Products of Volterra-type operators and composition operators from analytic Morrey spaces into Zygmund spaces

SHANLI YE
Zhejiang University of Science and Technology
School of Science
Hangzhou, Zhejiang 310023
CHINA
slye@zust.edu.cn

Abstract: In recent years the composition operator C_φ has been received much attention and appear in various settings in the literature. It is interesting to provide a function theoretic characterization when φ induces a bounded or compact composition operator on various function spaces. In this paper we consider the products of Volterra-type operators and composition operators. We characterize the boundedness and compactness of the products of Volterra-type operators and composition operators $T_\varphi C_\psi$ and $I_\varphi C_\psi$ from the analytic Morrey spaces $L^{2,\lambda}$ to the Zygmund space $Z\lambda$, and the little analytic Morrey spaces $L^{2,\lambda}_0$ to the little Zygmund space $Z\lambda_0$ over the unit disk, respectively.

Key–Words: Analytic Morrey space, Zygmund space, Volterra-type operators, Composition operators, Boundedness, Compactness

1 Introduction

Let $D = \{ z : |z| < 1 \}$ be the open unit disk in the complex plane and $H(D)$ denote the set of all analytic functions on D. Let φ be an analytic self-map of the unit disk D. Associated with φ is the composition operator C_φ defined by

$$C_\varphi f = f \circ \varphi, \quad f \in H(D).$$

It is interesting to provide a function theoretic characterization when φ induces a bounded or compact composition operator on various function spaces. Boundedness and compactness of composition operators on various function spaces have been studied by numerous authors, for example, see [3, 4, 10, 11, 13, 14, 15, 17, 20, 25].

For an arc $I \subset \partial D$, let $|I| = \frac{1}{2\pi} \int_I |d\zeta|$ be the normalized arc length of I,

$$f_I = \frac{1}{|I|} \int_I f(\zeta) \frac{|d\zeta|}{2\pi}, f \in H(D),$$

and $S(I)$ be the Carleson box based on I with

$$S(I) = \{ z \in D : 1 - |I| \leq |z| < 1, \, \frac{z}{|z|} \in I \}.$$

Clearly, if $I = \partial D$, then $S(I) = D$.

Let $L^{2,\lambda}(D)$ represent the analytic Morrey spaces of all analytic functions $f \in H^2$ on D such that

$$\sup_{I \subset \partial D} \left(\frac{1}{|I|} \int_I |f(\zeta) - f_I|^2 \frac{|d\zeta|}{2\pi} \right)^{1/2} < \infty,$$

where $0 < \lambda \leq 1$ and the Hardy space H^2 consists of analytic functions f in D satisfying

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty.$$

From Theorem 3.1 of [21] or Theorem 3.21 of [23], we can define the norm of function $f \in L^{2,\lambda}(D)$ and its equivalent formula as follows

$$\|f\|_{L^{2,\lambda}} = |f(0)| + \sup_{I \subset \partial D} \left(\frac{1}{|I|} \int_{S(I)} |f'(z)|^2 (1 - |z|^2) dm(z) \right)^{1/2} \approx |f(0)| + \sup_{a \in D} ((1 - |a|^2)^{1-\lambda} \int_D |f'(z)|^2 (1 - |\varphi_a(z)|^2) dm(z))^{1/2}.$$

Similarly to the relation between $BMOA$ space and $VMOA$ space, we have that $f \in L^{2,\lambda}_0(D)$, the little analytic Morrey spaces, if $f \in L^{2,\lambda}(D)$ and

$$\lim_{|I| \to 0} \left(\frac{1}{|I|} \int_I |f(\zeta) - f_I|^2 \frac{|d\zeta|}{2\pi} \right)^{1/2} = 0.$$

E-ISSN: 2224-2880

Volume 18, 2019

378
Clearly, $\mathcal{L}_0^{2,1}(D) = VMOA$. The following lemma gives equivalent conditions of $\mathcal{L}_0^{2,\lambda}$. The proof is similar to that of Theorem 6.3 in [6], we omit the details.

Lemma 1 Suppose that $0 < \lambda < 1$ and $f \in H(D)$. Let $a \in D$, $\varphi_a(z) = \frac{a - z}{1 - \overline{a}z}$, Then the following statements are equivalent.

(i) $f \in \mathcal{L}_0^{2,\lambda}(D)$;

(ii) $\lim_{|a|\to 1} (1 - |a|^2)^{1-\lambda} \times \int_D |f'(z)|^2 (1 - |\varphi_a(z)|^2) dm(z) = 0$; \hspace{1cm} (1)

(iii) $\lim_{|a|\to 1} (1 - |a|^2)^{1-\lambda} \times \int_D |f'(z)|^2 \log \frac{1}{|\varphi_a(z)|} dm(z) = 0$. \hspace{1cm} (2)

It is known that $\mathcal{L}_0^{2,1}(D) = BMOA$ and if $0 < \lambda < 1$, $BMOA \subseteq \mathcal{L}_0^{2,\lambda}(D)$. For more information on $BMOA$ and $VMOA$, see [6].

The Zygmund space Z consists of all analytic functions f defined on D such that

$$z(f) = \sup \{1 - |z|^2 | f''(z): z \in D \} < +\infty.$$

From a theorem of Zygmund (see [30, vol. I, p. 263] or [5, Theorem 5.3]), we see that $f \in Z$ if and only if f is continuous in the close unit disk $D = \{ z : |z| \leq 1 \}$ and the boundary function $f(e^{i\theta})$ such that

$$\sup_{h>0,\theta} \frac{|f(e^{i(\theta+h)}) + f(e^{i(\theta-h)}) - 2f(e^{i\theta})|}{h} < \infty.$$

An analytic function $f \in H(D)$ is said to belong to the little Zygmund space Z_0 consists of all $f \in Z$ satisfying $\lim_{|z|\to 1} (1 - |z|^2) |f''(z)| = 0$. It can easily proved that Z is a Banach space under the norm

$$\|f\|_Z = |f(0)| + |f'(0)| + z(f)$$

and the polynomials are norm-dense in closed subspace Z_0 of Z. For some other information on this space and some operators on it, see, for example, [7, 8, 26, 27].

