
Self-Organization of Two-Contours Dynamical System with Common 

Node and Cross Movement 
 

ALEXANDER TATASHEVa, MARINA YASHINAb  

Moscow Automobile and Road Construction, State Technical University (MADI),  

Department of Higher Mathematics, 

 Leningradsky Prospect 64, 125319 Moscow, RUSSIA 

a-tatashev@yandex.rua, yash-marina@yandex.rub 

 
Abstract: This paper considers a dynamical  system of Buslaev contour network type, containing two contours. 

There are Ni cells in the contour i, i = 1, 2. There is a common point of all contours. This point is called a node. 

There are M particles in the system.  At any time t = 0, 1, 2, . . . , each particle  occupies a cell. No cell can be 

occupied by more than one particle simultaneously.  The particles move in a given direction. At any step, each 

particle moves onto one cell forward if the cell ahead is vacant. If two particles come to the node 

simultaneously, then a competition of these particles occurs, and only one particle moves. This particle is 

chosen in accordance with a deterministic or stochastic competition resolution rule. After completing the 

movement in the contour i, the particle moves in the contour j with probability αij , i, j = 1, 2. We say that the 

system is in the state of free movement if all particles move without delays at the present moment and in the 

future. We have obtained the conditions for the system to result in a state of free movement over a time interval 

with a finite expectation. 
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1 Introduction 
In [1]–[3], movement of particles on a one-

dimensional lattice was studied. It was assumed 

that, at any discrete moment, each particle moves 

onto a cell forward if the cell ahead is vacant. The 

main studied characteristic is the average velocity of 

particles. We say that the system is in a state of free 

movement if all particles move at any step in the 

present moment and in the future. In [1]–[3], it was 

proved that a necessary and sufficient condition for 

the system to result in a state of free movement is 

that ρ ≤ 1/2, where ρ is the density of particles, i.e., 

the number of particles related to the number of 

cells. It is noted in [3] that the movement of 

particles in this model corresponds to the rule of 

elementary cellular automaton 184 (CA 184 or ECA 

184) in Wolfram classification, [4]. Some 

generalizations of this model were studied in [5], 

[6]. In [6], this system was interpreted in terms of 

exclusion processes. 

In [7], two-dimensional traffic model (BML 

model) was introduced. In this model, particles 

move on a toroidal lattice in accordance with a rule 

similar to the rule 184. In [8]–[11], conditions for 

self-organization (the system results in a state of 

free movement from any initial state) and collapse 

(no particle moves after a moment) have been 

obtained. In [12], the concept of cluster movement 

in traffic model was introduced. In this model, the 

neighboring particles form a cluster, and these 

particles move simultaneously. It was noted in [13] 

that, in the cluster movement model, the particles 

move in accordance with the rule ECA 240. There is 

a version of the cluster movement model with 

continuous state space and time scale. In the 

continuous version, the clusters are moving 

segments. In [14], problems are introduced related 

to mixed traffic models combining deterministic and 

stochastic approaches, and an approach to traffic 

flow modeling on networks is also discussed. 

In [15], the concept of contour network (Buslaev 

contour network) was introduced. The supporter of 

the contour network consists of contours. There are 

common points of neighboring contours. These 

points are called nodes. There are particles in the 

contours. The particles move on the contours in 

accordance with the rule ECA 184 or ECA 240. 

Delays occur at the nodes. These delays are due to 

that no particles (clusters) can move through the 

node simultaneously. If particles (clusters) come to 

the node simultaneously, then a competition occurs, 

and only one of the competing particles move. This 

particle is chosen in accordance with a given 

deterministic or stochastic rule. Contour networks 

with continuous state space and discrete time are 

also studied. In [16], the concept of the spectrum of 

a deterministic contour network. The spectrum is a 

set of cyclic trajectories in the state space and 

related average velocities of particles (clusters) for 

different initial states and fixed parameters. In 

contrast to the systems considered in [1]–[3], [5], 

the average velocities of particles in contour 

systems depend on the initial state. If the 

competition resolution rule is stochastic, then the 

average velocity can depend on the realization of the 

stochastic process for a fixed initial state. The main 

problem is to study the spectrum and, in particular, 

find the values of average velocities. Conditions of 

system resulting in a state of free movement or 

collapse are only studied. 
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Analytical results were obtained for regular 

