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Abstract: A specific function f(r) involving a ratio of complicated gamma functions depending upon a real variable
r(> 0) is handled. Details are explained regarding how this function f(r) appeared naturally for our investigation
with regard to its behavior when r belongs to R+. We determine explicitly where this function attains its unique
minimum. In doing so, quite unexpectedly the customary Cramér-Rao inequality comes into play in order to nail
down a valid proof of the required lower bound for f(r) and locating where is that lower bound exactly attained.
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1 Introduction
This investigation began with the following inquiry,
Let

f(r) ≡ r−2
{
π1/2Γ
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(1.1)

for 0 < r < ∞. Is it true that f(r) ≥ 1
2 for all 0 <

r <∞?
In a number of applications, to be highlighted

shortly, we may be greatly interested in the behavior
of f(r) when r is smaller (than 10) rather than when
r is larger (than 10). However, mathematically, we
consider the behavior of f(r) for all r > 0.

Table 1 exhibits values of f(r) for a selected set
of r values between 0 and 6.0. While one may verify
the following exact values:

f(1) = 1
2π − 1, f(2) = 1

2 , f(3) = 1
9(15π8 − 1),

f(4) = 2
3 , f(5) = 1

25(945π128 − 1), and f(6) = 113
90 ,

a large majority of the exhibited values from Table 1
are clearly subject to reasonable numerical approxi-
mations built inside MAPLE.

Figure 1 tend to validate empirically our senti-
ment that f(r) may attain its minimum value when
r = 2. Figure 2 additionally shows that d

drf(r) is

negative (positive) when 0 < r < 2 (2 < r < 5) and
thus f(r) appears to be decreasing (increasing) when
0 < r < 2 (2 < r < 5).

The Empirical evidence from Figures 1-2 points
in the direction of a much needed mathematical treat-
ment in order to come up with a resolution of the
query stated precisely in (1.1). The plots of f(r) and
and its derivative were both obtained directly using
MAPLE.

The behavior of f(r) for large r is rather straight-
forward and it may be treated as follows: Abramowitz
and Stegun (1972, 6.1.38, p. 257) gave an approxi-
mate expression of the gamma function in the spirit of
Stirling’s approximation:

Γ(az + b) ∼
√

2πe−az(az)az+b−
1
2 ,

for a > 0, z > 0, and z →∞.
(1.2)

The approximation (1.2) indicates that the ratio of the
left-hand side and the right-hand side converges to 1
as z → ∞. The approximation from (1.2) immedi-
ately leads to the following large-scale approximation:

f(r) ∼ r−2
(

2r−
1
2 − 1

)
as r →∞.

While Stirling’s approximation is well under-
stood, exact monotonicity properties as well as mini-
mization or maximization of complicated expressions
involving ratios of gamma functions are almost never
trivial. Indeed the mathematical analysis behind each
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Figure 1: A plot of f(r) coming from (1.1) when 0 <
r < 5.

Figure 2: A plot of df(r)/dr with f(r) coming from
(1.1) when 0 < r < 5.

claim can become formidable and get out hand very
quickly.

Instead of providing a full-blown review in this
area, we provide a number of more recent references
where inequalities and monotonicity properties have
been addressed successfully in a number of interesting
situations. One may look into the following resources:
Mukhopadhyay and Bhattacharjee (2010) gave a num-
ber of extensions of Stirling’s formula under heuristic
approaches. In his 2010 paper of Mukhopadhyay de-
veloped a new sharper lower bound for a percentile
of a Student’s t distribution. Gut and Mukhopadhyay
(2010) proved asymptotic and strict monotonicity of
such a sharper lower bound for Student’s t percentiles.
In a 2011 paper, Mukhopadhyay developed a sharp
Jensen’s inequality along with some unusual applica-
tions. Mukhopadhyay and Son (2016) revisited Stir-
ling’s formula for gamma functions and bounds for ra-
tios of gamma and beta functions and gave a synthesis
with new results.

We must emphasize however that none of the re-
sults available in these cited sources or elsewhere lead
to a successful resolution to the query stated in (1.1).
In Section 2, we show explicitly how we came across
to get hold of this complicated function, f(r), r > 0.
In Section 3, we come up with a slightly general-
ized form of the function f(r) and prove analytically
(Theorem 3.1) where that generalized function is min-
imized exactly.

