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Abstract: Poisson regression model is commonly used to model count data. In many scenarios, the data are
collected from various locations so spatially varying coefficient Poisson regression model is developed to adjust for
spatial dependence. We propose a Bayesian variable selection method for Poisson regression model with spatially
varying coefficients. Considering computation efficiency we assign a conjugate multivariate log-gamma (MLG)
prior to the regression coefficients and further incorporate the spatial information into the covariance matrix. We
apply the horseshoe prior to facilitate a robust variable selection method with computational efficiency and build a

MCMC algorithm for the posterior inference.
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1 Introduction

Poisson regression model is widely used for count
data. Sometimes the data are collected from various
locations such as the number of people died last year
in every country, or the number of accidents that hap-
pened last month in every state in US. In this case,
Poisson regression model needs to be adjusted for spa-
tial variation thus Poisson regression model with spa-
tially varying coefficients is developed.

The spatially varying coefficient model was first
introduced by [5], and then was extended to differ-
ent kinds of regression models. For spatially varying
coefficient Poisson regression model, latent Gaussian
process is used to model the dependency such as in
[4]. However, the computation is very expensive for
Gaussian process model, so [1] proposed a computa-
tionally efficient model by developing a multivariate
log-gamma distribution (MLG) as the prior for Pois-
son regression coefficients.

In this paper, we propose a Bayesian variable se-
lection method for Poisson regression model with spa-
tially varying coefficients. We adopt the multivariate
log-gamma distribution (MLG) as the prior for regres-
sion coefficients to achieve high computational effi-
ciency. In Bayesian framework, the usual setting is
to assign a normal prior for the regression coefficient,
and we can approximate the multivariate normal dis-
tribution using the MLG distribution and further in-
corporate the spatial information into the correspond-
ing covariance matrix. The horseshoe prior [2, 3] is
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used to do variable selection. We build a MCMC al-
gorithm for our proposed model.

The rest of the paper is organized as follows. In
section 2, we introduce the proposed model with its
hierarchical structure. Section 3 shows the Bayesian
computing algorithm. Some discussions about our
model are in section 4.

2 Variable Selection for Poisson
Regression Model with Spatially
Varying Coefficients

Suppose there are n sites, p predictors and m; obser-
vations in site 7, ¢ = 1,...,n. Then for y;(s;), the
count of j-th observation in site ¢, the Poisson regres-
sion model with spatially varying coefficients can be
described as

yji(si) ~ Poisson(exp{a:;(si)ﬁ(si)}) €))
where  x;(s;) = (@j1(84), ..., xjp(si))
is the corresponding covariate vector and

B(si) = (B1(si),--.,Bp(si)) is the p-dimensional
regression coefficients. We can fix the k-th regression
coefficient across all locations and combine them as
Br = (,Bk(sl), R 761{(371))/) k=1,...,p. Then let
B = (Bi,---,B,), and we can write the model in
matrix form as:

y ~ Poisson(exp{ X 3}) (2)
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where y = (y1(51),- -+, Ymy (S1)s -+ -5 Y1(Sn), - - -
is the outcome vector for all the observations in all
sites, and matrix X contains all the covariates. See
the format of X in [6].

Multivariate log-gamma (MLG) distribution is
developed by [1] and it can be a conjugate prior for
the regression coefficients of a multidimensional Pois-
son regression model. If ¢ = ¢ + Vw, where
c € R™ V is a m x m invertible matrix, and
w = (w1, ..., wy,)" are m mutually independent log-
gamma random variables with w; ~ LG(«y, k;),1 =
1,...,m, then we have ¢ ~ MLG(¢, V, o, k) with
a = (a,...,ap) and K = (K1,...,6m) . If
g ~ MLG(c,a'/?V  al,al), then g converges in
distribution to a multivariate normal random vector
with mean ¢ and covariance matrix V'V’ as a goes
to infinity.

Based on the approximately normal property of
the MLG distribution, it is a natural idea to assign an
approximately normal MLG prior to the Poisson re-
gression coefficients 3, which on the one hand is con-
cordant to the usual normal setting in the Bayesian
analysis, on the other hand keeps the conjugacy of the
prior. In this way, 3 is specified to have a MLG prior,
that is,

B ~ MLG(0,,, '?22 a1, a1,,), 3)
where 31/2 is the square root of a positive definite
matrix 3. Here we choose a as 10000, thus 3 ~
MVN(0,,,, X) approximately.

