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Abstract: In recent years the composition operator C, has been received much attention and appear in various
settings in the literature. It is interesting to provide a function theoretic characterization when ¢ induces a bounded
or compact composition operator on various function spaces. In this paper we consider the products of Volterra-
type operators and composition operators. We characterize the boundedness and compactness of the products of
Volterra-type operators and composition operators T,C,, and I,C, from the analytic Morrey spaces L2 to the

Zygmund space Z, and the little analytic Morrey spaces L’g’)‘ to the little Zygmund space Zj over the unit disk,

respectively.
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1 Introduction

Let D = {z : |2| < 1} be the open unit disk in the
complex plane and H (D) denote the set of all analytic
functions on D. Let ¢ be an analytic self-map of the
unit disk D. Associated with ¢ is the composition
operator C, defined by

Cof = fow, feH(D).

It is interesting to provide a function theoretic charac-
terization when ¢ induces a bounded or compact com-
position operator on various function spaces. Bound-
edness and compactness of composition operators on
various function spaces have been studied by numer-
ous authors, for example, see [3, 4, 10, 11, 13, 14, 15,
17, 20, 25].

For an arc I C 0D, let [I| = & [;|d(| be the
normalized arc length of I,

_1 lac]
fi =11 | 105 e HD).

and S(I) be the Carleson box based on I with

S(I):{zeD:1—|I|§\z|<1,ﬁ6[}.

Clearly, if I = 0D, then S(I) = D.
Let £2*(D) represent the analytic Morrey s-
paces of all analytic functions f € H? on D such
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that

sup
ICdD

1 2|dC]\1/2
(‘I’A/[Ue(é.) fI| 27T) < 00,
where 0 < A < 1 and the Hardy space H? consists of
analytic functions f in D satisfying

1 2w
sup —

|f(re?))? df < oco.
0<r<1 27 Jo

From Theorem 3.1 of [21] or Theorem 3.21 of [23],
we can define the norm of function f € £2*(D) and
its equivalent formula as follows

IFllcer = 17(O)] +
1 ()1 — |22)dm(2))
s (x [ 1F G = 1eim)
~ 1S0)]+
sup((1= 10! [ (7P [eale) ()2
acD D

Similarly to the relation between BMOA space and
VMOA space, we have that f € E(z)’A(D), the little
analytic Morrey spaces, if f € £>*(D) and

. 1 2|dCl\1/2 _
|}\1§10 (W/Ilf(C)—le g) = 0.
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Clearly, Eg’l(D) = VMOA. The following lem-

ma gives equivalent conditions of Eg”\. The proof is
similar to that of Theorem 6.3 in [6], we omit the de-
tails.

Lemma 1 Suppose that 0 < A < land f € H(D).
Let a € D, ¢u(z) = 1a .

Then the following

statements are equivalent.
. 20/ .
(1) f € L™ (D),

(i) lim (1 —|a|?)
la]—1

! 201 > 2 m(z) = 0:
x/D|f<z>| (1~ |pa(2) Bdm(z) = 0; (1)
(i) lim (1= Jaf?)'

! 2 O 1 milz) =
<[ 1O —dmiz) =0 @

It is known that £21(D) = BMOA and if 0 <
A< 1, BMOA C £>*(D). For more information on
BMOA and VMOA, see [6].

The Zygmund space Z consists of all analytic
functions f defined on D such that

2(f) = sup{(1 = |22)|f"(2)| : 2 € D} < +oo.

From a theorem of Zygmund (see [30, vol. I, p. 263]
or [5, Theorem 5.3]), we see that f € Z if and only if
f is continuous in the close unit disk D = {z : |z] <
1} and the boundary function f(e*?) such that

wup ) 4 F(0) — 27 (e

< Q.
h>0,0 h

An analytic function f € H(D) is said to belong
to the little Zymund space Zy consists of all f € Z
satisfying limy, 1 (1 —|2|?)| f”(2)| = 0. It can easily
proved that Z is a Banach space under the norm

£z = 1£0)] + 1£(0)] + 2(f)

and the polynomials are norm-dense in closed sub-
space Zy of Z. For some other information on this
space and some operators on it, see, for example,
[7, 8,26, 27].

Suppose that g : D — C is a analytic map. Let
T, and I, denote the Volterra-type operators with the
analytic symbol g on D respectively:

T,f(z) = /O " F(w)g (w) duw
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and
I,f(2) = /OZ I (w)g(w) dw, z € D.