Suppose that $g : D \rightarrow C$ is a analytic map. Let T_g and I_g denote the Volterra-type operators with the analytic symbol g on D respectively:

$$T_g f(z) = \int_0^z f(w)g'(w) dw$$

and

$$I_g f(z) = \int_0^z f'(w)g(w) dw, \quad z \in D.$$

In [12] Pommerenke introduced the Volterra-type operator T_g and showed that T_g is a bounded operator on the Hardy space H^2 if and only if $g \in BMOA$. In [26] the author studied the boundedness and compactness of T_g between the α-Bloch spaces β_α and the logarithmic Bloch space LB^1. Boundedness and compactness of this operators T_g acting on various function spaces have been studied in many literature. See [1, 2, 16, 18, 19, 20, 22] for more information.

Here, we consider the products of Volterra-type operators and composition operators, which are defined by

$$(T_g C_\varphi f)(z) = \int_0^z (f \circ \varphi)(\zeta)g'(\zeta) d\zeta, \quad f \in H(D)$$

and

$$(I_g C_\varphi f)(z) = \int_0^z (f \circ \varphi)'(\zeta)g(\zeta) d\zeta, \quad f \in H(D).$$

In [8], Li and Stević studied those operators from H^∞ and Bloch spaces to Zygmund Spaces. The author in [28] characterized the boundedness and compactness of those operators on the logarithmic Bloch space LB^1. Xiao and Xu [24] studied the composition operators on the analytic Morrey spaces $L^{2,\lambda}$ spaces. Li, Liu and Lou[9] studied the Volterra-type operators on $L^{2,\lambda}$ spaces. Zhou and Ye [29] considered this operators from $L^{2,\lambda}$ spaces to the classical Bloch space. In 2006, the boundedness of composition operators on the Zygmund space Z was first studied by Choe, Koo, and Smith in [3]. Later, many researchers have studied composition operators and weighted composition operators acting on the Zygmund space Z. Li and Stević in [7] studied the boundedness and compactness of the generalized composition operators on Zygmund spaces and Bloch type spaces. Ye and Hu in [27] characterized boundedness and compactness of weighted composition operators on the Zygmund space Z. In this paper the boundedness and compactness of those operators from analytic Morrey spaces $L^{2,\lambda}$ into Zygmund spaces Z are discussed. As some corollaries we obtain the boundedness and compactness for T_g and I_g from $L^{2,\lambda}$ into Z spaces.

Notations: For two functions F and G, if there is a constant $C > 0$ dependent only on indexes p, λ, \ldots such that $F \leq CG$, then we say that $F \lesssim G$. Furthermore, denote that $F \approx G$ (F is comparable with G) whenever $F \lesssim G \lesssim F$.

E-ISSN: 2224-2880
Volume 18, 2019
379
2 Auxiliary results

In order to prove the main results of this paper, we need some auxiliary results.

Lemma 2 Let $0 < \lambda < 1$. If $f \in \mathcal{L}^{2,\lambda}$, then

(i) $|f(z)| \lesssim \frac{\|f\|_{L^{2,\lambda}}}{(1 - |z|^2)^{\frac{\lambda}{2}}}$ for every $z \in D$;

(ii) $|f'(z)| \lesssim \frac{\|f\|_{L^{2,\lambda}}}{(1 - |z|^2)^{\frac{\lambda-1}{2}}}$ for every $z \in D$;

(iii) $|f''(z)| \lesssim \frac{\|f\|_{L^{2,\lambda}}}{(1 - |z|^2)^{\frac{\lambda-3}{2}}}$ for every $z \in D$.

Proof: (i) and (ii) are from Lemma 2.5 in [9].

For any $f \in \mathcal{L}^{2,\lambda}$. Fix $z \in D$ and let $\rho = \frac{1 + |z|}{2}$, by the Cauchy integral formula, we obtain that

\[|f''(z)| = \frac{1}{2\pi i} \int_{|\xi|=\rho} \frac{f'(|\xi|)}{(|\xi| - z)^2} d\xi \]

\[\leq \frac{\|f\|_{L^{2,\lambda}}}{(1 - \rho^2)^{\frac{\lambda-3}{2}}} \frac{1}{2\pi} \int_0^{2\pi} \frac{\rho d\theta}{|\rho e^{i\theta} - z|^2} \]

\[= \frac{\|f\|_{L^{2,\lambda}}}{(1 - \rho^2)^{\frac{\lambda-3}{2}} \rho^2 - |z|^2} \lesssim \frac{\|f\|_{L^{2,\lambda}}}{(1 - |z|^2)^{\frac{\lambda-3}{2}}}. \]

Hence (iii) holds.

Lemma 3 Let $0 < \lambda < 1$. If $f \in \mathcal{L}^{2,\lambda}_0$, then

(i) $\lim_{|z| \to 1} (1 - |z|^2)^{\frac{3-\lambda}{2}} |f'(z)| = 0$;

(ii) $\lim_{|z| \to 1} (1 - |z|^2)^{\frac{1-\lambda}{2}} |f(z)| = 0$;

(iii) $\lim_{|z| \to 1} (1 - |z|^2)^{\frac{5-\lambda}{2}} |f''(z)| = 0$.

The proof of (i) is similar to that of Lemma 2.5 in [9], and we easily obtain (ii) and (iii) by (i). These details are omitted here.

Lemma 4 Suppose $T_y C_\varphi$ (or $I_y C_\varphi$) : $\mathcal{L}^{2,\lambda}_0 \to \mathcal{Z}_0$ is a bounded operator, then $T_y C_\varphi$ (or $I_y C_\varphi$) : $\mathcal{L}^{2,\lambda} \to \mathcal{Z}$ is a bounded operator.

The proof is similar to that of Lemma 2.3 in [26]. The details are omitted.

3 Boundedness of $T_y C_\varphi$

In this section we characterize the boundedness of the operator $T_y C_\varphi$ from the analytic Morrey spaces $\mathcal{L}^{2,\lambda}$ to the Zygmund space \mathcal{Z}, and the little analytic Morrey spaces $\mathcal{L}^{2,\lambda}_0$ to the little Zygmund space \mathcal{Z}_0, respectively.

