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Abstract: In recent years the composition operator Cφ has been received much attention and appear in various
settings in the literature. It is interesting to provide a function theoretic characterization when φ induces a bounded
or compact composition operator on various function spaces. In this paper we consider the products of Volterra-
type operators and composition operators. We characterize the boundedness and compactness of the products of
Volterra-type operators and composition operators TgCφ and IgCφ from the analytic Morrey spaces L2,λ to the
Zygmund space Z , and the little analytic Morrey spaces L2,λ

0 to the little Zygmund space Z0 over the unit disk,
respectively.
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1 Introduction
Let D = {z : |z| < 1} be the open unit disk in the
complex plane and H(D) denote the set of all analytic
functions on D. Let φ be an analytic self-map of the
unit disk D. Associated with φ is the composition
operator Cφ defined by

Cφf = f ◦ φ, f ∈ H(D).

It is interesting to provide a function theoretic charac-
terization when φ induces a bounded or compact com-
position operator on various function spaces. Bound-
edness and compactness of composition operators on
various function spaces have been studied by numer-
ous authors, for example, see [3, 4, 10, 11, 13, 14, 15,
17, 20, 25].

For an arc I ⊂ ∂D, let |I| = 1
2π

∫
I |dζ| be the

normalized arc length of I ,

fI =
1

|I|

∫
I
f(ζ)

|dζ|
2π

, f ∈ H(D),

and S(I) be the Carleson box based on I with

S(I) = {z ∈ D : 1− |I| ≤ |z| < 1,
z

|z|
∈ I}.

Clearly, if I = ∂D, then S(I) = D.
Let L2,λ(D) represent the analytic Morrey s-

paces of all analytic functions f ∈ H2 on D such

that

sup
I⊂∂D

( 1

|I|λ

∫
I
|f(ζ)− fI |2

|dζ|
2π

)1/2
< ∞,

where 0 < λ ≤ 1 and the Hardy space H2 consists of
analytic functions f in D satisfying

sup
0<r<1

1

2π

∫ 2π

0
|f(reiθ)|2 dθ < ∞.

From Theorem 3.1 of [21] or Theorem 3.21 of [23],
we can define the norm of function f ∈ L2,λ(D) and
its equivalent formula as follows

∥f∥L2,λ = |f(0)|+

sup
I⊂∂D

( 1

|I|λ

∫
S(I)

|f ′(z)|2(1− |z|2)dm(z)
)1/2

≈ |f(0)|+

sup
a∈D

((1− |a|2)1−λ

∫
D
|f ′(z)|2(1− |φa(z)|2)dm(z))1/2.

Similarly to the relation between BMOA space and
VMOA space, we have that f ∈ L2,λ

0 (D), the little
analytic Morrey spaces, if f ∈ L2,λ(D) and

lim
|I|→0

( 1

|I|λ

∫
I
|f(ζ)− fI |2

|dζ|
2π

)1/2
= 0.
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Clearly, L2,1
0 (D) = VMOA. The following lem-

ma gives equivalent conditions of L2,λ
0 . The proof is

similar to that of Theorem 6.3 in [6], we omit the de-
tails.

Lemma 1 Suppose that 0 < λ < 1 and f ∈ H(D).

Let a ∈ D, φa(z) =
a− z

1− az
. Then the following

statements are equivalent.
(i) f ∈ L2,λ

0 (D);
(ii) lim

|a|→1
(1− |a|2)1−λ

×
∫
D
|f ′(z)|2(1− |φa(z)|2)dm(z) = 0; (1)

(iii) lim
|a|→1

(1− |a|2)1−λ

×
∫
D
|f ′(z)|2 log 1

|φa(z)|
dm(z) = 0. (2)

It is known that L2,1(D) = BMOA and if 0 <
λ < 1, BMOA ( L2,λ(D). For more information on
BMOA and VMOA, see [6].

The Zygmund space Z consists of all analytic
functions f defined on D such that

z(f) = sup{(1− |z|2)|f ′′(z)| : z ∈ D} < +∞.

From a theorem of Zygmund (see [30, vol. I, p. 263]
or [5, Theorem 5.3]), we see that f ∈ Z if and only if
f is continuous in the close unit disk D = {z : |z| ≤
1} and the boundary function f(eiθ) such that

sup
h>0,θ

|f(ei(θ+h)) + f(ei(θ−h))− 2f(eiθ)|
h

< ∞.

An analytic function f ∈ H(D) is said to belong
to the little Zymund space Z0 consists of all f ∈ Z
satisfying lim|z|→1(1−|z|2)|f ′′(z)| = 0. It can easily
proved that Z is a Banach space under the norm

∥f∥Z = |f(0)|+ |f ′(0)|+ z(f)

and the polynomials are norm-dense in closed sub-
space Z0 of Z . For some other information on this
space and some operators on it, see, for example,
[7, 8, 26, 27].