In [12] Pommerenke introduced the Volterra-type
operator T, and showed that T, is a bounded operator
on the Hardy space H? if and only if ¢ € BMOA.
In [26] the author studied the boundedness and com-
pactness of T, between the a-Bloch spaces 3, and the
logarithmic Bloch space £B'. Boundedness and com-
pactness of this operators T}, acting on various func-
tion spaces have been studied in many literature. See
[1, 2,16, 18, 19, 20, 22] for more information.

Here, we consider the products of Volterra-type
operators and composition operators, which are de-
fined by

(T,Cof)(z) = /0 (Fop)(Od(Q)dC, | e H(D)
and
(1,Cof) () = /O (Fo)(Qa(0)de, f € H(D),

In [8], Li and Stevié studied those operators from
H*° and Bloch spaces to Zygmund Spaces. The au-
thor in [28] characterized the boundedness and com-
pactness of those operators on the logarithmic Bloch
space LB, Xiao and Xu [24] studied the composition
operators on the analytic M orrey spaces £2* spaces.
Li, Liu and Lou[9] studied the Volterra-type operators
on £2A spaces. Zhuo and Ye [29] considered this op-
erators from £2* spaces to the classical Bloch space.
In 2006, the boundedness of composition operators on
the Zygmund space Z was first studied by Choe, Koo,
and Smith in [3]. Later, many researchers have stud-
ied composition operators and weighted composition
operators acting on the Zygmund space Z. Li and Ste-
vi¢ in [7] studied the boundedness and compactness of
the generalized composition operators on Zygmund s-
paces and Bloch type spaces. Ye and Hu in [27] char-
acterized boundedness and compactness of weighted
composition operators on the Zygmund space Z. In
this paper theboundedness and compactness of those
operators from analytic Morrey spaces £> into Zyg-
mund spaces Z are discussed. As some corollaries we
obtain the boundedness and compactness for 7, and
I, from L2 into Z spaces.

Notations: For two functions F' and G, if there
is a constant C' > 0 dependent only on indexes p, A...
such that F' < C'G, then we say that F' < G. Further-
more, denote that F' = G (F' is comparable with G)
whenever F' < G < F.
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2 Auxiliary results

In order to prove the main results of this paper. we
need some auxiliary results.

Lemma2 Let0 < A\ < 1. If f € L2, then

17 <A oery - ¢ D;

(1— )

(i) | f'(2)| < M%for every z € D;
(1 —1z[*)="

(iii) | f"(2)] < Mﬁ)r every z € D.
(1 —1]z*) =

Proof: (i) and (ii) are from Lemma 2.5 in [9].

1
Forany f € £>*. Fix z € D and let p = 2’2‘,

by the Cauchy integral formula, we obtain that

IO
2mi Jig=p (€ = 2)?

1" (2)] dg|

o Wl 1T pds

T -T2y lpet? — 2

1fllen
(1—|z2)"

[1f1l g2 P~
1-p2) T P22

Hence (iii) holds.

Lemma3 Ler0 < A< 1. If f € L3, then

3=

(i) lim (1 —[2]*)7"|f'(2)| = 0;
|z|]—1
(ii) Tim (1= [22) %" | £(2)] = 0;
|z]—1
(iii) lim (1 — |2|2)°2 | f"(2)| = 0.
|z]—1
The proof of (i) is similar to that of Lemma 2.5 in [9],

and we easily obtain (ii) and (iii) by (i). These details
are omitted here.

Lemma 4 Suppose T,C,( or 1,C,) : [,g)‘ — Zo is
a bounded operator, then TyCy( or 1,Cy) : L2 —
Z is a bounded operator.

The proof is similar to that of Lemma 2.3 in [26]. The
details are omitted.
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3 Boundedness of 7,C,

In this section we characterize the boundedness of the
operator 1,C,, from the analytic Morrey spaces L2
to the Zygmund space Z, and the little analytic Mor-
rey spaces ES’A to the little Zygmund space Zj, re-
spectively.

