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Abstract: In this article we will discuss estimation of a closed population size under inverse binomial sampling
with mark-recapture strategy. This talk is based on the methodology laid out by Mukhopadhyay and Bhattacharjee
(2018). Under squared error loss (SEL) as well as weighted SEL, we propose sequential methodologies to come up
with bounded risk point estimators of an optimal choice of s, the number of tagged items; leading to an appropriate
sequential estimator of N. The sequential estimation methodologies are supplemented with first-order asymptotic
properties, which are followed by extensive data analyses. We might also briefly discuss other inferential proce-
dures on estimating N .
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1 Introduction
The celebrated capture-tag-release-recapture
(CTRR) methodology is often used to estimate the
size of a closed finite population. Scheaffer et al.
(Chapter 10, 2012) includes an eloquent presentation
and there are other references with more technical
descriptions. Here, in particular the indirect method
of sampling is the main focus of discussion where, we
gather random sample of size n that will be required
to observe a prefixed number of tagged elements (s).
This is also known as Inverse Binomial Sampling
where an important task is to determine the number
of tagged items or s. In this article we will discuss
a purely sequential bounded-risk estimation strategy.
The desirable asymptotic properties of the procedure
are discussed. We will also present data analyses
through simulation and with data from designed
experiments.

2 Probability Distribution and Risk
Function

Let us denote p = t/N which remains unknown since
N is unknown. Suppose that at the recapturing phase,
we wish to gather a random sample of appropriate size
that will afford us with exactly s observed tagged el-
ements where s is fixed for now. Let Xi stand for
the number of independent and identically distributed
(i.i.d.) trials required to observe the ith tagged item,
i = 1, ..., s.

Then, the Xi’s are i.i.d. having the common geo-
metric distribution, referred to as Geometric(p), with
the following probability mass function (p.m.f.):

f(x; p) = qx−1p, x = 1, 2, ...,
and q = 1− p, 0 < p < 1,

with mean µ = 1/p and variance σ2 = q/p2.
(1)

Consider the total number of items observed,
namely,

Y ≡ X1 + ...+Xs, (2)

at the recapture phase. Clearly, in view of (1), we have
Ep[Y ] ≡ sµ = s/p and Varp[Y ] ≡ sσ2 = sq/p2.
Now, then, an unbiased estimator of 1/p will be given
by Xs = s−1Y so that the population size will be
estimated unbiasedly by:

N̂s ≡ tp̂−1 = tXs (3)

The error in estimating N can be quantified by a
squared error loss function given by,

Ls ≡ Ls(N̂s, N) = (N̂s −N)2 (4)

If ω(> 0) is the bound of the associated risk func-
tion then we have, Rs = t2s−1(p−2 − p−1) ≤ ω
which will lead to the expression of the optimal (fixed)
choice of s to be

s∗ = t2ω−1(p−2 − p−1). (5)
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3 Purely Sequential Methodology
Since p is unknown, s∗ remains unknown in (5), we
propose a sequential bounded-risk estimation strat-
egy. We begin with the first observation X1, that is,
with the one recaptured tagged s = 1. Then, we suc-
cessively consider s = 2, 3, ... one by one and ter-
minate sampling according to the following stopping
rule: Let

S = inf
{
s ≥ 1 : s ≥ t2

ω

(
X

2
s −Xs + s−γ

)}
,

(6)
with arbitrary γ(> 0). Hence, upon termination the
final estimator of N will be,

N̂S ≡ tXS = tS−1ΣS
s=1Xs. (7)

and the sequential risk will be,

RS ≡ EN [LS ] = t2EN
[
(XS − p−1)2

]
(8)

Theorem 1 For the purely sequential estimation
strategy (S, N̂S) proposed via (6)-(7), for all fixed val-
ues of t and N, we have as ω → 0:

(i) S/s∗ → 1 with probability 1.

(ii) E
[
(S/s∗)k

]
→ 1 for fixed k(> 0)

(iii) E
[
(S/s∗)k

]
→ 1 for fixed k(< 0)

(iii) s∗−1/2
(
N̂S −N

)
→ N(0, t2qp−2) in distribu-

tion.

(iv) s∗−1/2 (S − s∗)→ N(0, (1 + q)2q−1) in distribu-
tion.

(v) ω−1RS → 1 with γ > 1/2, s∗ and RS come from
(5) and (8) respectively.

Proof: Part (i) follows from the basic inequality,
t2ω−1{(X2

S −XS) + S−γ} ≤ S < t2ω−1{(X2
S−1 −

XS−1) + (S − 1)−γ} + 1 and then taking the limit
ω → 0.

Part (ii) is known as asymptotic efficiency. Note
that S < t2ω−1{4X2

S + 1}I(S ≥ 2) + 1⇒ Ss∗−1 <
p2q−1(4U2 + 1) + 1, where U = sups≥1Xs. The re-
sult follows from (i) and dominated convergence the-
orem.

Part (iii) will adopt the techniques from Ghosh
and Mukhopadhyay (1979) and Sen and Ghosh
(1981). One can show that PN [S ≤ (1 −
ε)s∗] = O

(
s∗−r/(2+2γ)

)
for 0ε < 1 and some

r ≥ 2. The result will follow from the fact that
EN

[
(s∗/S)kI(S > 1

2s
∗)
]

= 1 + o(1).