Since 3 can be regarded as the covariance ma-
trix of the approximately normal distribution, we can
incorporate the spatial information by a spatial corre-
lation matrix and employ the horseshoe prior [2, 3] for
variable selection. For unknown sparsity patterns and
large outlying signals, the horseshoe prior gives more
robust results, so we apply the horseshoe prior here to
do variable selection. The covariance matrix V' can
be expressed as

¥ = o?r’diag(\f, ..., \) @ H
1/0% ~ Gamma(3/2,3/2)

7~ Ca’(0,1)

Ap ~ Ca™(0,1)

“)

where o2 is the variance parameter following an

inverse-gamma distribution with shape 3/2 and scale
3/2, 7 is the global shrinkage parameter, A\, k =
1,...,p are the local shrinkage parameters allowing
for local variation of the shrinkage, ® is the Kronecker
product, and H is the spatial correlation matrix with
the (I, m)-th entry as exp{—¢ x dist(s, sm)} where
dist(s;, sy,) is some kind of distance between site 1
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, Ym,, ($n))and site m and b is a tuning parameter. To make H

a valid spatial correlation matrix, we assign a uniform
prior on b, b ~ Unif(0, B) where B is the upper bound
of b and depends on the maximum entry of the dis-
tance matrix. Combining the specification of H with
2, 3, and 4, the hierarchical structure of our model can
be described as,

y ~ Poisson(exp{ X 3})

B ~ MLG(0,,, /222 a1,,, al,,)
3 = o?ridiag(N, ..., \)) @ H

1/0% ~ Gamma(3/2,3/2)

7~ Cat(0,1)

Ap ~ Ca™(0,1)

(&)

1
Hg ) = eXp{—g x dist(s;, sm)}
b ~ Unif(0, B)

From 5, we can make posterior inference based on lo-
cal shrinkage parameters \;’s. According to [2, 3], if
the posterior mean of )y is less than 1, we can decide
that the corresponding k-th predictor is not significant.

3 Bayesian Computation

We build a MCMC algorithm for our proposed model
to obtain posterior samples. From the joint posterior
distribution, we can derive full conditional posterior
distributions for all the parameters. Since the MLG
prior on 3 is conjugate, we can derive a cMLG distri-
bution as the full conditional posterior distribution for
B3 and Gibbs sampler can be applied here. For other
parameters, the full conditional posterior distributions
are not in standard forms, so we use Metropolis-
Hastings algorithms to draw posterior samples. The
detailed MCMC algorithm is described as follows. To
simplify the notation, denote A = (Aq,...,A,)".

e Step 1. Start with initial values

BO 5O 70 \O) 3O Let ¢ be the iter-
ation index and set ¢t = 1.

e Step 2. Draw samples of 3 from the cMLG dis-
tribution

ﬁ‘y7X’ g, T, >‘7 b~ CMLG(HBa ag, K/B) (6)

where Hy = (X',a '?22712) ay =
(Y, aly,) kg = (Ly,oly,) N = 37" m;
y can contain 0’s since they are count values,
but g corresponds to the shape parameters of
gamma distributions thus can’t be 0’s. In this
case, we can simply add a small value like 0.5

to y.
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o Step 3. Update o wusing Metropolis-
Hastings algorithm with proposal distribu-
tion Trunc-Normal(c®~1, 0.12).  The full
conditional of o is

m(oly, X, 8,7, A, b) o
ol exp{a1/21;p2_1/26 @)
—aly, expla/?227128] — 2/3572)

where ¥ = o?r2diag(A\}, ..., A\3) ® H also in-

volves o.
e Step 4. Update 7 wusing Metropolis-
Hastings algorithm with proposal distribu-

tion Trunc-Normal(7(*~1 0.072).  The full

conditional of 7 is
m(7|ly, X,B8,0,A,b) x
T "P(1+ 72)71 exp{a1/21/np271/2,@— )

all, expla”2271/28]}

where 3 = o272diag()\?,
volves 7.

2 .
.-y Az) ® H also in-

e Step 5. Update A = (A,...,),) inde-
pendently and simultaneously using Metropolis-
Hastings algorithm. For each M,k =
1,...,p, the corresponding proposal distribution

is Trunc—Normal()\]g_l), 0.022). The full condi-
tional distribution of A is

m(Aly, X, B,0,7,b) x

alnpexp[a /25— 1/2,6]}

)
where ¥ = o?r2diag(A\}, ..., A7) ® H also in-
volves A.

e Step 6. Update b using Metropolis-

Hastings algorithm with proposal distribution
Normal(b(*=1), 4000%). The full conditional of b
is

7-‘-(b|y7X?/37 O‘? 7—’ A) X
1 _ _
det(exp{—gD}) p/Qexp{al/ngpE 128

al%pexp[a_l/QE_lﬂﬁ]}

(10)
where D is the distance matrix with the
(I,m)-th entry as dist(s;,s,) and X =

o?r2diag(A], ..., A2) ® H also involves b.
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e Step 7. If ¢ < M, repeat step 2 to step 5 and
t =t 4 1. M is the number of posterior samples
we desire for posterior inference.

e Step 8. Calculate the posterior estimates for 3
and A using the posterior means.

4 Discussion

In this paper, we proposed a Bayesian variable selec-
tion method for Poisson regression model with spa-
tially varying coefficients. For the conjugacy of the
prior, we assigned a MLG prior to the regression co-
efficients. We combined the spatial correlation matrix
and horseshoe prior for variable selection.

In the future work, we will conduct several sim-
ulation studies with multiple replicates and evaluate
the variable selection performance using sensitivity
and specificity. Different simulation scenarios will
also be considered such as generating the regression
coefficients from MLG instead of MVN and includ-
ing some spatial constant coefficients. Five years of
data (2010—2014) from the Office of the Connecti-
cut Medical Examiner and the Connecticut Hospital
Inpatient Discharge Database will be analyzed to fur-
ther illustrate the proposed model.
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