Suppose that g : D −→ C is a analytic map. Let
Tg and Ig denote the Volterra-type operators with the
analytic symbol g on D respectively:

Tgf(z) =

∫ z

0
f(w)g′(w) dw

and

Igf(z) =

∫ z

0
f ′(w)g(w) dw, z ∈ D.

In [12] Pommerenke introduced the Volterra-type
operator Tg and showed that Tg is a bounded operator
on the Hardy space H2 if and only if g ∈ BMOA.
In [26] the author studied the boundedness and com-
pactness of Tg between the α-Bloch spaces βα and the
logarithmic Bloch space LB1. Boundedness and com-
pactness of this operators Tg acting on various func-
tion spaces have been studied in many literature. See
[1, 2, 16, 18, 19, 20, 22] for more information.

Here, we consider the products of Volterra-type
operators and composition operators, which are de-
fined by

(TgCφf)(z) =

∫ z

0
(f ◦ φ)(ζ)g′(ζ) dζ, f ∈ H(D)

and

(IgCφf)(z) =

∫ z

0
(f ◦ φ)′(ζ)g(ζ) dζ, f ∈ H(D).

In [8], Li and Stević studied those operators from
H∞ and Bloch spaces to Zygmund Spaces. The au-
thor in [28] characterized the boundedness and com-
pactness of those operators on the logarithmic Bloch
space LB1. Xiao and Xu [24] studied the composition
operators on the analytic Morrey spaces L2,λ spaces.
Li, Liu and Lou[9] studied the Volterra-type operators
on L2,λ spaces. Zhuo and Ye [29] considered this op-
erators from L2,λ spaces to the classical Bloch space.
In 2006, the boundedness of composition operators on
the Zygmund space Z was first studied by Choe, Koo,
and Smith in [3]. Later, many researchers have stud-
ied composition operators and weighted composition
operators acting on the Zygmund space Z . Li and Ste-
vić in [7] studied the boundedness and compactness of
the generalized composition operators on Zygmund s-
paces and Bloch type spaces. Ye and Hu in [27] char-
acterized boundedness and compactness of weighted
composition operators on the Zygmund space Z . In
this paper theboundedness and compactness of those
operators from analytic Morrey spaces L2,λ into Zyg-
mund spaces Z are discussed. As some corollaries we
obtain the boundedness and compactness for Tg and
Ig from L2,λ into Z spaces.

Notations: For two functions F and G, if there
is a constant C > 0 dependent only on indexes p, λ...
such that F ≤ CG, then we say that F . G. Further-
more, denote that F ≈ G (F is comparable with G)
whenever F . G . F .
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2 Auxiliary results
In order to prove the main results of this paper. we
need some auxiliary results.

Lemma 2 Let 0 < λ < 1. If f ∈ L2,λ, then

(i) |f(z)| . ∥f∥L2,λ

(1− |z|2)
1−λ
2

for every z ∈ D;

(ii) |f ′(z)| . ∥f∥L2,λ

(1− |z|2)
3−λ
2

for every z ∈ D;

(iii) |f ′′(z)| . ∥f∥L2,λ

(1− |z|2)
5−λ
2

for every z ∈ D.

Proof: (i) and (ii) are from Lemma 2.5 in [9].

For any f ∈ L2,λ. Fix z ∈ D and let ρ =
1 + |z|

2
,

by the Cauchy integral formula, we obtain that

|f ′′(z)| = | 1

2πi

∫
|ξ|=ρ

f ′(ξ)

(ξ − z)2
dξ|

≤ ∥f∥L2,λ

(1− ρ2)
3−λ
2

1

2π

∫ 2π

0

ρ dθ

|ρeiθ − z|2

=
∥f∥L2,λ

(1− ρ2)
3−λ
2

ρ

ρ2 − |z|2
. ∥f∥L2,λ

(1− |z|2)
5−λ
2

.

Hence (iii) holds.

Lemma 3 Let 0 < λ < 1. If f ∈ L2,λ
0 , then

(i) lim
|z|→1

(1− |z|2)
3−λ
2 |f ′(z)| = 0;

(ii) lim
|z|→1

(1− |z|2)
1−λ
2 |f(z)| = 0;

(iii) lim
|z|→1

(1− |z|2)
5−λ
2 |f ′′(z)| = 0.

The proof of (i) is similar to that of Lemma 2.5 in [9],
and we easily obtain (ii) and (iii) by (i). These details
are omitted here.

Lemma 4 Suppose TgCφ( or IgCφ) : L2,λ
0 → Z0 is

a bounded operator, then TgCφ( or IgCφ) : L2,λ →
Z is a bounded operator.

The proof is similar to that of Lemma 2.3 in [26]. The
details are omitted.

3 Boundedness of TgCφ

In this section we characterize the boundedness of the
operator TgCφ from the analytic Morrey spaces L2,λ

to the Zygmund space Z , and the little analytic Mor-
rey spaces L2,λ

0 to the little Zygmund space Z0, re-
spectively.