Theorem 5 Let g be an analytic function on the unit disc D and φ an analytic self-map of D. Then $T_y C_\varphi$ is a bounded operator from the analytic Morrey spaces $\mathcal{L}^{2,\lambda}$ to the Zygmund space \mathcal{Z} if and only if the following are satisfied:

\[\sup_{z \in D} \frac{(1 - |z|^2)|g''(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda}{2}}} < \infty; \]

\[\sup_{z \in D} \frac{(1 - |z|^2)|\varphi'(z)g'(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda}{2}}} < \infty. \]

Proof: Suppose $T_y C_\varphi$ is bounded from the analytic Morrey spaces $\mathcal{L}^{2,\lambda}$ to the Zygmund space \mathcal{Z}. Using functions $f(z) = 1$ and $f(z) = z$ in $\mathcal{L}^{2,\lambda}$, we have

\[g \in \mathcal{Z}, \]

and

\[\sup_{z \in D} (1 - |z|^2)|\varphi'(z)g'(z) + \varphi(z)g''(z)| < +\infty. \]

Since $\varphi(z)$ is a self-map, we get

\[K_1 = \sup_{z \in D} (1 - |z|^2)|\varphi'(z)g'(z)| < +\infty. \]

Fix $a \in D$ with $|a| > \frac{1}{2}$, we take the test functions:

\[f_a(z) = \frac{1 - |a|^2}{(1 - \bar{a}z)^{\frac{1-\lambda}{2}}} - \frac{(1 - |a|^2)^2}{(1 - \bar{a}z)^{\frac{\lambda}{2}}}. \]

for $z \in D$. Then, arguing as the proof of Lemma 3.2 in [9] we obtain that $f_a \in \mathcal{L}^{2,\lambda}$ and $\|f_a\|_{L^{2,\lambda}} \lesssim 1$. Since $f_a(a) = 0$, $f'_a(a) = \frac{(1 - |a|^2)^{\frac{1+\lambda}{2}}}{(1 - \bar{a}z)^{\frac{1-\lambda}{2}}}$, therefore, for all $\lambda \in D$ with $|\varphi(\lambda)| > \frac{1}{2}$, we have

\[\|f_a\|_{L^{2,\lambda}} \gtrsim \|T_y C_\varphi f_a\|_{\mathcal{Z}} \]

\[\gtrsim \sup_{z \in D} (1 - |z|^2)|f_a(\varphi(z)) + g''(z)f_a(\varphi(z))| \]

\[= \sup_{z \in D} (1 - |z|^2)|\varphi'(z)g'(z) + \varphi(z)g''(z)| \]
Let $a = \varphi(\lambda)$, it follows that

$$
\|f_a\|_{L^{2,\lambda}} \geq \frac{(1 - |\lambda|^2)|\varphi'(\lambda)g'(\lambda)|f'_\varphi(\lambda)(\varphi(\lambda))}{g''(\lambda)f_\varphi(\lambda)(\varphi(\lambda))} = \frac{(1 - |\lambda|^2)|\varphi'(\lambda)g'(\lambda)|}{(1 - |\varphi(\lambda)|^2)^{\frac{1}{2}}}.
$$

For $\forall \lambda \in D$ with $|\varphi(\lambda)| \leq \frac{1}{2}$, by (7), we have

$$
\sup_{\lambda \in D} \frac{(1 - |\lambda|^2)|\varphi'(\lambda)g'(\lambda)|}{(1 - |\varphi(\lambda)|^2)^{\frac{1}{2}}} \leq \frac{(4\lambda^{3-\lambda})}{3} \sup_{\lambda \in D} (1 - |\lambda|^2)|\varphi'(\lambda)g'(\lambda)| < +\infty.
$$

Hence (4) holds.

Next we will show (3) holds. Let

$$
h_a(z) = \frac{1 - |a|^2}{(1 - az)^{\frac{1}{2}}} - \frac{3 - \lambda}{5 - \lambda} \frac{(1 - |a|^2)}{(1 - az)^{\frac{1}{2}}}, \quad (9)
$$

for $z \in D$. Similar to the case of f_a, we have $h_a \in L^{2,\lambda}$ and $\sup_{\frac{1}{4} < |a| < 1} \|h_a\|_{L^{2,\lambda}} \leq 1$. From this and by that fact that $h_a(a) = 0$ and $h_a(0) = \frac{2}{5 - \lambda} \frac{(1 - |a|^2)}{(1 - az)^{\frac{1}{2}}}$, it follows that for all $\lambda \in D$ with $|\varphi(\lambda)| > \frac{1}{2}$,

$$
\|h_a\|_{L^{2,\lambda}} \geq \frac{(1 - |\lambda|^2)|\varphi'(\lambda)g'(\lambda)|}{h'_{\varphi}(\lambda)(\varphi(\lambda))} + \frac{2}{5 - \lambda} \frac{(1 - |\lambda|^2)}{(1 - |\varphi(\lambda)|^2)^{\frac{1}{2}}}.
$$

For $\forall \lambda \in D$ with $|\varphi(\lambda)| \leq \frac{1}{2}$, by (5), we have

$$
\sup_{\lambda \in D} \frac{(1 - |\lambda|^2)|g''(\lambda)|}{(1 - |\varphi(\lambda)|^2)^{\frac{1}{2}}} = \left(\frac{4}{3}\right)^{\frac{1}{2}} \sup_{\lambda \in D} (1 - |\lambda|^2)|g''(\lambda)| < \infty.
$$

Hence (3) holds.

Conversely, suppose that (3) and (4) hold. For $f \in L^{2,\lambda}$, by Lemma 2, we have the following inequality:

$$
(1 - |z|^2)(T_gC_\varphi f)'(z) \geq (1 - |z|^2)|\varphi'(\lambda)g'(\lambda)|f'(\lambda) + g''(\lambda)f(\varphi(z))|
$$

$$
\leq (1 - |z|^2)|\varphi'(\lambda)g'(\lambda)|f'(\lambda) + (1 - |z|^2)|g''(\lambda)f(\varphi(z))| + (1 - |z|^2)|g''(\lambda)f(\varphi(z))| + \sup_{\lambda \in D} \frac{(1 - |\lambda|^2)|\varphi'(\lambda)g'(\lambda)|}{g''(\lambda)f(\varphi(z))} \|f\|_{L^{2,\lambda}}
$$

and

$$
\|T_gC_\varphi f(0)\| + \|T_gC_\varphi f)'(0)\| \leq \frac{|g(0)|}{(1 - |\varphi(0)|^2)^{\frac{1}{2}}} \|f\|_{L^{2,\lambda}}.
$$

This shows that T_gC_φ is bounded. This completes the proof of Theorem 5.