It is interesting to note that the query stated in
(1.1) or an analogous query regarding a slightly gen-
eralized form of the function f(r) as such should have
absolutely nothing to do with any particular problem
on statistical inference or statistical computation. In-
deed the query from (1.1) is purely mathematical in
nature. An answer should be very simple: “yes” or
“no”.

But, it so turns out that with some clever manipu-
lation, we are able to connect the mathematical prob-
lem on hand indirectly with a suitably transformed
problem in the context of the celebrated Cramér-Rao
inequality (Cramér 1946; Rao 1945) and minimum
variance unbiased estimation (MVUE). One may ad-
ditionally refer to Mukhopadhyay (2000, pp. 365-
371).

By doing precisely that, we thereby arrive at the
following resolution of (1.1):

It is true that f(r) ≥ 1
2 for all 0 < r <∞. (1.3)

Such a totally unexpected and outside-the-box proof
may give this investigation a distinct edge in the
minds of its readers. We close with brief concluding
thoughts.
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2 MOTIVATION BEHIND THIS
INVESTIGATION

In this section, we provide our key motivation behind
raising the specific query stated in (1.1). Often, a stop-
ping time N associated with a sequential sampling
strategy can be generally expressed as:

N ≡ Nν = inf {n ≥ m : n ≥ ψνTn} , (2.1)

where m is the pilot sample size, {ψν ; ν ≥ 1} is a
sequence of positive numbers such that ψν → ∞ as
ν → ∞, and {Tn; n ≥ m} is a sequence of positive
statistics with probability one (w.p.1). We may cite
two specific examples.

The stopping times from Anscombe (1952,1953),
Ray (1957), and Chow and Robbins (1965) resemble
exactly like that in (2.1) with

Tn ≡ (n− 1)−1Σn−1
i=1 Z

2
i , (2.2)

where the Zi’s are independent and identically dis-
tributed (i.i.d.) N(0, 1) random variables under the
auspices of a sequential fixed-width confidence inter-
val problem for the mean in normal population with
variance unknown.

Additionally, the stopping times from Robbins
(1959), Starr (1966), and Ghosh and Mukhopadhyay
(1976) also resemble exactly like that in (2.1) with

Tn ≡ {(n− 1)−1Σn−1
i=1 Z

2
i }1/2 (2.3)

where the Zi’s are again i.i.d. N(0, 1) random vari-
ables under the auspices of a sequential minimum risk
point estimation problem for the mean in normal pop-
ulation with variance unknown.

In (2.2)-(2.3), we customarily relate Tn to be
the sample variance and sample standard deviation
respectively after expressing the sample variance as
the sample mean of n − 1 i.i.d. χ2

1 random vari-
ables by exploiting Helmert’s orthogonal transforma-
tion (Mukhopadhyay 2000, pp. 197-201). In the con-
text of both (2.2)-(2.3), it is understood that ψν will
coincide with the optimal fixed-sample-size n∗ had σ2
been known.

Under these two situations (2.2)-(2.3), however,
the stopping rule (2.1) may be alternatively expressed
in an unified fashion as follows:

Nr ≡ Nν,r = inf {n ≥ m : n ≥ ψνTn,r}
with Tn,r = {(n− 1)−1Σn−1

i=1 |Zi|
r a−1r }u/r,

ψν ≡ n∗, as = π−1/22s/2Γ

(
1

2
s+

1

2

)
, s = r, 2r

(2.4)

where (i) u = 2, r = 2 under (2.2) and (ii)
u = 1, r = 2 under (2.3).

However, we allow r(> 0) to be arbitrary but
it is held fixed. That way, we have a class of purely
sequential stopping times indexed by r(> 0).