Theorem 5 Let g be an analytic function on the unit
disc D and φ an analytic self-map of D. Then TgCφ is
a bounded operator from the analytic Morrey spaces
L2,λ to the Zygmund space Z if and only if the follow-
ing are satisfied:

sup
z∈D

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

< ∞; (3)

sup
z∈D

(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

< ∞. (4)

Proof: Suppose TgCφ is bounded from the an-
alytic Morrey spaces L2,λ to the Zygmund space Z .
Using functions f(z) = 1 and f(z) = z in L2,λ, we
have

g ∈ Z, (5)

and

sup
z∈D

(1− |z|2)|φ′(z)g′(z) + φ(z)g′′(z)| < +∞. (6)

Since φ(z) is a self-map, we get

K1 = sup
z∈D

(1− |z|2)|φ′(z)g′(z)| < +∞. (7)

Fix a ∈ D with |a| > 1
2 , we take the test func-

tions:

fa(z) =
1− |a|2

(1− āz)
3−λ
2

− (1− |a|2)2

(1− āz)
5−λ
2

(8)

for z ∈ D. Then, arguing as the proof of Lemma 3.2
in [9] we obtain that fa ∈ L2,λ and supa ∥fa∥L2,λ .
1. Since fa(a) = 0, f ′

a(a) =
−ā

(1− |a|2)
3−λ
2

, there-

fore, for all λ ∈ D with |φ(λ)| > 1
2 , we have

∥fa∥L2,λ & ∥TgCφfa∥Z
≥ sup

z∈D
(1− |z|2)|(TgCφfa)

′′(z)|

= sup
z∈D

(1− |z|2)|φ′(z)g′(z)f ′
a(φ(z)) + g′′(z)fa(φ(z))|.
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Let a = φ(λ), it follows that

∥fa∥L2,λ & (1− |λ|2)|φ′(λ)g′(λ)f ′
φ(λ)(φ(λ))

+ g′′(λ)fφ(λ)(φ(λ))|

= (1− |λ|2)|φ′(λ)g′(λ)
−φ(λ)

(1− |φ(λ)|2)
3−λ
2

|

≥ 1

2

(1− |λ|2)|φ′(λ)g′(λ)|
(1− |φ(λ)|2)

3−λ
2

.

For ∀λ ∈ D with |φ(λ)| ≤ 1
2 , by (7), we have

sup
λ∈D

(1− |λ|2)|φ′(λ)g′(λ)|
(1− |φ(λ)|2)

3−λ
2

≤ (
4

3
)
3−λ
2 sup

λ∈D
(1− |λ|2)|φ′(λ)g′(λ)| < +∞.

Hence (4) holds.
Next we will show (3) holds. Let

ha(z) =
1− |a|2

(1− āz)
3−λ
2

− 3− λ

5− λ

(1− |a|2)2

(1− āz)
5−λ
2

(9)

for z ∈ D. Similar to the case of fa, we have
ha ∈ L2,λ and sup 1

2
<|a|<1 ∥ha∥L2,λ . 1. From

this and by that facts that h′a(a) = 0 and ha(a) =
2

5− λ

1

(1− |a|2)
1−λ
2

, it follows that for all λ ∈ D

with |φ(λ)| > 1
2 ,

∥ha∥L2,λ & (1− |λ|2)|φ′(λ)g′(λ)h′φ(λ)(φ(λ))

+ g′′(λ)hφ(λ)(φ(λ))|

= (1− |λ|2)|g′′(λ) 2

(5− λ)(1− |φ(λ)|2)
1−λ
2

|

=
2

5− λ

(1− |λ|2)|g′′(λ)|
(1− |φ(λ)|2)

1−λ
2

.

For ∀λ ∈ D with |φ(λ)| ≤ 1
2 , by (5), we have

sup
λ∈D

(1− |λ|2)|g′′(λ)|
(1− |φ(λ)|2)

1−λ
2

= (
4

3
)
1−λ
2 sup

λ∈D
(1− |λ|2)|g′′(λ)| < ∞.

Hence (3) holds.
Conversely, suppose that (3) and (4) hold. For

f ∈ L2,λ, by Lemma 2, we have the following in-

equality:

(1− |z|2)|(TgCφf)
′′(z)|

= (1− |z|2)|φ′(z)g′(z)f ′(φ(z)) + g′′(z)f(φ(z))|

≤ (1− |z|2)|φ′(z)g′(z)f ′(φ(z))|

+ (1− |z|2)|g′′(z)f(φ(z))|

. (1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

∥f∥L2,λ

+
(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

∥f∥L2,λ

. ∥f∥L2,λ ,

and

|(TgCφf)(0))|+ |(TgCφf)
′(0)|

= |f(φ(0))g′(0)|

. |g′(0)|
(1− |φ(0)|2)

1−λ
2

∥f∥L2,λ .