Theorem 5 Let g be an analytic function on the unit
disc D and o an analytic self-map of D. ThenT,C,, is
a bounded operator from the analytic Morrey spaces
L to the Zygmund space Z if and only if the follow-
ing are satisfied:

2 i
ap LRI 4

€D (1~ [pl(2) )7

_ 2 ! !
ap LZEDPGEL

€D (1—=lp(2)]?) =
Proof: Suppose T;C,, is bounded from the an-
alytic Morrey spaces £2 to the Zygmund space Z.
Using functions f(z) = 1 and f(z) = z in £>?*, we
have

geEZ, )

and

sup(1 — 121%)1¢'(2)d(2) + ¢(2)g" (2)| < +o0. (6)

Since ¢(z) is a self-map, we get

Ky = sup(1 - 21%)|¢(2)d(2)] < +o0. (T
zE

1

Fix a € D with |a| > 5, we take the test func-

tions:
1—|af? (1—lal*)?

fa(2) = — 5 — 5 (®)
(1-az) = (1—-az) =

for z € D. Then, arguing as the proof of Lemma 3.2
in [9] we obtain that f, € £2* and sup, || fallp20 S

1. Since fo(a) =0, fl(a) = 7aH’ there-
(1 - [a2)*5"

fore, for all A € D with [p()\)| > 3, we have

[ fallz2x 2 1TyCp fall2

sup(1 — [2[*)|(T;Co fa)" ()]

zeD

v

= sup(l - [2[))|¢'(2)g' () fa((2)) + 9" (2) falp(2))].

zeD
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Let a = (), it follows that

[fallc2a 2

+

(1= AP NG V) F o (9(N)
6" fo (6(N)

(1= AP (Mg (V)

1A= PP Ng ’(A)I‘
2 (- leP) T

For VA € D with [¢(A)| < 3, by (7), we have

(L= AP A )9 (M|

(1= [T

< (5)'T s~ AP)Y g ()] < +oo.
xeD

AeD

Hence (4) holds.
Next we will show (3) holds. Let

1—|a?

(1-az)’z

3—X (1—|a[*)?
- 5—\

hal2) = R P

©)

for z € D. Similar to the case of f,, we have

he € L% and Sup1_(g1<1 lhallc2a < 1. From
2
this and by that facts that h),(a) = 0 and hy(a) =
2
—» it follows that for all A\ € D
5= (1= Joft)'F
with [p(\)] > 3.
lhall gz 2 (1= A" (N)g (V)i (0(N)
+ g (Nl (V)]
2
= (1=[AP)lg"(N) |
(5= =[eN)P) =

W]

2 (1= PPlg"Wl
5=A(1—[pN) T

For VA € D with [o(A)| < 3, by (5), we have

1—[AP)lg" (A
up (L= ")
AeD (1= Jp(N)?) =2
4 1
= (3)7 s (- AP ()] < .
Hence (3) holds.

Conversely, suppose that (3) and (4) hold. For
f € £>*, by Lemma 2, we have the following in-
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equality:

(1= [z ZeC f)" (2)]

= (1= 2P (2)g () (¢(2)) + g"(2) f (2(2))]
< (1= 2P (2)d (2) f (0(2))]
+ (1= 12P)g"(2) f(e(2))]

(1—12)|¢' (2)d'(2)]
5 3—X ”f” 2,2

(1- Iw(Z)IZ)T -

(1 —[p(2)? )

SO fllz2s
and

(TyCoo £)O0))] + (TyCop f)'(0)]

= [f(¢(0))g'(0)|
14/(0)]
< £l 2
(1- )T~

This shows that T,,C, is bounded. This completes the
proof of Theorem 5.

Theorem 6 Let g be an analytic function on the unit
disc D and ¢ an analytic self-map of D. Then T,C,
is bounded from the little analytic Morrey spaces E%’A
to the little Zygmund space Zy if and only if (3) and
(4) hold, and the following are satisfied:

g € Zo;

lim (1 — 21%)|¢'(2)g'(2)| = 0.

Jim 10)

Proof: Suppose that T;,C, is bounded from Eg’)‘

to Zy. Then g(z) — g(0) = T,C,1 € Z,. Also
T,Cy,z € Zy, thus
(1=|2P)¢'(2)d' (2)+0(2)g" ()| — 0 (|2] = 17).

Since |¢|] < 1 and g € Zy, we have |h‘m( —
z|—

|2*)|¢'(2)g' ()| = 0. Hence (10) holds.

On the other hand, by Lemma 4 and Theorem 5,
we obtain that (3) and (4) hold.