Theorem 6 Let g be an analytic function on the unit disc D and φ an analytic self-map of D. Then T_gC_φ is bounded from the little analytic Morrey spaces $L^{2,\lambda}$ to the little Zygmund space \mathcal{Z}_0 if and only if (3) and (4) hold, and the following are satisfied:

$$
g \in \mathcal{Z}_0; \quad \lim_{|z| \to 1} (1 - |z|^2)|\varphi'(\lambda)g'(\lambda)| = 0. \quad (10)
$$

Proof: Suppose that T_gC_φ is bounded from $L^{2,\lambda}$ to \mathcal{Z}_0. Then $g(z) - g(0) = T_gC_\varphi 1 \in \mathcal{Z}_0$. Also $T_gC_\varphi z \in \mathcal{Z}_0$, thus

$$
(1 - |z|^2)|\varphi'(\lambda)g'(\lambda)| \to 0 \quad (|z| \to 1^-).
$$

Since $|\varphi| \leq 1$ and $g \in \mathcal{Z}_0$, we have $\lim_{|z| \to 1} (1 - |z|^2)|\varphi'(\lambda)g'(\lambda)| = 0$. Hence (10) holds.

On the other hand, by Lemma 4 and Theorem 5, we obtain that (3) and (4) hold.

Conversely, let

$$
M_1 = \sup_{z \in D} \frac{(1 - |\lambda|^2)|\varphi'(\lambda)g'(\lambda)|}{(1 - |\varphi(\lambda)|^2)^{\frac{1}{2}}} < \infty;
$$

E-ISSN: 2224-2880 381 Volume 18, 2019
\[M_2 = \sup_{z \in D} \frac{(1 - |z|^2)|g''(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda - 1}{2}}} < \infty. \]

For all \(f \in L^{2,\lambda}_0 \), by Lemma 3, given \(\epsilon > 0 \) there is a \(0 < \delta < 1 \) such that \((1 - |z|^2)^{\frac{\lambda - 1}{2}}|f'(z)| < \frac{\epsilon}{2M_1} \) and \((1 - |z|^2)^{\frac{\lambda - 1}{2}}|f(z)| < \frac{\epsilon}{2M_2} \) for all \(z \) with \(\delta < |z| < 1 \).

If \(|\varphi(z)| > \delta \), it follows that

\[
(1 - |z|^2)|T_g C_{\varphi} f''(z)| \leq (1 - |z|^2)|\varphi'(z)g'(z)f'(\varphi(z))| + g''(z)f(\varphi(z))| \leq (1 - |z|^2)|\varphi'(z)g'(z)f'(\varphi(z))| + (1 - |z|^2)|g''(z)f(\varphi(z))| \leq \frac{(1 - |z|^2)|\varphi'(z)g'(z)f'(\varphi(z))|}{(1 - |\varphi(z)|^2)^{\frac{\lambda - 1}{2}}} \frac{\epsilon}{2M_1} + \frac{(1 - |z|^2)|g''(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda - 1}{2}}} \frac{\epsilon}{2M_2} < \epsilon.
\]

We know that there exists a constant \(K \) such that \(|f(z)| \leq K \) and \(|f'(z)| \leq K \) for all \(|z| \leq \delta \).

If \(|\varphi(z)| \leq \delta \), it follows that

\[
(1 - |z|^2)|(T_g C_{\varphi} f''(z)| = (1 - |z|^2)|\varphi'(z)g'(z)f'(\varphi(z))| + g''(z)f(\varphi(z))| \leq (1 - |z|^2)|\varphi'(z)g'(z)f'(\varphi(z))| + (1 - |z|^2)|g''(z)f(\varphi(z))| \leq K(1 - |z|^2)|\varphi'(z)g'(z)| + K(1 - |z|^2)|g''(z)|.
\]

Thus we conclude that \((1 - |z|^2)|(T_g C_{\varphi} f''(z)| \to 0 \) as \(|z| \to 1^- \). Hence \(T_g C_{\varphi} f \in Z_0 \) for all \(f \in L^{2,\lambda}_0 \).

On the other hand, \(T_g C_{\varphi} \) is bounded from \(L^{2,\lambda} \) to \(Z \) by Theorem 5. Hence \(T_g C_{\varphi} \) is a bounded operator from \(L^{2,\lambda}_0 \) to \(Z_0 \).

Corollary 7 The Volterra-type operator \(T_g : L^{2,\lambda} \to Z \) is a bounded operator if and only if \(g = 0 \).

4 Boundedness of \(I_g C_{\varphi} \)

In this section we study the boundedness of the operator

\[I_g C_{\varphi} : L^{2,\lambda}(or \ L^{2,\lambda}_0) \to Z \ (or \ Z_0). \]

Theorem 8 Let \(g \) be an analytic function on the unit disc \(D \) and \(\varphi \) an analytic self-map of \(D \). Then \(I_g C_{\varphi} \) is a bounded operator from the analytic Morrey spaces \(L^{2,\lambda} \) to the Zygmund space \(Z \) if and only if the following are satisfied:

\[
\sup_{z \in D} \frac{(1 - |z|^2)|\varphi'(z)g'(z) + g''(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda - 1}{2}}} < \infty;
\]

\[
\sup_{z \in D} \frac{(1 - |z|^2)|\varphi(z)g'(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda - 1}{2}}} < \infty.
\]

Proof: Suppose \(I_g C_{\varphi} \) is bounded from the analytic Morrey spaces \(L^{2,\lambda} \) to the Zygmund space \(Z \). Using functions \(f(z) = z \) and \(f(z) = z^2 \) in \(L^{2,\lambda} \), we have

\[
\sup_{z \in D} (1 - |z|^2)|\varphi'(z)g'(z) + g''(z)| < +\infty, \quad (13)
\]

and

\[
\sup_{z \in D} (1 - |z|^2)|2\varphi(z)g'(z) + 2g(z)\varphi''(z) + 2g(z)(\varphi'(z))^2| < \infty.
\]

Since \(\varphi(z) \) is a self-map, we get

\[
\sup_{z \in D} (1 - |z|^2)|(\varphi'(z))^2 g(z)| < +\infty. \quad (14)
\]