periodic structures (for example, in [15]–[22]), for 

two-contours systems [23]–[25]), for systems with 

aunique node, [26], [27]. In these works, mainly, 

systems are studied such that, at any contour, there 

is aunique particle or a unique cluster. For a system 

such that there is a unique node (this node is a 

common cell), in [13], the following was proved. If 

the particles move in accordance with the rule ECA 

184 (individual movement), then the system results 

in a state of free movement over a finite time (over a 

time with a finite expectation in the case of a 

stochastic competition resolution rule) if and only if 

the total number of particles on the contours is not 

more than half number of cells in a contour (it is 

assumed that the number of cells in any contour is 

the same). This is compatible with results proved in 

[2], [3] for an isolated contour. In [13], [15]–[27], 

contour networks were studied such that, in this 

networks, particles (clusters) move on their own 

contours, i.e., the particles cannot pass from a 

contour to the other contour. The paper [28] 

considers a contour network with two-dimensional 

periodical structure. In this network particles can 

pass from a contour to another contour. This system 

was studied in [28] by simulation. 

This paper considers a two-contours system such 

that there is a unique common cell of the contours. 

The lengths of the contours are different in the 

general case. The particles move on a contour in 

accordance with the rule ECA 184. Transitions of 

particles from one of contours to the other contours 

may occur. The probabilities αij are given, where αij  

is the probability that, after completing the 

movement in the ith contour, a particle moves in the 

jth contour, i, j = 1, 2. The competition of two 

particles, located at the node, is resolved in 

accordance a given deterministic or stochastic rule. 

We study conditions for the system to result in a 

state of free movement over a finite time. Section 2 

describes the considered dynamical system. Section 

3 defines the concepts of free movement and self-

organization. Section 4 introduces functions of 

system state and concepts which are used in proofs. 

Section 5 gives some information regarding the 

theory of linear equations in integer numbers. We 

use these facts in proofs. In Section 6, it is proved 

that a necessary and sufficient condition for the 

system to result in a state of free movement from 

any initial state is that the total number of particles 

in the system be not greater than half greatest 

common divisor of N1, N2, where N1, N2 are 

numbers of cells on the contours. In Section 7, it is 

proved the following. Suppose that, after completing 

movement in any contour, each particle chooses any 

contour with positive probabilities. Then, if 

sufficient condition for self-organization, proved in 

Section 6, does not hold, then the system cannot 

result in a state of free movement from any initial 

state. 

 

2 Description of System 
We consider a system containing two contours. 

There are Ni cells in the ith contour, i = 1, 2. The 

indexes of these cells are 0, 1, 2,..., Ni - 1, i = 1, 2. 

There is a unique common cell of the contours. This 

cell is called the node. There are M particles in the 

system. At any time t = 0, 1, 2,..., any particle 

occupies a cell in one of the contours. More than 

one particle cannot be in the same cell 

simultaneously. The cell j of the contour i is called 

the cell (i, j), j = 1,..., Ni, i = 1, 2. Suppose, at time t, 

a particle is in the cell (i,j), 0 ≤ j ≤ Ni − 2, and the 

cell (i,j+ 1) is vacant; then, at time t + 1, this 

particle will be in the cell j(i, j+ 1), i = 1, 2. Let the 

cell behead a particle be occupied at time t; then the 

particle is in the same cell at time t + 1. If, at time t, 

a particle is in the cell (i, Ni − 1) (i.e. the particle is 

before node), i = 1, 2, the node is vacant, and the 

other particles are not at the node, then the particle 

will be at the node at time t + 1. If two particles are 

at the node (i.e. the cells (1, N1−1), (2, N2 − 1) are 

occupied) simultaneously, then a competition 

occurs. In this case, only one particle moves in 

accordance with a deterministic or statistic 

competition rule. We assume that, if a competition 

occurs at time t, then, with probability 0 ≤ q1 ≤ 1, at 

t + 1, the node is occupied by a particle such that 

this particle was located in the cell (1, N1 − 1) at 

time t, and, with probability q2 = 1 − q1, t + 1, the 

node is occupied by a particle such that this particle 

was located in the cell (2, N2 − 1) at time t. After 

completing the movement in the ith contour and 

passing the node, a particle begins to move in the jth 

contour with probability αij, αi1 + αi2 = 1, i, j = 1, 2. 