Conversely, let

(- lP e
(1-lp(=)]2) 7

My

= sup
zeD
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1— 2 "
My — s L BERN G

€D (1 —|p(2)?) =
ForVf € Eg’)‘, by Lemma 3, given € > 0 there is

a0 < & < 1such that (1 — |22)"% |f/(2)| < 2—;41

and (1 — |23 [f(2)| < QLMQ for all z with § <

|z| < 1.
If |p(z)| > 0, it follows that

(1= [P (T5Co f)" (2)]

= (1—12P)¢'(2)d () f'(0(2)) + g"(2) f((2))]

IN

(1= [21)¢' (2)g' () ' (2(2))]
+ (1= [2P)lg" (2)f((2))|

1= [z (2)g'(2)| _e

S iR 22h
(1—[22)lg"(2)] e
(1= lp()) =" 2Me

< €,

We know that there exists a constant / such that
|f(2)| < Kand |f'(2)| < K forall |z] <.
If |p(2)| < 0, it follows that

(1= P (T5Co f)" (2)]
= (1= [P)¢'(2)g' (2)f (9(2)) + 9" (2) f((2))]
< (1= 2P)e'(2)d () f (0(2))]
+ (1= [2)lg"(2)f ((2))|

< K- 2P (2)g ()] + K (1 = [2[*)]g" (2)].

Thus we conclude that (1—|z|?)|(T,C,(f))"(2)| = 0
as |2| — 17. Hence T,C,f € Z, forall f € L3
On the other hand, T,,C,, is bounded from £>* to Z
by Theorem 5. Hence 7,C, is a bounded operator

from Eg’)‘ to 2.

Corollary 7 The Volterra-type operator Ty : L2 —
Z is a bounded operator if and only if g = 0.
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4 Boundedness of /,C,

In this section we study the boundedness of the oper-
ator

1,C,: L2 or E%’A) — Z(or Zy).

Theorem 8 Let g be an analytic function on the unit
disc D and ¢ an analytic self-map of D. Then 1,C, is
a bounded operator from the analytic Morrey spaces
L2 to the Zygmund space Z if and only if the follow-
ing are satisfied:

1D
ap LRI @R

D (1-lp(x)P)T
Proof: Suppose I,C, is bounded from the an-
alytic Morrey spaces £ to the Zygmund space Z.
Using functions f(z) = z and f(2) = 22 in L2}, we
have

sup(1— 22)1¢'(2)d'(2) + 0" (2)g(2)] < +o0, (13)

and

sup(1 — |2[)[2¢(2)¢' (2)g' ()
zeD

+ 29(2)p(2)9"(2) + 29(2)(¢'(2))?] < o0.
Since (z) is a self-map, we get

sup(1 2)I(¢'(2))%g(2)] < +o0.  (14)

Fix a € D with |a| > 3, we still take the test
functions h in (9). Noting that h),(a) = 0, h;(a) =
(A —5)a?
(1—a2)z"
lp(A)] > £, we have

it follows that for all A € D with

1hall g2 Z [HgCohall2

v

sup(1 — |21*)|(I,Cpha)" ()|
zeD

= sup(l — [21))|(¢'(2)9 () + ¢"(2)9(2)) ha(0(2))

zeD

+ ha(e(2))(¢'(2)%g(2)]-
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Let a = (), it follows that

1all 22

Vv

(L= P NG (A + " (Ng () By (9 (M)

+ By () (' (V) ?g(V)]

O =500
(1— M)
5— A (L= AR ()2

4 1-ep)E

For VA € D with |p()\)| < 1,

= (=PI )90

by (14), we have

(L= A" (V)2 g(M)]

su 5—\
AeD (L= [p(N)[?) 2
4 5-x
< (3)7% sup(l- IAP) e (M)?g(N)] < +oo.
AeD
Hence (12) holds.
Next, we take
1 —lal?
'I"a(Z) = % (15)
(1—az) =2

for z € D. Similar to the case of f,, we have r, €
£2> and SUP1 o<1 |I7all c2.2 S 1. Then,

I7all g2 Z [HgCorall 2
> (1= [2)](LCpra)"(2)]
> (1-[zP) (2
= (1= [2P)rg(e()) (' (2))%g(2)]-

Therefore, by Lemma 2 and (12), we obtain that

sup(1 — |2*)[(¢(2)9'(2) + ¢"(2)g(2))ra((2))]

zeD
< sup(L = P P + Clral o
(1= |:P)lg(2) (@ ()]
< s o
b (1-lpE@PF

+ HTGHL2,>\ < 00.
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Let a = ¢(z), it follows that

#'(2)d'(2) + ¢"(2)g(2)]

sup(1 — |z[%) EEY

2€D (1= lp(2)]?) 2
S jgg(l—IZV)l(sO’(Z) 9'(2) +¢"(2)g(2))ra(e(2)]
< 0oQ.