Fix \(a \in D \) with \(|a| > \frac{1}{2} \), we still take the test functions \(h_a \) in (9). Noting that \(h_a''(a) = 0 \), \(h_a'(a) = \frac{(\lambda - 5)a^2}{(1 - |a|^2)^{\frac{\lambda - 1}{2}}} \), it follows that for all \(\lambda \in D \) with \(|\varphi(\lambda)| > \frac{1}{2} \), we have

\[
\|h_a\|_{L^{2,\lambda}} \geq \|I_g C_{\varphi} h_a\|_Z \geq \sup_{z \in D} (1 - |z|^2)|(I_g C_{\varphi} h_a)'(z)| = \sup_{z \in D} (1 - |z|^2)|(\varphi'(z)g'(z) + g''(z))h_a'(\varphi(z)) + h_a''(\varphi(z))(\varphi'(z))^2 g(z)|.
\]
Let \(a = \varphi(\lambda) \), it follows that
\[
\|h_a\|_{L^2,\lambda} \geq (1 - |\lambda|^2)(|\varphi'(\lambda)g'\lambda + \varphi''(\lambda)g(\lambda)|)h'_\varphi(\lambda)(\varphi(\lambda))
\]
\[
+ \ h''_\varphi(\lambda)(\varphi(\lambda))(\varphi'(\lambda))^2 g(\lambda)
\]
\[
= (1 - |\lambda|^2)(|\varphi'(\lambda)|^2)(\lambda - 5)\frac{|\varphi(\lambda)|^2}{(1 - |\varphi(\lambda)|^2)^{\frac{3}{2}}} \geq \frac{5 - \lambda}{4} \frac{(1 - |\lambda|^2)|\varphi'(\lambda)|^2 g(\lambda)}{(1 - |\varphi(\lambda)|^2)^{\frac{3}{2}}}.
\]

For \(\forall \lambda \in D \) with \(|\varphi(\lambda)| \leq \frac{1}{2} \), by (14), we have
\[
\sup_{|\lambda| < 1} \frac{(1 - |\lambda|^2)|\varphi'(\lambda)|^2 g(\lambda)}{(1 - |\varphi(\lambda)|^2)^{\frac{3}{2}}} \leq \left(\frac{4}{3} \right) \frac{5 - \lambda}{4} \sup_{|\lambda| < 1} (1 - |\lambda|^2)|\varphi'(\lambda)|^2 g(\lambda) < +\infty.
\]

Hence (12) holds.

Next, we take
\[
r_a(z) = \left(1 - \frac{|a|^2}{1 - \bar{a}z} \right)^{\frac{1}{2}}
\] (15)

for \(z \in D \). Similar to the case of \(f_a \), we have \(r_a \in L^{2,\lambda} \) and sup\(\frac{1}{2} < |a| < 1 \) \(\|r_a\|_{L^2,\lambda} \leq 1 \). Then,
\[
\|r_a\|_{L^2,\lambda} \geq \|I_gC_r a\|_z \geq (1 - |a|^2)\|I_gC_r a\|_z \geq (1 - |a|^2)(|\varphi'(z)g'z + \varphi''(z)g(\lambda)|)r'_\varphi(\varphi(z))
\]
\[
- (1 - |a|^2)r'^{\prime\prime}_\varphi(\varphi(z))(\varphi'(z))^2 g(\lambda).
\]

Therefore, by Lemma 2 and (12), we obtain that
\[
\sup_{z \in D} (1 - |z|^2)(|\varphi'(z)g'z + \varphi''(z)g(\lambda)|)r'_\varphi(\varphi(z))
\]
\[
\leq \sup_{z \in D} (1 - |z|^2)r'^{\prime\prime}_\varphi(\varphi(z))(\varphi'(z))^2 g(\lambda) + C\|r_a\|_{L^2,\lambda}
\]
\[
\leq \sup_{z \in D} \frac{(1 - |z|^2)|g(\lambda)(\varphi'(z))^2|}{(1 - |\varphi(\lambda)|^2)^{\frac{3}{2}}} \|r_a\|_{L^2,\lambda} \quad \quad \text{and}
\]
\[
\|r_a\|_{L^2,\lambda} < \infty.
\]

Let \(a = \varphi(z) \), it follows that
\[
\sup_{z \in D} (1 - |z|^2)(|\varphi'(z)g'z + \varphi''(z)g(\lambda)|)r'_\varphi(\varphi(z))
\]
\[
\leq \sup_{z \in D} (1 - |z|^2)r'^{\prime\prime}_\varphi(\varphi(z))(\varphi'(z))^2 g(\lambda) + C\|r_a\|_{L^2,\lambda}
\]
\[
\leq \sup_{z \in D} \frac{(1 - |z|^2)|g(\lambda)(\varphi'(z))^2|}{(1 - |\varphi(\lambda)|^2)^{\frac{3}{2}}} \|r_a\|_{L^2,\lambda} \quad \quad \text{and}
\]
\[
\|r_a\|_{L^2,\lambda} < \infty.
\]

For \(\forall \lambda \in D \) with \(|\varphi(\lambda)| \leq \frac{1}{2} \), by (13), we have
\[
\sup_{z \in D} (1 - |z|^2)(|\varphi'(z)g'z + \varphi''(z)g(\lambda)|)r'_\varphi(\varphi(z))
\]
\[
\leq \left(\frac{4}{3} \right) \frac{5 - \lambda}{4} \sup_{\lambda \in D} (1 - |\lambda|^2)|\varphi'(\lambda)g'\lambda + \varphi''(\lambda)g(\lambda)| < \infty.
\]

Hence (11) holds.

Conversely, suppose that (11) and (12) hold. For \(f \in L^{2,\lambda} \), by Lemma 2, we have the following inequality:
\[
(1 - |z|^2)(I_gC_r f)'(z)
\]
\[
= (1 - |z|^2)(|\varphi'(z)g'z + \varphi''(z)g(\lambda)|)f'(\varphi(z))
\]
\[
+ f''(\varphi(z))(\varphi'(z))^2 g(\lambda)
\]
\[
\leq (1 - |z|^2)(|\varphi'(z)g'z + \varphi''(z)g(\lambda)|)f'(\varphi(z))
\]
\[
+ (1 - |z|^2)f''(\varphi(z))(\varphi'(z))^2 g(\lambda)
\]
\[
\leq \frac{(1 - |z|^2)(|\varphi'(z)g'z + \varphi''(z)g(\lambda)|)}{(1 - |\varphi(\lambda)|^2)^{\frac{3}{2}}} \|f\|_{L^2,\lambda}
\]
\[
\quad + \frac{(1 - |z|^2)(|\varphi'(z)g'z + \varphi''(z)g(\lambda)|)}{(1 - |\varphi(\lambda)|^2)^{\frac{3}{2}}} \|f\|_{L^2,\lambda}
\]
\[
\leq \|f\|_{L^2,\lambda},
\]
\[
\text{and}
\]
\[
\|I_gC_r f\|_0(0) + \|I_gC_r f\|_0(0)
\]
\[
= \|f(\varphi(0))\varphi'(0)g(0)\|
\]
\[
\leq \frac{|\varphi'(0)g(0)|}{(1 - |\varphi(\lambda)|^2)^{\frac{3}{2}}} \|f\|_{L^2,\lambda}.
\]

This shows that \(I_gC_r \) is bounded. This completes the proof of Theorem 8.