This shows that TgCφ is bounded. This completes the
proof of Theorem 5.

Theorem 6 Let g be an analytic function on the unit
disc D and φ an analytic self-map of D. Then TgCφ

is bounded from the little analytic Morrey spaces L2,λ
0

to the little Zygmund space Z0 if and only if (3) and
(4) hold, and the following are satisfied:

g ∈ Z0;

lim
|z|→1

(1− |z|2)|φ′(z)g′(z)| = 0. (10)

Proof: Suppose that TgCφ is bounded from L2,λ
0

to Z0. Then g(z) − g(0) = TgCφ1 ∈ Z0. Also
TgCφz ∈ Z0, thus

(1−|z|2)|φ′(z)g′(z)+φ(z)g′′(z)| −→ 0 (|z| → 1−).

Since |φ| ≤ 1 and g ∈ Z0, we have lim
|z|→

(1 −

|z|2)|φ′(z)g′(z)| = 0. Hence (10) holds.
On the other hand, by Lemma 4 and Theorem 5,

we obtain that (3) and (4) hold.
Conversely, let

M1 = sup
z∈D

(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

< ∞;
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M2 = sup
z∈D

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

< ∞.

For ∀f ∈ L2,λ
0 , by Lemma 3, given ϵ > 0 there is

a 0 < δ < 1 such that (1 − |z|2)
3−λ
2 |f ′(z)| < ϵ

2M1

and (1 − |z|2)
1−λ
2 |f(z)| < ϵ

2M2
for all z with δ <

|z| < 1.
If |φ(z)| > δ, it follows that

(1− |z|2)|(TgCφf)
′′(z)|

= (1− |z|2)|φ′(z)g′(z)f ′(φ(z)) + g′′(z)f(φ(z))|

≤ (1− |z|2)|φ′(z)g′(z)f ′(φ(z))|

+ (1− |z|2)|g′′(z)f(φ(z))|

<
(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

ϵ

2M1

+
(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

ϵ

2M2

< ϵ,

We know that there exists a constant K such that
|f(z)| ≤ K and |f ′(z)| ≤ K for all |z| ≤ δ.

If |φ(z)| ≤ δ, it follows that

(1− |z|2)|(TgCφf)
′′(z)|

= (1− |z|2)|φ′(z)g′(z)f ′(φ(z)) + g′′(z)f(φ(z))|

≤ (1− |z|2)|φ′(z)g′(z)f ′(φ(z))|

+ (1− |z|2)|g′′(z)f(φ(z))|

≤ K(1− |z|2)|φ′(z)g′(z)|+K(1− |z|2)|g′′(z)|.

Thus we conclude that (1−|z|2)|(TgCφ(f))
′′(z)| → 0

as |z| → 1−. Hence TgCφf ∈ Z0 for all f ∈ L2,λ
0 .

On the other hand, TgCφ is bounded from L2,λ to Z
by Theorem 5. Hence TgCφ is a bounded operator
from L2,λ

0 to Z0.

Corollary 7 The Volterra-type operator Tg : L2,λ →
Z is a bounded operator if and only if g = 0.

4 Boundedness of IgCφ

In this section we study the boundedness of the oper-
ator

IgCφ : L2,λ( or L2,λ
0 ) → Z( or Z0).

Theorem 8 Let g be an analytic function on the unit
disc D and φ an analytic self-map of D. Then IgCφ is
a bounded operator from the analytic Morrey spaces
L2,λ to the Zygmund space Z if and only if the follow-
ing are satisfied:

sup
z∈D

(1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)|
(1− |φ(z)|2)

3−λ
2

< ∞;

(11)

sup
z∈D

(1− |z|2)|g(z)(φ′(z))2|
(1− |φ(z)|2)

5−λ
2

< ∞. (12)

Proof: Suppose IgCφ is bounded from the an-
alytic Morrey spaces L2,λ to the Zygmund space Z .
Using functions f(z) = z and f(z) = z2 in L2,λ, we
have

sup
z∈D

(1−|z|2)|φ′(z)g′(z)+φ′′(z)g(z)| < +∞, (13)

and

sup
z∈D

(1− |z|2)|2φ(z)φ′(z)g′(z)

+ 2g(z)φ(z)φ′′(z) + 2g(z)(φ′(z))2| < ∞.