For VA € D with [p(\)| < 1, by (13), we have

AR E AN + " Mg
zeD (1—lp(W)2)*7
< <§>"’z sup(1 = PPl (g0 + " (g

< Q.

sup(1 —

Hence (11) holds.

Conversely, suppose that (11) and (12) hold. For
f e EQ”\, by Lemma 2, we have the following in-
equality:

(1= [=P),Cof)"(2)]
= (1= [P)(¢(2)g'(2) + ¢"(2)9(2)) f'((2))

+ (e (2))%g(2)]

IN

(1= zP)(¢'(2)d' (2) + ¢"(2)9(2)) f'(0(2))]
+ (=12 (e(2)) (¢ (2))%g(z)|
(1—12)|¢'(2)d () +90”( )g(2)]

< 11l z2x
(1—lp(x)P)* ‘
(1—lp(z))) ="
S IS llgza,
and

|(ZgCo £)(0))] + [(1gCp f)'(0)]
= |f(2(0)¢'(0)g(0)]

< !cp’(O)g(O)\H

(1= 1p(0)?) 2

This shows that I,C, is bounded. This completes the
proof of Theorem 8.

1£1lz2a

Theorem 9 Let g be an analytic function on the unit
disc D and o an analytic self-map of D. Then 1,C,
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is bounded from the little analytic Morrey spaces L’g”\
to the little Zygmund space Z if and only if (11) and
(12) hold, and the following are satisfied:

lim (1 — 212)|¢ (2)g'(2) + ¢"(2)g(2)| = 0; (16)

|2|—

lim (1 — |2[*)lg(=)(¢'(2))°| = 0.

i an

Proof: Suppose that 1,C,, is bounded from Lg”\ to
Zy. Then I,C,z € Zy, then

Hm, (1= 219)¢'(2)g'(2) + ¢ (2)9(2)] = 0,

1. e. that (16) holds. Also, IgC¢Z2 € 2y, thus

i, (1= [21%)2¢(2)¢ (2)d (=)

+ 29(2)p(2)¢"(2) + 29(2) (¢ (2))*| = 0

Since || < 1, we get

lim (1 — [2]*)]g(2)(¢'(2))*| = 0.

|z| =1

Hence (17) holds.

On the other hand, by Lemma 4 and Theorem 8,
we obtain that (11) and (12) hold.

Conversely, let

M — sy L FRIP )+ ol
D (1-lp@)P)=
2y — o 0 |z|2>|g<z7<so5/<§>>2\ o

ForVf € Eg’)‘, by Lemma 3, given ¢ > 0 there is

0 < & < 1 such that (1 — |2[2)°%
a0 < & < 1 such that ( IZ\)2\f()\<2M

and (1 — |z|? ) 2 |f”( )| < T;@forallzwuhé <

|z| < 1.
If |p(2)| > 0, it follows that
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(1= [z)(LyCp )" (2)]
= (1= 2P (2)d (2) + ¢"(2)9(2)) ' ((2))
+ ()@ (2))%9(2)]
< A= P(E ()9 (2) + " (2)g(2)) £ (0(2))]
+ (1= 2P ()@ (2)%9(2)]

. AP REE) " (g e
(1—Jo(=)]?) 7 2M
(1= 2P (2)%9(2)| e
_ (1-lp(x)])’F  2Me

We know that there exists a constant / such that
|f'(2)] < Kand |f"(z)] < K forall |z] <.
If |(z)] < 0, it follows that

(1= [P (LCo £)" (2)]

= (1= [P)(¢'(2)g'(2) + ¢"(2)9(2)) f'((2))

+ (e (2))%9(2)]

< (A= P)(E ()9 (2) +¢"(2)9(2)) £ (0 (2))]

+ (L= P ((2)) (@' (2))?9(2)]

< K- 2P () (2) + " (2)9(2)]

+ K1 - [2P)|(#'(2))?g(2),

Thus  we  conclude  that (1 —

|2[)|(IgCo(f))"(2)] — 0 as [¢] — 17. Hence

I,C,f € 2o forall f € .Cg”\. On the other hand,
1,C, is bounded from L£>* to Z by Theorem 5.