Part (iv) can be easily shown from Anscombe’s
Random Central Limit Theorem.

Part (v) will follow from delta method, Slutsky’s
theorem and Ghosh-Mukhopadhyay (1975) theorem.

Part (vi) is called asymptotic risk efficiency.
To prove this we see that, EN

[
(XS − p−1)2

]
=

EN
[
s∗−1YSω + ((s∗2/S2)− 1)s∗−1YSω

]
, where

YSω ≡ s∗−1
(
ΣS
i=1Xi − p−1S

)2
.

Then we can show that, YSω is uniformly
integrable and EN

[(
s∗2S−2 − 1

)
Ys,ω

]
→ 0

as ω → 0. The result will then follow
by observing that, ω−1RS = EN [Ss∗−1] +
p2q−1EN

[
((s∗2/S2)− 1)YSω

]
ut

4 Data Analysis
In this section first we briefly describe the simulation
and comment on the results. Then we describe an ex-
periment that was performed to collect data.

4.1 Simulation Process
First, we generate ID labels 1, 2, 3, ..., N−1, N corre-
sponding to pretend-animals #1,#2,#3, ...,#N−1,
#N in the full population under consideration. We
pick t of these N animals (labels) selected by SR-
SWOR and tag them by turning them bold. Then, in
the whole population, we place these t tagged labels
back so that the whole population continues to include
N labels of which t are tagged (that is, they are bold).
Now, we permute the population and implement the
sampling strategy proposed by the purely sequential
stopping rule (6) by observing X1, X2, ... until termi-
nation with the final data {S = s, x1, ..., xs}. During
one run, when we move from stage i− 1 to i, we have
the full population on hand to sample from (using SR-
SWR) with exactly t tagged items. One should note
that at each stage i, we permute the whole population
and then go to the next stage i + 1. Once we stop ac-
cording to (6), that amounts to first full replication.
From this first single replication, one will obtain a
value of (S = s, N̂s).Data analysis is summarized for
a number of choices of (N, t, ω). During simulation,
we arbitrarily fixed γ = 0.7. Other values of γ > 0.5
gave similar results. For all choices of (N, t, ω) the
results of Theorem 1 were empirically verified.

4.2 Experimental Data
In this section, we summarize the performances of a
random experiment where we implemented the esti-
mation methodology from Section 3 thereby collect-
ing data sequentially in order to estimate population
size, N . We had a jar containing a large unknown
number (N ) of silver coins.
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From the jar, we selected a fistful of silver coins.
We happened to pick 117 silver coins, but we replaced
each with a gold coin and put these back inside the jar.
In other words, the jar contained an unknown number
of coins, N , but t = 117 of them were tagged as gold
coins. All the coins were similar with regard to size,
shape, and texture. We had at our disposal the full jar
(= population) to sample from. We fixed ω = 2500
and γ = 0.7. The data collection proceeded as fol-
lows:
Step 1: The entire jar was vigorously shaken and
coins were selected from the full jar (obviously with-
out looking) by simple random sampling with replace-
ment (SRSWR). This process continued until a gold
coin was observed. We kept track of the sequential
number of tries to draw the first gold coin. As soon as
the first gold coin appeared, we recorded the number
of trials (X) and the run # (S).
Step 2: The first entry (S = s = 1) corresponded
to the first run which terminated with 4(= X1 = x1)
successively observed coins, but the first 3 were silver
coins followed by the 4th one which happened to be
a gold coin. This meant that at the fourth draw, we
observed the first gold coin. Then, we checked with
the criterion for stopping defined through (6) to de-
termine if the sampling could be terminated. Then,
the random draws from the full jar began all over
again and we continued drawing coins until we ob-
served the next gold coin. The entries of the second
row (s = 2) shows the second run which terminated
with 7(= X2 = x2) successively observed coins, but
the first 6 were silver coins followed by the 7th one
which happened to be a gold coin. Thus far, we had
(s = 1, x1 = 4) and (s = 2, x2 = 7) successively.
The stopping rule (6) asked us not to stop with s = 2.
Step 3: With each value of X1, X2, X3, ... observed
in succession, the average Xs = s−1Σs

i=1Xi was cal-
culated sequentially, namely we came up with the ob-
served values of X1, X2, X3, ....
Step 4: Steps 1-3 continued as we kept on checking
successively for stopping. Continuing that way, it was
s = 91 when we stopped according to (6).
Step 5: Proceeding as above, s = 91 was our fi-
nal value of S in order to estimate the size N of the
population, the total number of coins inside the jar.
Thus, we came up with the following estimate of N :
N̂91 ≡ tX91 = 117× 4.59 = 537.03.

5 Conclusion
This article addresses an important question on de-
termining the optimal number of tagged items to be
observed in the CTRR sampling methodology. The
purely sequential bounded-risk strategy provides ex-

cellent estimates of the population size.
But we also note that from a practical point of

view, specifying appropriate ω by a practitioner under
the formulation in Section 2 may be a bit concern-
ing just because N̂s is highly variable for fixed and
small s. In order to make life a bit “simpler”, we may
consider a weighted squared error loss function of the
form

Ls ≡ Ls(N̂s, N) = N−1(N̂s −N)2. (9)

The loss quantified here will be considerably smaller
compared with that shown in Section 2. One may
adopt appropriate sequential methodology to study
relevant properties and accuracy of estimating N un-
der this weighted squared error loss function.
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