Theorem 9 Let \(g \) be an analytic function on the unit disc \(D \) and \(\varphi \) an analytic self-map of \(D \). Then \(I_gC_\varphi \)
is bounded from the little analytic Morrey spaces $L_{0}^{2,\lambda}$ to the little Zygmund space Z_0 if and only if (11) and (12) hold, and the following are satisfied:

\[
\lim_{|z| \to 1} (1 - |z|^2)|\varphi'(z)g'(z) + \varphi''(z)g(z)| = 0; \tag{16}
\]

\[
\lim_{|z| \to 1} (1 - |z|^2)|\varphi(z)(\varphi'(z))^2| = 0. \tag{17}
\]

Proof: Suppose that $I_g C_\varphi$ is bounded from $L_{0}^{2,\lambda}$ to Z_0. Then $I_g C_\varphi z \in Z_0$, then

\[
\lim_{|z| \to 1} (1 - |z|^2)|\varphi'(z)g'(z) + \varphi''(z)g(z)| = 0,
\]

i.e. that (16) holds. Also, $I_g C_\varphi z^2 \in Z_0$, thus

\[
\lim_{|z| \to 1} (1 - |z|^2)2\varphi(z)\varphi'(z)g'(z) + 2g(z)\varphi''(z) + 2g(z)(\varphi'(z))^2 = 0
\]

Since $|\varphi| \leq 1$, we get

\[
\lim_{|z| \to 1} (1 - |z|^2)|g(z)(\varphi'(z))^2| = 0.
\]

Hence (17) holds.

On the other hand, by Lemma 4 and Theorem 8, we obtain that (11) and (12) hold.

Conversely, let

\[
M_1 = \sup_{z \in D} \frac{(1 - |z|^2)|\varphi'(z)g'(z) + \varphi''(z)g(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda+1}{2}}} < \infty;
\]

\[
M_2 = \sup_{z \in D} \frac{(1 - |z|^2)|g(z)(\varphi'(z))^2|}{(1 - |\varphi(z)|^2)^{\frac{\lambda+1}{2}}} < \infty.
\]

For $\forall f \in L_{0}^{2,\lambda}$, by Lemma 3, given $\epsilon > 0$ there is a $0 < \delta < 1$ such that $(1 - |z|^2)^{\frac{\lambda+1}{2}}|f'(z)| < \frac{\epsilon}{2M_1}$ and $(1 - |z|^2)^{\frac{\lambda+1}{2}}|f''(z)| < \frac{\epsilon}{2M_2}$ for all z with $\delta < |z| < 1$.

If $|\varphi(z)| > \delta$, it follows that

\[
(1 - |z|^2)|(I_g C_\varphi f)'(z)|
\]

\[
= (1 - |z|^2)((\varphi'(z)g'(z) + \varphi''(z)g(z))f'(\varphi(z))
\]

\[
+ f''(\varphi(z))(\varphi'(z))^2g(z)|
\]

\[
\leq (1 - |z|^2)((\varphi'(z)g'(z) + \varphi''(z)g(z))f'(\varphi(z))
\]

\[
+ (1 - |z|^2)f''(\varphi(z))(\varphi'(z))^2g(z)|
\]

\[
< \frac{(1 - |z|^2)|\varphi'(z)g'(z) + \varphi''(z)g(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda+1}{2}}} \frac{\epsilon}{2M_1}
\]

\[
+ \frac{(1 - |z|^2)|f''(\varphi(z))(\varphi'(z))^2g(z)|}{(1 - |\varphi(z)|^2)^{\frac{\lambda+1}{2}}} \frac{\epsilon}{2M_2}
\]

\[
< \epsilon,
\]

We know that there exists a constant K such that $|f'(z)| \leq K$ and $|f''(z)| \leq K$ for all $|z| \leq \delta$.

If $|\varphi(z)| \leq \delta$, it follows that

\[
(1 - |z|^2)|(I_g C_\varphi f)'(z)|
\]

\[
= (1 - |z|^2)((\varphi'(z)g'(z) + \varphi''(z)g(z))f'(\varphi(z))
\]

\[
+ f''(\varphi(z))(\varphi'(z))^2g(z)|
\]

\[
\leq (1 - |z|^2)((\varphi'(z)g'(z) + \varphi''(z)g(z))f'(\varphi(z))
\]

\[
+ (1 - |z|^2)f''(\varphi(z))(\varphi'(z))^2g(z)|
\]

\[
< K(1 - |z|^2)|\varphi'(z)g'(z) + \varphi''(z)g(z)|
\]

\[
+ K(1 - |z|^2)|(\varphi'(z))^2g(z)|,
\]

Thus we conclude that $(1 - |z|^2)|(I_g C_\varphi (f))''(z)| \to 0$ as $|z| \to 1^-$. Hence $I_g C_\varphi f \in Z_0$ for all $f \in L_{0}^{2,\lambda}$. On the other hand, $I_g C_\varphi$ is bounded from $L^{2,\lambda}$ to Z_0 by Theorem 5. Hence $I_g C_\varphi$ is a bounded operator from $L_{0}^{2,\lambda}$ to Z_0.

Corollary 10 The Volterra-type operator $I_g : L^{2,\lambda} \to Z$ is a bounded operator if and only if $g = 0$.

5 Compactness of $T_g C_\varphi$ and $I_g C_\varphi$

In order to prove the compactness of $T_g C_\varphi$, we require the following lemmas.
Lemma 11 Suppose that $T_g C_\varphi$ be a bounded operator from $L^{2,\lambda}$ to Z. Then $T_g C_\varphi$ is compact if and only if for any bounded sequence $\{f_n\}$ in $L^{2,\lambda}$ which converges to 0 uniformly on compact subsets of D. We have $\|T_g C_\varphi(f_n)\|_Z \to 0$, as $n \to \infty$.