Hence I,C,, is a bounded operator from 5(2)”\ to Zp.

Corollary 10 The Volterra-type operator I,
L2 — Z is a bounded operator if and only if g = 0.

5 Compactness of 7,C, and 1,C,

In order to prove the compactness of T,,C',,, we require
the following lemmas.
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Lemma 11 Suppose that T,C, be a bounded oper-
ator from L*>* to Z. Then T,C, is compact if and
only if for any bounded sequence { f,} in L>* which
converges to 0 uniformly on compact subsets of D. We
have | T,Cy(fn)l|z =0, asn — oco.

The proof is similar to that of Proposition 3.11 in [4].
The details are omitted.

Lemma 12 Let U C Zy. Then U is compact if and
only if it is closed, bounded and satisfies

lim sup(1 — |2[*)| ()| = 0.
|z|=1 feU

The proof is similar to that of Lemma 1 in [10], we
omit it.

Theorem 13 Let g be an analytic function on the unit
disc D and ¢ an analytic self-map of D. Suppose that
T,C, is a bounded operator from L3> to Z. Then
T,C,, is compact if and only if the following are satis-

fied:

lp(2)| =1

2\ | M
i LD (18)
[e()l=1 (1 — |p(2)]2) 2
A= EPIF@IEL o g9
’ -2

(1= [p(z)2) 7

Proof: Suppose that T,,C, is compact from L£2A
to the Zygmund space Z. Let { z,, } be a sequence in D
such that |¢(z,)| — 1 as n — oo. If such a sequence
does not exist, then (18) and (19) are automatically
satisfied. Without loss of generality we may suppose
that [¢(z,)| > £ for all n. We take the test functions

_ (A —Te(z))?

5=\ °

1- |90(Zn)|2
1-¢(z)2)7  (1—p()2)T
(20)

By the proof of Theorem 5 we know that that
sup,, || fallpzr < C < oo.  Then {f,} is
a bounded sequence in £>* which converges to
0 uniformly on compact subsets of D.  Then
limy, 00 |T4Cyx(frn)||z = 0 by Lemma 11. Note that

fal2) =

fn(p(z)) =0 and f;((zn
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It follows that

ITyCo full2
(1= l2nf*)lg (20) ' (2n) £1. (0 (2n))

v

+ Q/I(Zn)fn(SD(ZN))’

= (1=]z)lg (z)¢ (zn)] .

(1 - \anz)!g’(zn%p’_(fn)\.

2(1 = lp(zn)?) 2

(1 - \Zn\Z)\g’(zn)@:(Azn)\

(1 —=1le(zn)?) 2

Then lim = 0. Thus

(19) holds.
Next, let

3= (L= e(z)?)?
5—)\(1 5527

MRS S 2 O
(1-p(z)2) 7 — o(z)2) "
(21)

We know that {h,} is a bounded sequence in £**
which converges to 0 uniformly on compact subsets of
D. Then lim,, o || TyCy(hy)||z = 0 by Lemma 11.

2
Note that h,(p(z,)) = Y
i (- N1~ el ) 7
and b/, (¢(2,)) = 0. Then
ITyCohnllz > (1= |zal*)lg" (20) hn(p(2n))]

(
2 (1—|zf?)lg" (2n)]

5= A (1= p(za)?) 2

hence (18) holds. The proof of the necessary is
completed.

Conversely, suppose that (18) and (19) hold. S-
ince T, C,, is a bounded operator, by Theorem 5, we
have

)

M = sup LD
zeD (1 — ’SO(Z)P)T
M, = sup L= DI

€D (1 - [p(2)]?) T

Let {f,} be a bounded sequence in £2* with
| frll g2 < 1and f,, — 0 uniformly on compact sub-
sets of D. We only prove lim [|T,Cy(fn)|z = 0 by

n—oo

Lemma 11. By the assumption, for any € > 0, there
is aconstant 4, 0 < 0 < 1, such that § < |p(z)] < 1

implies
(1- IZIQ)Iw’(Z) '@l _
|

—A

(1= le(x)?)T
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and

(1- |Z|2)|9//(i)‘

(1= le(z)P?) =z

< €.