Since φ(z) is a self-map, we get

sup
z∈D

(1− |z|2)|(φ′(z))2g(z)| < +∞. (14)

Fix a ∈ D with |a| > 1
2 , we still take the test

functions ha in (9). Noting that h′a(a) = 0, h′′a(a) =
(λ− 5)ā2

(1− |a|2)
5−λ
2

, it follows that for all λ ∈ D with

|φ(λ)| > 1
2 , we have

∥ha∥L2,λ & ∥IgCφha∥Z

≥ sup
z∈D

(1− |z|2)|(IgCφha)
′′(z)|

= sup
z∈D

(1− |z|2)|
(
φ′(z)g′(z) + φ′′(z)g(z)

)
h′a(φ(z))

+ h′′a(φ(z))(φ
′(z))2g(z)|.
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Let a = φ(λ), it follows that

∥ha∥L2,λ

& (1− |λ|2)|
(
φ′(λ)g′(λ) + φ′′(λ)g(λ)

)
h′φ(λ)(φ(λ))

+ h′′φ(λ)(φ(λ))(φ
′(λ))2g(λ)|

= (1− |λ|2)|(φ′(λ))2g(λ)
(λ− 5)φ(λ)2

(1− |φ(λ)|2)
5−λ
2

|

≥ 5− λ

4

(1− |λ|2)|φ′(λ))2g(λ)|
(1− |φ(λ)|2)

5−λ
2

.

For ∀λ ∈ D with |φ(λ)| ≤ 1
2 , by (14), we have

sup
λ∈D

(1− |λ|2)|φ′(λ))2g(λ)|
(1− |φ(λ)|2)

5−λ
2

≤ (
4

3
)
5−λ
2 sup

λ∈D
(1− |λ|2)|φ′(λ))2g(λ)| < +∞.

Hence (12) holds.
Next, we take

ra(z) =
1− |a|2

(1− āz)
3−λ
2

(15)

for z ∈ D. Similar to the case of fa, we have ra ∈
L2,λ and sup 1

2
<|a|<1 ∥ra∥L2,λ . 1. Then,

∥ra∥L2,λ & ∥IgCφra∥Z

≥ (1− |z|2)|(IgCφra)
′′(z)|

≥ (1− |z|2)|(φ′(z)g′(z) + φ′′(z)g(z))r′a(φ(z))|

− (1− |z|2)|r′′a(φ(z))(φ′(z))2g(z)|.

Therefore, by Lemma 2 and (12), we obtain that

sup
z∈D

(1− |z|2)|(φ′(z)g′(z) + φ′′(z)g(z))r′a(φ(z))|

≤ sup
z∈D

(1− |z|2)|r′′a(φ(z))(φ′(z))2g(z)|+ C∥ra∥L2,λ

. sup
z∈D

(1− |z|2)|g(z)(φ′(z))2|
(1− |φ(z)|2)

5−λ
2

∥ra∥L2,λ

+ ∥ra∥L2,λ < ∞.

Let a = φ(z), it follows that

sup
z∈D

(1− |z|2) |φ
′(z)g′(z) + φ′′(z)g(z)|
(1− |φ(z)|2)

3−λ
2

. sup
z∈D

(1− |z|2)|(φ′(z)g′(z) + φ′′(z)g(z))r′a(φ(z))|

< ∞.

For ∀λ ∈ D with |φ(λ)| ≤ 1
2 , by (13), we have

sup
z∈D

(1− |λ|2) |φ
′(λ)g′(λ) + φ′′(λ)g(λ)|
(1− |φ(λ)|2)

3−λ
2

≤ (
4

3
)
3−λ
2 sup

λ∈D
(1− |λ|2)|φ′(λ)g′(λ) + φ′′(λ)g(λ)|

< ∞.

Hence (11) holds.
Conversely, suppose that (11) and (12) hold. For

f ∈ L2,λ, by Lemma 2, we have the following in-
equality:

(1− |z|2)|(IgCφf)
′′(z)|

= (1− |z|2)|
(
φ′(z)g′(z) + φ′′(z)g(z)

)
f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2g(z)|

≤ (1− |z|2)|
(
φ′(z)g′(z) + φ′′(z)g(z)

)
f ′(φ(z))|

+ (1− |z|2)|f ′′(φ(z))(φ′(z))2g(z)|

. (1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)|
(1− |φ(z)|2)

3−λ
2

∥f∥L2,λ

+
(1− |z|2)|(φ′(z))2g(z)|

(1− |φ(z)|2)
5−λ
2

∥f∥L2,λ

. ∥f∥L2,λ ,

and

|(IgCφf)(0))|+ |(IgCφf)
′(0)|

= |f(φ(0))φ′(0)g(0)|

. |φ′(0)g(0)|
(1− |φ(0)|2)

1−λ
2

∥f∥L2,λ .

This shows that IgCφ is bounded. This completes the
proof of Theorem 8.