The proof is similar to that of Proposition 3.11 in [4]. The details are omitted.

Lemma 12 Let $U \subset Z_0$. Then U is compact if and only if it is closed, bounded and satisfies

$$\lim sup_{|z| \to a} (1 - |z|^2) f''(z) = 0.$$

The proof is similar to that of Lemma 1 in [10], we omit it.

Theorem 13 Let g be an analytic function on the unit disc D and φ an analytic self-map of D. Suppose that $T_g C_\varphi$ is a bounded operator from $L^{2,\lambda}$ to Z. Then $T_g C_\varphi$ is compact if and only if the following are satisfied:

$$\lim_{|\varphi(z)| \to 1} (1 - |\varphi(z)|^2) |\varphi'(z)| g'(z) = 0;$$

$$\lim_{|\varphi(z)| \to 1} (1 - |\varphi(z)|^2) \frac{|\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\frac{1}{2}}} = 0.$$

Proof: Suppose that $T_g C_\varphi$ is compact from $L^{2,\lambda}$ to the Zygmund space Z. Let $\{z_n\}$ be a sequence in D such that $|\varphi(z_n)| \to 1$ as $n \to \infty$. If such a sequence does not exist, then (18) and (19) are automatically satisfied. Without loss of generality we may suppose that $|\varphi(z_n)| > \frac{1}{2}$ for all n. We take the test functions

$$f_n(z) = \frac{1 - |\varphi(z)|^2}{(1 - \varphi(z))^{\lambda}} - \frac{|\varphi'(z)|^2}{(1 - \varphi(z))^2}.$$

By the proof of Theorem 5 we know that $\sup_{|z| \to 1} |f_n|_{L^{2,\lambda}} \leq C < \infty$. Then $\{f_n\}$ is a bounded sequence in $L^{2,\lambda}$ which converges to 0 uniformly on compact subsets of D. Then $\lim_{n \to \infty} \|T_g C_\varphi(f_n)\|_Z = 0$ by Lemma 11. Note that $f_n(\varphi(z_n)) = 0$ and $f'_n(\varphi(z_n)) = \frac{-\varphi(\overline{z_n})}{(1 - |\varphi(z_n)|^2)^{\frac{1}{2}}}$.

It follows that

$$\|T_g C_\varphi f_n\|_Z \geq (1 - |z_n|^2)|g'(z_n)\varphi'(z_n)| f'_n(\varphi(z_n))$$

$$+ |g''(z_n)f_n(\varphi(z_n))| \geq (1 - |z_n|^2)|\varphi'(z_n)| \frac{1 - |\varphi(z_n)|^2}{(1 - |\varphi(z_n)|^2)^{\frac{1}{2}}}$$

$$\geq \frac{(1 - |z_n|^2)|\varphi'(z_n)| |\varphi''(z_n)|}{2(1 - |\varphi(z_n)|^2)^{\frac{1}{2}}}.$$

Then $\lim_{n \to \infty} \frac{(1 - |z_n|^2)|\varphi'(z_n)| |\varphi''(z_n)|}{(1 - |\varphi(z_n)|^2)^{\frac{1}{2}}} = 0$. Thus (19) holds.

Next, let

$$h_n(z) = \frac{1 - |\varphi(z_n)|^2}{(1 - \varphi(z_n))^{\lambda}} - \frac{3 - \lambda}{5 - \lambda} \frac{(1 - |\varphi(z_n)|^2)^{\frac{1}{2}}}{(1 - |\varphi(z_n)|^2)}.$$

We know that $\{h_n\}$ is a bounded sequence in $L^{2,\lambda}$ which converges to 0 uniformly on compact subsets of D. Then $\lim_{n \to \infty} \|T_g C_\varphi(h_n)\|_Z = 0$ by Lemma 11.

Note that $h_n(\varphi(z_n)) = \frac{2}{(5 - \lambda)(1 - |\varphi(z_n)|^2)^{\frac{1}{2}}}$. Hence (18) holds. The proof of the necessary is completed.

Conversely, suppose that (18) and (19) hold. Since $T_g C_\varphi$ is a bounded operator, by Theorem 5, we have

$$M_1 = \sup_{z \in D} \frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)^{\frac{1}{2}}} < \infty;$$

$$M_2 = \sup_{z \in D} \frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)^{\frac{1}{2}}} < \infty.$$

Let $\{f_n\}$ be a bounded sequence in $L^{2,\lambda}$ with $\|f_n\|_{L^{2,\lambda}} \leq 1$ and $f_n \to 0$ uniformly on compact subsets of D. We only prove $\lim_{n \to \infty} \|T_g C_\varphi(f_n)\|_Z = 0$ by Lemma 11. By the assumption, for any $\epsilon > 0$, there is a constant δ, $0 < \delta < 1$, such that $\delta < |\varphi(z)| < 1$ implies

$$\frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)^{\frac{1}{2}}} < \epsilon.$$
and
\[
\frac{(1 - |z|^2)|g''(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}} < \epsilon.
\]

Let \(K = \{ w \in D : |w| \leq \delta \} \). Noting that \(K \) is a compact subset of \(D \), we get that
\[
z(T_g C_\phi f_n) = \sup_{z \in D} (1 - |z|^2)|(T_g C_\phi f_n)''(z)|
\]
\[
\leq \sup_{z \in D} (1 - |z|^2)|\phi'(z)g'(z)f_n'(\phi(z))|
\]
\[
+ \sup_{z \in D} (1 - |z|^2)|g''(z)f_n(\phi(z))|
\]
\[
\leq 2\epsilon + \sup_{|\phi(z)| \leq \delta} (1 - |z|^2)|\phi'(z)g'(z)f_n'(\phi(z))|
\]
\[
+ \sup_{|\phi(z)| \leq \delta} (1 - |z|^2)|g''(z)f_n(\phi(z))|
\]
\[
\leq 2\epsilon + M_1 \sup_{w \in K} |f_n'(w)| + M_2 \sup_{w \in K} |f_n(w)|.
\]

As \(n \to \infty \),
\[
\| T_g C_\phi f_n \|_2 \to 0.
\]

Hence \(T_g C_\phi \) is compact. This completes the proof of Theorem 13.

