Table 24 by columns we observe that for 
sample sizes of 350, 700 and 1000, the best results 
for EMA(L) are for L=3.  

As expected, if we fix the value for L, i.e., 
reading Table 24 by columns, increasing the sample 
size results in EMA1(L) decreasing. 

Therefore, our thesis, that expanding the Hankel 
matrix does not always yield better estimates, holds. 
 
5 Conclusion 

This paper considers an interesting question in the 
modelling of multivariate time series from a dual 
theoretical/practical perspective. 

These were driven by the observation that in some 
papers in the context of Linear Systems, VARMA 
Models, etc., the dimension of certain Hankel 
matrices used was unnecessarily large, and the 
computational work can be reduced with some of 
the considerations proposed. 

From a p ractical standpoint, we considered two 
algorithms and conducted a wide-ranging 
experiment using the algorithm proposed in [5] and 
XYW Methods in [7-11], as a r esult of which we 
can state that increasing the size of certain Hankel 
matrices used in some estimation methods for 
VARMA models does not always yield the best 
estimates. The accurate of the solution depends on 
the chosen example. 
For future research it is interesting to study the 
influence of the noise and quantify the improvement 
of the estimation. Moreover, we propose conducting 
similar studies using any of the linear system 
estimation methods that depend on Hankel matrices 
to determine whether or not it is necessary, in 
practice, to consider dimensions higher than the 
smallest dimension that is theoretically required. 
Determining those specific cases where an expanded 
matrix could improve the estimates, and the size 
recommended for each particular example, will 
require further research.  
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