Theorem 9 Let g be an analytic function on the unit
disc D and φ an analytic self-map of D. Then IgCφ
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is bounded from the little analytic Morrey spaces L2,λ
0

to the little Zygmund space Z0 if and only if (11) and
(12) hold, and the following are satisfied:

lim
|z|→1

(1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)| = 0; (16)

lim
|z|→1

(1− |z|2)|g(z)(φ′(z))2| = 0. (17)

Proof: Suppose that IgCφ is bounded from L2,λ
0 to

Z0. Then IgCφz ∈ Z0, then

lim
|z|→1

(1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)| = 0,

i. e. that (16) holds. Also, IgCφz
2 ∈ Z0, thus

lim
|z|→1

(1− |z|2)|2φ(z)φ′(z)g′(z)

+ 2g(z)φ(z)φ′′(z) + 2g(z)(φ′(z))2| = 0

Since |φ| ≤ 1, we get

lim
|z|→1

(1− |z|2)|g(z)(φ′(z))2| = 0.

Hence (17) holds.
On the other hand, by Lemma 4 and Theorem 8,

we obtain that (11) and (12) hold.
Conversely, let

M1 = sup
z∈D

(1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)|
(1− |φ(z)|2)

3−λ
2

< ∞;

M2 = sup
z∈D

(1− |z|2)|g(z)(φ′(z))2|
(1− |φ(z)|2)

5−λ
2

< ∞.

For ∀f ∈ L2,λ
0 , by Lemma 3, given ϵ > 0 there is

a 0 < δ < 1 such that (1 − |z|2)
3−λ
2 |f ′(z)| < ϵ

2M1

and (1 − |z|2)
5−λ
2 |f ′′(z)| < ϵ

2M2
for all z with δ <

|z| < 1.
If |φ(z)| > δ, it follows that

(1− |z|2)|(IgCφf)
′′(z)|

= (1− |z|2)|
(
φ′(z)g′(z) + φ′′(z)g(z)

)
f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2g(z)|

≤ (1− |z|2)|
(
φ′(z)g′(z) + φ′′(z)g(z)

)
f ′(φ(z))|

+ (1− |z|2)|f ′′(φ(z))(φ′(z))2g(z)|

<
(1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)|

(1− |φ(z)|2)
3−λ
2

ϵ

2M1

+
(1− |z|2)|(φ′(z))2g(z)|

(1− |φ(z)|2)
5−λ
2

ϵ

2M2

< ϵ,

We know that there exists a constant K such that
|f ′(z)| ≤ K and |f ′′(z)| ≤ K for all |z| ≤ δ.

If |φ(z)| ≤ δ, it follows that

(1− |z|2)|(IgCφf)
′′(z)|

= (1− |z|2)|
(
φ′(z)g′(z) + φ′′(z)g(z)

)
f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2g(z)|

≤ (1− |z|2)|
(
φ′(z)g′(z) + φ′′(z)g(z)

)
f ′(φ(z))|

+ (1− |z|2)|f ′′(φ(z))(φ′(z))2g(z)|

< K(1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)|

+ K(1− |z|2)|(φ′(z))2g(z)|,
Thus we conclude that (1 −

|z|2)|(IgCφ(f))
′′(z)| → 0 as |z| → 1−. Hence

IgCφf ∈ Z0 for all f ∈ L2,λ
0 . On the other hand,

IgCφ is bounded from L2,λ to Z by Theorem 5.
Hence IgCφ is a bounded operator from L2,λ

0 to Z0.

Corollary 10 The Volterra-type operator Ig :

L2,λ → Z is a bounded operator if and only if g = 0.

5 Compactness of TgCφ and IgCφ

In order to prove the compactness of TgCφ, we require
the following lemmas.
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Lemma 11 Suppose that TgCφ be a bounded oper-
ator from L2,λ to Z . Then TgCφ is compact if and
only if for any bounded sequence {fn} in L2,λ which
converges to 0 uniformly on compact subsets of D. We
have ∥TgCφ(fn)∥Z → 0 , as n → ∞ .

The proof is similar to that of Proposition 3.11 in [4] .
The details are omitted.

Lemma 12 Let U ⊂ Z0. Then U is compact if and
only if it is closed, bounded and satisfies

lim
|z|→1

sup
f∈U

(1− |z|2)|f ′′(z)| = 0.

The proof is similar to that of Lemma 1 in [10], we
omit it.

Theorem 13 Let g be an analytic function on the unit
disc D and φ an analytic self-map of D. Suppose that
TgCφ is a bounded operator from L2,λ to Z . Then
TgCφ is compact if and only if the following are satis-
fied:

lim
|φ(z)|→1

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

= 0; (18)

lim
|φ(z)|→1

(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

= 0. (19)

Proof: Suppose that TgCφ is compact from L2,λ

to the Zygmund space Z . Let {zn} be a sequence in D
such that |φ(zn)| → 1 as n → ∞. If such a sequence
does not exist, then (18) and (19) are automatically
satisfied. Without loss of generality we may suppose
that |φ(zn)| > 1

2 for all n. We take the test functions

fn(z) =
1− |φ(zn)|2

(1− φ(zn)z)
3−λ
2

− (1− |φ(zn)|2)2

(1− φ(zn)z)
5−λ
2

.