The exact distribution of Nν,r is generally hard to
obtain analytically in a closed form since the event
[Nν,r = n] depends on the (n − m)-dimensional
statistic {Tm,r, Tm+1,r, . . . , Tn,r} for any fixed but
otherwise arbitrary n ≥ m. In some specific cir-
cumstances, an exact distribution of a stopping time
may be determined with significant effort if the
parameter(s) involved in the joint distribution of
{Tm,r, Tm+1,r, . . . , Tn,r} could be assumed known
for all n ≥ m. Robbins (1959) gave an algorithm
to determine the exact distribution of his associated
stopping time. Some recent references include Za-
cks (2005,2009), Zacks and Mukhopadhyay (2009),
Mukhopadhyay and Zacks (2018), and Mukhopad-
hyay and Zhang (2018).

Sections 2.1-2.3 summarize (i) Anscombe’s
(1952) random central limit theorem (Random CLT:
Theorem 2.1), (ii) Ghosh and Mukhopadhyay’s
(1975) theorem (Theorem 2.2) and asymptotic distri-
bution of Nν , and (iii) the asymptotic distribution of
Nν,r

2.1. Asymptotic Distribution of TNν from (2.1)
Under the setup from (2.1), we first summarize (i)
Anscombe’s (1952) random central limit theorem
(Random CLT) and (ii) Ghosh and Mukhopadhyay’s
(1975) theorem. At the outset, a customary CLT is
assumed to hold for Tn, that is, we suppose:

n1/2(Tn − g)/h
£→ N(0, 1), as n→∞, (2.5)

with some real numbers g(> 0) and h(> 0).
Anscombe’s (1952) formulation of his Random CLT
specified a set of sufficient conditions under which the
following result:

N1/2
ν (TNν − g)/h

£→ N(0, 1), as ν →∞, (2.6)

would hold. One may review from Mukhopadhyay
and Solanky (1994, pp. 42-43) and Ghosh et al.
(1997, Section 2.7), among other sources. More re-
cent treatments can be found in Mukhopadhyay and
Chattopadhyay (2012) and Mukhopadhyay and Zhang
(2018).
Theorem 2.1 (Anscombe’s Random CLT, 1952).
Let {Tn; n ≥ 1} be a sequence of random variables.
Let {nν ; ν ≥ 1} be an increasing sequence of posi-
tive integers such that nν → ∞ as ν → ∞, and let
{Nν ; ν ≥ 1} be a general sequence of positive (w.p.1)

2 Motivation behind this investigation
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integer-valued random variables. Suppose that the
following conditions hold:

(i) Nν /nν
P→ 1 as ν →∞,

(ii) (2.6) holds, that is, n1/2ν (Tnν − g)/h
£→ N(0, 1)

as ν →∞ for some g(> 0) and h(> 0), and
(iii) for any given ε > 0, η > 0, there exist δ > 0 and
n0 such that for nν ≥ n0, we have:

P
{

sup|n′ν−nν |≤δnν n
1/2
ν |Tn′ν − Tnν | > ε

}
< η

[Anscombe’s u.c.i.p./tightness condition

Under these sufficient conditions (i)-(iii), we
have:

N1/2
ν (TNν − g)/h

£→ N(0, 1), as ν →∞,

that is, (2.6) would hold.

Condition (iii) is known as Anscombe’s uniform
continuity in probability (u.c.i.p.) condition. It is also
referred to as the tightness condition. The sufficient
conditions (i)-(iii) are satisfied when Tn is a sample
mean, a U-statistic, or a maximum likelihood estima-
tor (MLE), among others, obtained from a sequence
of independent and identically distributed (i.i.d.) ob-
servations.

In the context of a variety of sequential inference
strategies, nν is interpreted as an appropriate fixed
sample size, had the (nuisance) parameter(s) been
known. In such cases, Nν from (2.1) would estimate
nν , and {Tn; n ≥ 1} would be a sequence of observ-
able positive (w.p.1) random variables.
2.2. Asymptotic Distribution of Nν from (2.1)
Again, under the setup from (2.1), Ghosh and
Mukhopadhyay (1975) developed a technique to
“transfer” an asymptotic distribution of TNν from
Theorem 2.1 further along to conclude an asymp-
totic distribution of Nν . That theorem comes from
an unpublished manuscript which formed a part of
Mukhopadhyay’s (1975, Chapter 2) thesis and it
played a key role in Carroll’s (1977) derivation of the
asymptotic normality result of stopping times based
on robust estimators.