Theorem 14 Let \(g \) be an analytic function on the unit disc \(D \), and \(\phi \) an analytic self-map of \(D \). Then \(T_g C_\phi \) is compact from \(L^{2,\lambda}_D \) to \(Z_0 \) if and only if the following are satisfied:

\[
\lim_{|z| \to 1} \frac{(1 - |z|^2)|\phi'(z)g'(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}} = 0; \quad (22)
\]

\[
\lim_{|z| \to 1} \frac{(1 - |z|^2)|g''(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}} = 0. \quad (23)
\]

Proof: Assume (22) and (23) hold. From Theorem 6, we know that \(T_g C_\phi \) is bounded from \(L^{2,\lambda}_D \) to \(Z_0 \). Suppose that \(f \in L^{2,\lambda}_D \) with \(\| f \|_{L^{2,\lambda}} \leq 1 \). We obtain that
\[
(1 - |z|^2)|(T_g C_\phi f)''(z)|
\]
\[
= (1 - |z|^2)|\phi'(z)g'(z)f'(\phi(z)) + g''(z)f(\phi(z))|
\]
\[
\leq (1 - |z|^2)|\phi'(z)g'(z)f'(\phi(z))|
\]
\[
+ (1 - |z|^2)|g''(z)f(\phi(z))|
\]
\[
\leq \frac{(1 - |z|^2)|\phi'(z)g'(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}} + \frac{(1 - |z|^2)|g''(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}},
\]

thus
\[
\sup \{(1 - |z|^2)|(T_g C_\phi f)''(z)|
\]
\[
: f \in L^{2,\lambda}_D, \| f \|_{L^{2,\lambda}} \leq 1\}
\]
\[
\leq \frac{(1 - |z|^2)|\phi'(z)g'(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}} + \frac{(1 - |z|^2)|g''(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}},
\]

and it follows that
\[
\lim_{|z| \to 1} \sup \{(1 - |z|^2)|(T_g C_\phi f)''(z)|
\]
\[
: f \in L^{2,\lambda}_D, \| f \|_{L^{2,\lambda}} \leq 1\} = 0,
\]

hence \(T_g C_\phi : L^{2,\lambda}_D \to Z_0 \) is compact by Lemma 12.

Conversely, suppose that \(T_g C_\phi : L^{2,\lambda}_D \to Z_0 \) is compact.

First, it is obvious that \(T_g C_\phi : L^{2,\lambda}_D \to Z_0 \) is bounded, then by Theorem 6, we have \(g \in Z_0 \) and that (10) holds. On the other hand, by Lemma 12 we have
\[
\lim_{|z| \to 1} \sup \{(1 - |z|^2)|(T_g C_\phi f)''(z)|
\]
\[
: f \in L^{2,\lambda}_D, \| f \|_{L^{2,\lambda}} \leq M\} = 0,
\]

for some \(M > 0 \).

Next, noting that the proof of Theorem 5 and the fact that the functions given in (8) are in \(L^{2,\lambda}_D \) and have norms bounded independently of \(a \), we obtain that
\[
\lim_{|z| \to 1} \frac{(1 - |z|^2)|\phi'(z)g'(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}} = 0
\]
\[
\frac{(1 - |z|^2)|g''(z)|}{(1 - |\phi(z)|^2)^{1 + \frac{1}{2}}} = 0
\]

E-ISSN: 2224-2880 386 Volume 18, 2019
for $|\varphi(z)| > \frac{1}{2}$. However, if $|\varphi(z)| \leq \frac{1}{2}$, by (10), we easily have

$$\lim_{|z| \to 1} \frac{(1 - |z|^2)|g''(z)|}{(1 - |\varphi(z)|^2)^{\frac{1-\alpha}{2}}} \leq \frac{4}{3} \lim_{|z| \to 1} (1 - |z|^2)|\varphi'(z)g'(z)| = 0.$$

Thus (22) holds.

Similarly, noting that the functions given in (9) are in $L^{2,\lambda}_0$ and have norms bounded independently of a, we obtain that

$$\lim_{|z| \to 1} \frac{(1 - |z|^2)|\varphi''(z)g'(z)|}{(1 - |\varphi(z)|^2)^{\frac{1-\alpha}{2}}} \leq \lim_{|z| \to 1} (1 - |z|^2)|(T_g C \varphi h_a''(z)|,$n

for $|\varphi(z)| > \frac{1}{2}$. Then

$$\lim_{|z| \to 1} \frac{(1 - |z|^2)|g''(z)|}{(1 - |\varphi(z)|^2)^{\frac{1-\alpha}{2}}} = 0$$

for $|\varphi(z)| > \frac{1}{2}$. However, if $|\varphi(z)| \leq \frac{1}{2}$, by $g \in \mathcal{Z}_0$, we easily have

$$\lim_{|z| \to 1} \frac{(1 - |z|^2)|g''(z)|}{(1 - |\varphi(z)|^2)^{\frac{1-\alpha}{2}}} = \lim_{|z| \to 1} \frac{4}{3} \frac{1-\lambda}{2} (1 - |z|^2)|g''(z)| = 0.$$

This completes the proof of Theorem 14.

Using the same methods as in the proof of Theorem 13 and 14, we can prove the following results.

Theorem 15 Let g be an analytic function on the unit disc D and φ an analytic self-map of D. Suppose that $I_g C \varphi$ is a bounded operator from $L^{2,\lambda}_0$ to \mathcal{Z}_0. Then $I_g C \varphi$ is compact if and only if the following are satisfied:

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)|\varphi'(z)g'(z) + \varphi''(z)g(z)|}{(1 - |\varphi(z)|^2)^{\frac{1-\alpha}{2}}} = 0;$$

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)|g(z)(\varphi'(z))^2|}{(1 - |\varphi(z)|^2)^{\frac{1-\alpha}{2}}} = 0. \quad (24)$$

Theorem 16 Let g be an analytic function on the unit disc D and φ an analytic self-map of D. Then $I_g C \varphi$ is compact from $L^{2,\lambda}_0$ to \mathcal{Z}_0 if and only if the following are satisfied:

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)|\varphi'(z)g'(z) + \varphi''(z)g(z)|}{(1 - |\varphi(z)|^2)^{\frac{1-\alpha}{2}}} = 0; \quad (25)$$

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)|g(z)(\varphi'(z))^2|}{(1 - |\varphi(z)|^2)^{\frac{1-\alpha}{2}}} = 0.$$