(20)
By the proof of Theorem 5 we know that that
supn ∥fn∥L2,λ ≤ C < ∞. Then {fn} is
a bounded sequence in L2,λ which converges to
0 uniformly on compact subsets of D. Then
limn→∞ ∥TgCφ(fn)∥Z = 0 by Lemma 11. Note that

fn(φ(zn)) ≡ 0 and f ′
n(φ(zn)) =

−φ(zn)

(1− |φ(zn)|2)
3−λ
2

.

It follows that

∥TgCφfn∥Z
≥ (1− |zn|2)|g′(zn)φ′(zn)f

′
n(φ(zn))

+ g′′(zn)fn(φ(zn))|

= (1− |zn|2)|g′(zn)φ′(zn)|
|φ(zn)|

(1− |φ(zn)|2)
3−λ
2

≥ (1− |zn|2)|g′(zn)φ′(zn)|
2(1− |φ(zn)|2)

3−λ
2

.

Then lim
n→∞

(1− |zn|2)|g′(zn)φ′(zn)|
(1− |φ(zn)|2)

3−λ
2

= 0. Thus

(19) holds.
Next, let

hn(z) =
1− |φ(zn)|2

(1− φ(zn)z)
3−λ
2

−3− λ

5− λ

(1− |φ(zn)|2)2

(1− φ(zn)z)
5−λ
2

.

(21)
We know that {hn} is a bounded sequence in L2,λ

which converges to 0 uniformly on compact subsets of
D. Then limn→∞ ∥TgCφ(hn)∥Z = 0 by Lemma 11.

Note that hn(φ(zn)) =
2

(5− λ)(1− |φ(zn)|2)
1−λ
2

and h′n(φ(zn)) = 0. Then

∥TgCφhn∥Z ≥ (1− |zn|2)|g′′(zn)hn(φ(zn))|

=
2

5− λ

(1− |zn|2)|g′′(zn)|
(1− |φ(zn)|2)

1−λ
2

,

hence (18) holds. The proof of the necessary is
completed.

Conversely, suppose that (18) and (19) hold. S-
ince TgCφ is a bounded operator, by Theorem 5, we
have

M1 = sup
z∈D

(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

< ∞;

M2 = sup
z∈D

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

< ∞.

Let {fn} be a bounded sequence in L2,λ with
∥fn∥L2,λ ≤ 1 and fn → 0 uniformly on compact sub-
sets of D. We only prove lim

n→∞
∥TgCφ(fn)∥Z = 0 by

Lemma 11. By the assumption, for any ϵ > 0, there
is a constant δ, 0 < δ < 1, such that δ < |φ(z)| < 1
implies

(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

< ϵ
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and

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

< ϵ.

Let K = {w ∈ D : |w| ≤ δ}. Noting that K is a
compact subset of D, we get that

z(TgCφfn) = sup
z∈D

(1− |z|2)|(TgCφfn)
′′(z)|

≤ sup
z∈D

(1− |z|2)|φ′(z)g′(z)f ′
n(φ(z))|

+ sup
z∈D

(1− |z|2)|g′′(z)fn(φ(z))|

. 2ϵ+ sup
|φ(z)|≤δ

(1− |z|2)|φ′(z)g′(z)f ′
n(φ(z))|

+ sup
|φ(z)|≤δ

(1− |z|2)|g′′(z)fn(φ(z))|

≤ 2ϵ+M1 sup
w∈K

|f ′
n(w)|+M2 sup

w∈K
|fn(w)|.

As n → ∞,

∥TgCφfn∥Z → 0.

Hence TgCφ is compact. This completes the proof of
Theorem 13.

Theorem 14 Let g be an analytic function on the unit
disc D, and φ an analytic self-map of D. Then TgCφ

is compact from L2,λ
0 to Z0 if and only if the following

are satisfied:

lim
|z|→1

(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

= 0; (22)

lim
|z|→1

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

= 0. (23)

Proof: Assume (22) and (23) hold. From The-
orem 6, we know that TgCφ is bounded from L2,λ

0 to
Z0. Suppose that f ∈ L2,λ

0 with ∥f∥L2,λ ≤ 1. We

obtain that

(1− |z|2)|(TgCφf)
′′(z)|

= (1− |z|2)|φ′(z)g′(z)f ′(φ(z)) + g′′(z)f(φ(z))|

≤ (1− |z|2)|φ′(z)g′(z)f ′(φ(z))|

+ (1− |z|2)|g′′(z)f(φ(z))|

. (1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

∥f∥L2,λ

+
(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

∥f∥L2,λ ,

thus

sup{(1− |z|2)|(TgCφf)
′′(z)|

: f ∈ L2,λ
0 , ∥f∥L2,λ ≤ 1}

. (1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

+
(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

,

and it follows that

lim
|z|→1

sup{|(1− |z|2)(TgCφf)
′′(z)|

: f ∈ L2,λ
0 , ∥f∥L2,λ ≤ 1} = 0,

hence TgCφ : L2,λ
0 → Z0 is compact by Lemma 12.