One should realize that the usual sufficient con-
ditions to ensure (2.6) are the ones stated in Theorem
2.1 with nν ≡ gψν . A proof of (2.4) is rather brief and
hence we omit it. One may review from Mukhopad-
hyay and Solanky (1994, Section 2.4), Ghosh et al.
(1997, Exercise 2.7.4), Mukhopadhyay and de Silva
(2009), and Zacks (2017), among other sources.
Theorem 2.2 (Ghosh-Mukhopadhyay Theorem,
1975). Let Nν be defined as in (2.1). Suppose that
as ν →∞, the following holds:

N1/2
ν (TNν − g)/h

£→ N(0, 1)

and N1/2
ν (TNν−1 − g)/h

£→ N(0, 1). (2.7)

Then we have,

g1/2(Nν − gψν)/(hψ1/2
ν )

£→ N(0, 1) as ν →∞.
(2.8)

2.3. Asymptotic Distribution of Nν,r from (2.4)
Now, we are in a position to precisely state and prove
an asymptotic distribution of Nν,r under the setup
from (2.4) where u and r are both held fixed. Let
us denote Wn,r = (n − 1)−1Σn−1

i=1 |Zi|
r a−1r so that

Tn,r = W
u/r
n,r . The CLT gives:

n1/2(Wn,r − 1)
£→ N

(
0, a2ra

−2
r − 1

)
as n→∞.

(2.9)
From (2.4), we recall that

as = π−1/22s/2Γ

(
1

2
s+

1

2

)
, s = r, 2r.

Then, Mann-Wald theorem (Rao 1973, pp. 385-386;
Mukhopadhyay 2000, pp. 261-262) and (2.9) leads to
(as n→∞):

n1/2(Tn,r − 1)/hr
£→ N(0, 1) where h2r = u2f(r),

(2.10)
in the spirit of (2.5) where f(r) was defined in (1.1).

Next, since the conditions of Theorem 2.1 are sat-
isfied (with nν ≡ ψν), we can immediately conclude
(as ν →∞):

N
1/2
ν,r (TNν,r − 1)/hr

£→ N(0, 1)

and N1/2
ν,r (TNν,r−1 − 1)/hr

£→ N(0, 1).
(2.11)

Then, in view of (2.11), Theorem 2.2 implies:

(Nν,r − ψν) /ψ
1/2
ν

£→ N(0, h2r) as ν →∞,
(2.12)

with hr coming from (2.10).
2.4. More Insight from Combining (2.4) with (2.12)
and Motivation Behind (1.1)
We may exploit the tools from nonlinear renewal the-
ory of Woodroofe (1977,1982), Lai and Siegmund
(1977,1979), Mukhopadhyay (1988), and Mukhopad-
hyay and Solanky (1994, pp. 48,50, Theorem 2.4.8,
part iv) to claim (as ν →∞):

(Nν,r − ψν)2 /ψν is uniformly integrable if m > 1 + u,
(2.13)
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that is, we can express:

V ar[Nν,r] = u2f(r) + o(1) if m > 1 + u.
(2.14)

In the contexts of the two specific sequential esti-
mation problems addressed via (2.2) and (2.3), we re-
call that ψν ≡ n∗, the optimal fixed-sample-size and
we can identify (u = 1, r = 2) and (u = 2, r = 2)
under (2.2)-(2.3) respectively. Noting that f(2) = 1

2 ,
We may summarize as follows:

(i) Interval Estimation (2.2): u = 2, r = 2:
V ar[Nν,r] = 2 + o(1)

if m ≥ 4;

(ii) Point Estimation (2.3): u = 1, r = 2:
V ar[Nν,r] = 1

2 + o(1)
if m ≥ 3.

(2.15)
Now, since Nν,r estimates ψν ≡ n∗, the optimal
fixed sample size, it should make sense to identify
r = r∗(> 0) analytically such that f(r) is minimized
at this r = r∗. Such Nν,r∗ may be referred to as the
optimal (or most tight around ψν) stopping time in the
class of {Nν,r; r > 0}.
2.4.1. Motivation Behind the Query Stated in (1.1)
When one fixes r = 2 in defining (2.4), we note that
the associated stopping time Tν,2 clearly reduces to
one whose boundary crossing condition becomes an
appropriate exponent of the sample variance.