Let K = {w € D : |w| < §}. Noting that K is a
compact subset of D, we get that

q(TCofn) = sup(1=|z)(T,Co fn)"(2)]
< sup(1 = |2°)|¢' (2)g' (2) fr (9 (2))]
z€D
+ sup(l — |21%)]g"(2) fu(e(2))]
zeD
< 2+ sup (1-|z]P)]¢(2)g
le(2)|<0
+  sup (L—|2)|g"(2) fule(2))]
le(z)[<6
< 2e+ My sup | fy,(w)| + My sup | fp(w)].
weK weK
Asn — oo,

|1T4Cy fullz — 0.

Hence T,C, is compact. This completes the proof of
Theorem 13.

Theorem 14 Let g be an analytic function on the unit
disc D, and ¢ an analytic self-map of D. Then T,C,

is compact from Eg”\ to 2y if and only if the following

are satisfied:

o A= P ()g'(2)]

— = 0; (22)
51 (1 () 2) 7
_ ANV
i =PI GL

(1= Je(2)]) 2

Proof: Assume (22) and (23) hold. From The-
orem 6, we know that T, C,, is bounded from Eg’)‘ to

Zo. Suppose that f € ﬁg’)‘ with || f|lza < 1. We
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obtain that
(1= 2T Co f)" (2)]

= (1= 2P| (2)d (2) [ (¢(2) + g"(2) f (0(2))]

IN

(1= [21%)¢' (2)g' () ' (2(2))]
+ (1= [2)lg" (2)f ()|

(1= D)l ()g (2)
< L) £l o
1-|e(x)F °
(1 22)]g"(2)]
>\||f| 2,
TR D

51]1us
sup{(1 — 2[})|(T,C,r f)" (2)]
Fe g™ Ifllpn <1}

< U-EPIPEIEL | A-PleC)]
T Qe T =N

and it follows that

tim sup{|(1 = 2)(T,Cof)'(2)

fFely | fllen <1} =0,

hence T,C,, : 53”\ — Zj is compact by Lemma 12.
Conversely, suppose that T,C, : L‘g’)‘ — 2y is
compact.
First, it is obvious that T,C, : Lo™ — Zg is
bounded, then by Theorem 6, we have g € Z; and
that (10) holds. On the other hand, by Lemma 12 we

have

lim sup{(1 — [2[*)|(T,C,of)" ()]

|z]—1

2
fe Ly 1 fllgen < M} =0,

for some M > 0.
Next, noting that the proof of Theorem 5 and the

fact that the functions given in (8) are in Eg’)‘ and have
norms bounded independently of a, we obtain that

n LRI
(1- ()27

|z|—1

Volume 18, 2019



WSEAS TRANSACTIONS on MATHEMATICS

for |p(2)| > % However, if |p(2)| < % by (10), we

easily have

N IZIQ)I@’(Z) '(2)]
|

—A

(1 ) T
< ()T lm (1= PR ()] =0,
Thus (22) holds.

Similarly, noting that the functions given in (9)

are in Eg’ and have norms bounded independently of
a, we obtain that

(L= |2*)lg"(2)|

lim 5

1 (1~ [pl2) )T

S limyp, 1 (1= 2P T Cpha) (2)]

for |p(2)| > %. Then

(1=1zPlg" ) _,

lim —

1 (1 [p(a)2) 7

for [¢(z)| > 3. However, if [p(2)| < 1, by g € 2,
we easily have

lim —
FPT (L= Jp(2)]?)

This completes the proof of Theorem 14.
Using the same methods as in the proof of Theo-
rem 13 and 14, we can prove the following results.

Theorem 15 Let g be an analytic function on the u-
nit disc D and ¢ an analytic self-map of D. Suppose
that 1,C, is a bounded operator from L3> to Z. Then
1,C, is compact if and only if the following are satis-

fied:

e (=PI R + ¢ (e _
elz)l=1 (1—lp(2)]2) "7 ’
(24)
(=P o )
lo(z)]—1 (1—le(2)?) =

Theorem 16 Let g be an analytic function on the unit
disc D and ¢ an analytic self-map of D. Then 1,C,

is compact from [,g”\ to 2 if and only if the following
are satisfied:

E-ISSN: 2224-2880
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L (=P ()9 (2)

i1 (1~ le(a)) '

(1= 2Py ()
|

RACTCIR

2

= =0.

@27
(1= le(z)?) =

|z|—1
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