Conversely, suppose that TgCφ : L2,λ
0 → Z0 is

compact.
First, it is obvious that TgCφ : L2,λ

0 → Z0 is
bounded, then by Theorem 6, we have g ∈ Z0 and
that (10) holds. On the other hand, by Lemma 12 we
have

lim
|z|→1

sup{(1− |z|2)|(TgCφf)
′′(z)|

: f ∈ L2,λ
0 , ∥f∥L2,λ ≤ M} = 0,

for some M > 0.
Next, noting that the proof of Theorem 5 and the

fact that the functions given in (8) are in L2,λ
0 and have

norms bounded independently of a, we obtain that

lim
|z|→1

(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

= 0
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for |φ(z)| > 1
2 . However, if |φ(z)| ≤ 1

2 , by (10), we
easily have

lim
|z|→1

(1− |z|2)|φ′(z)g′(z)|
(1− |φ(z)|2)

3−λ
2

≤ (
4

3
)
3−λ
2 lim

|z|→1
(1− |z|2)|φ′(z)g′(z)| = 0.

Thus (22) holds.
Similarly, noting that the functions given in (9)

are in L2,λ
0 and have norms bounded independently of

a, we obtain that

lim
|z|→1

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

. lim|z|→1(1− |z|2)|(TgCφha)
′′(z)|,

for |φ(z)| > 1
2 . Then

lim
|z|→1

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

= 0

for |φ(z)| > 1
2 . However, if |φ(z)| ≤ 1

2 , by g ∈ Z0,
we easily have

lim
|z|→1

(1− |z|2)|g′′(z)|
(1− |φ(z)|2)

1−λ
2

= lim
|z|→1

(
4

3
)
1−λ
2 (1−|z|2)|g′′(z)| = 0.

This completes the proof of Theorem 14.
Using the same methods as in the proof of Theo-

rem 13 and 14, we can prove the following results.

Theorem 15 Let g be an analytic function on the u-
nit disc D and φ an analytic self-map of D. Suppose
that IgCφ is a bounded operator from L2,λ to Z . Then
IgCφ is compact if and only if the following are satis-
fied:

lim
|φ(z)|→1

(1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)|
(1− |φ(z)|2)

3−λ
2

= 0;

(24)

lim
|φ(z)|→1

(1− |z|2)|g(z)(φ′(z))2|
(1− |φ(z)|2)

5−λ
2

= 0. (25)

Theorem 16 Let g be an analytic function on the unit
disc D and φ an analytic self-map of D. Then IgCφ

is compact from L2,λ
0 to Z0 if and only if the following

are satisfied:

lim
|z|→1

(1− |z|2)|φ′(z)g′(z) + φ′′(z)g(z)|
(1− |φ(z)|2)

3−λ
2

= 0; (26)

lim
|z|→1

(1− |z|2)|g(z)(φ′(z))2|
(1− |φ(z)|2)

5−λ
2

= 0. (27)
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[8] S. Li and S. Stević, Products of Volterra type op-
erator and composition operator from H∞ and
Bloch spaces to Zygmund spaces, J. Math Anal.
Appl. 345, 2008, pp. 40-52.

[9] P. Li, J. Liu and Z. Lou, Integral operators on an-
alytic Morrey spaces, Sci China Math, 57, 2014,
pp. 1961-1974.

[10] K. Madigan and A. Matheson, Compact compo-
sition operators on the Bloch space, Trans, Amer.
Math. soc. 347, 1995, pp. 2679-2687.

[11] K. Madigan, Composition operators on analyt-
ic Lipschitz spaces, Proc. Amer. Math. Soc. 119,
1993, pp. 465-473.

WSEAS TRANSACTIONS on MATHEMATICS Shanli Ye

E-ISSN: 2224-2880 387 Volume 18, 2019



[12] Ch. Pommerenke, Schlichte funktionen und an-
alytische funktionen vonbeschränkter mittlerer
oszillation, Ciomment. Math. Helv. 52, 1997, p-
p. 591-602.

[13] S. Ohno and R. Zhao, Weighted composition op-
erators on the Bloch space, Bull. Austral. Math.
Soc. 63, 2001, pp. 177-185.

[14] S. Ohno, K. Stroethoff and R. Zhao, Weight-
ed composition operators between Bloch-type s-
paces, Rocky Mountain J. Math. 33, 2003, p-
p. 191-215.

[15] J. H. Shapiro, Composition operators and clas-
sical function theory, Springer Verlag New York,
1993.

[16] A. G. Siskakis and R. Zhao, A Volterra type op-
erator on spaces of analytic functions, Contemp.
Math. 232, 1999, pp. 299-311.

[17] W. Smith, Composition operators between
Bergman and Hardy spaces, Trans. Amer. Math.
Soc. 348, 1996, pp. 2331-2348.
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