Intuitively, then, since u(> 0) is held fixed, it is
appropriate to expect that in the class of all stopping
rules {Tν,r; r > 0 arbitrary, but u > 0 fixed}, the
stopping time Tν,2 with r = 2 should have the asso-
ciated smallest asymptotic variance, u2f(2). But, is
this sentiment theoretically sound?

We will prove (1.3) by appropriately invoking the
Cramér-Rao inequality, even though the query in itself
has nothing to do with any kind of inference problem
in statistics.

3 PROOF OF A GENERALIZED
VERSION OF (1.3)

Indeed, we first state and prove a result (Theorem 3.1)
that is slightly more general than (1.3). Our proof in-
volves a totally unexpected reliance on the customary
Cramér-Rao inequality. In the end, we briefly return
to (1.1) and address its resolution as stated in (1.3).
Theorem 3.1. For all fixed α > 0, s > 0, we have:

Γ (α+ 2s) Γ (α) {Γ (α+ s)}−2 ≥ 1 + s2α−1.

The equality holds if and only if s = 1.

Proof : We begin with a random variable Y
Gamma(α, β), where β(> 0) is an unknown parame-
ter, but α(> 0) is known so that the probability density
function (p.d.f.) of Y is given by:

a(y;β) = {βαΓ(α)}−1yα−1 exp(−y/β)I(y > 0),
(3.1)

where I(.) stands for the indicator function of (.).
Then, in view of (3.1), we immediately have:

Eβ[Y s] =
∫∞
0 ysa(y;β)dy = b(β;α, s), say; and

Vβ[Y s] = b(β;α, 2s)− b2(β;α, s).
(3.2)

Now, U ≡ Y s is an unbiased estimator of a
parametric function (of β) which we have defined as
b(β;α, s) in (3.2). Observe that Vβ[Y s]/E2

β[Y s] does
not involve β. Also, we obviously have:

∂
∂β b(β;α, s) = sβ−1b(β;α, s). (3.3)

Next, let us evaluate Fisher-information about β in a
single observation Y following the p.d.f. from (3.1)
which belongs to a one-parameter exponential family
as follows (in view of (3.3)):

IY (β) = Eβ

[{
∂
∂β ln(a(Y ;β))

}2
]

=Eβ
[
(Y−αβ)2

β4

]
= αβ−2.

(3.4)

At this point, we invoke the Cramér-Rao in-
equality (Cramér 1946; Rao 1945). One may refer
to numerous other sources including Mukhopadhyay
(2000, pp. 366-371). Using (3.4), we can claim:

Vβ[Y s] ≥
{
∂
∂β b(β;α, s)

}2
I−1Y (β)

=
{
sβ−1b(β;α, s)

}2
(αβ−2)−1

= s2α−1 {b(β;α, s)}2 .

(3.5)

The last expression seen in (3.5) is the Cramér-
Rao lower bound (CRLB) for the variance of an unbi-
ased estimator of a parametric function b(β;α, s), that
is, we have:

CRLB = s2α−1 {b(β;α, s)}2 . (3.6)

But, using (3.2), we can alternatively express:

Vβ[Y s]/E2
β[Y s] = b(β;α, 2s) {b(β;α, s)}−2 − 1,

(3.7)
so that the required inequality follows by combining
(3.5) and (3.7).

In the context of the Cramér-Rao inequality, the
Remark 7.5.1 in Mukhopadhyay (2000, p. 368)

3  Proof of generalized version of (1.3)
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clearly leads us to conclude that the CRLB from (3.6)
will be attained by the variance of an unbiased esti-
mator of b(β;α, s) when s = 1. Hence, equality all
across (3.5) will hold when s = 1. Now, the proof is
complete.
3.1. A Resolution of the Query Stated in (1.1)
We immediately arrive at the resolution stated in (1.3)
once we plug in s = 1

2r, α = 1
2 in Theorem 3.1, by

noting that Γ
(
1
2

)
=
√
π. Also, in (1.2), the equality

will hold, that is f(r) will be 1
2 when s = 1 or equiv-

alently when r = 2.
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