The state of system at time t, t = 0, 1, 2,..., is the 

vector  

 
where x0 = 0 if the node is vacant at time t, and x0 = 

1if the node is occupied; the value xij equals 0 or 1 

depending on that if the cell (i,j), j = 1,..., Ni - 1, i = 

1, 2, is vacant or occupied 

 
The initial state x(0) is given. 

 

3 State   of   Free   Movement. Self-

organization 
We say that the system is in a state of free 

movement at time t if, with probability 1, all 

particles move without delays at present time and in 

the future. In accordance with this definition, if the 

system is in a state of free movement, then the 

system will be in states of free movement at any 
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moment in the future. The property of the system to 

result in a state of free movement from any initial 

state is called the self-organization. 

 

4 Optional Concepts and Functions of 

System States 
We shall define some functions of the system 

states and concepts.  

Denote by d the greatest common divisor of the 

numbers N1 and N2.  

Suppose 

 
where ar(x) = 0 if cells (1, j), (2, j) are occupied for 

all j such that the remainder of dividing j by d is 

equal to r, and, otherwise, ar(x) = 1.  

 
s = 1, 2,..., k, hold for these values. The set Cs(x) is 

called the supporter of the ith 0-cluster, and the 

value l is called the length of this 0-cluster; 1-

clusters and the length of a 1-cluster are defined 

analogously. Denote by  the maximum 

length of 0-cluster under the assumption that the 

system is in the state x. Denote by r0(x) the number r 

such that ar(x) = 1 and the number r + 1 belongs to 

the 0-cluster supporter of the length . If more 

than one value of r satisfies this condition, then we 

assume that r0(x) is the minimum of these values.  

Let us consider the set of particles such that, at 

time t, these particles are located in cells satisfying 

the following condition. The remainder of dividing 

the particle index by d is equal to r0(x(t)). These 

particles are called the leading particles.  

Denote by mr(x) the number of particles 

satisfying the following condition. The remainder of 

dividing these particles indexes by d is equal to r.  

The value  

 
(subtraction by modulo d) is called the total distance 

between all the particles and the leading particles 

for the system state x. 

 

5 Optional Concepts and Functions of 

System States 
Suppose a and b are integer positive numbers, c is 

an integer number.   and d is the greatest common 

divisor  of  numbers a and b. A necessary and 

sufficient condition for integer non-negative 

numbers z1 and z2, satisfying the equation 

 
to exist is that the greatest common divisor of 

numbers a and b to be a divisor of the number c, 

[29]. 

 

6 Sufficient Condition for Self-

Organization 
In this section, we formulate and prove a theorem 

regarding a sufficient condition for self-organization 

of the system. 

 

 
 

0-cluster. The values  and  

belong to the supporters of 1-clusters. Let us 

consider the set of particles such that, at time t, these 

particles are in the cells with indexes satisfying the 

following condition. The remainder of dividing cell 

index by d is equal to . At least one of these 

particles moves at time t. Let us consider the set of 

particles such that these particles are in the cells 

with indexes satisfying the following condition. The 

remainder of dividing particle index by d is equal to 

. If, at time t, all particles of this set 

move, then, at time t + 1, there is the 0-cluster 

 
of length . If at least one particle of this set does 

not move, then, at time t + 1, there is the cluster 

 
. Thus, at time t + 1, the length of any 0-cluster 

is less than the length of the 0-cluster at time t, or 

the length does not change. From this, Lemma 1 

follows.  
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holds, then the system results in a state of free 

movement over a time interval with a finite 

expectation. 

 

Proof: If the system is not in a state of free 

movement at time t0, then, over a time with a finite 

expectation, a delay of at least one particle occurs. 

Suppose that the delay occurs at time t1 ≥ t0. 

Therefore, in accordance with Lemma 4 either 

S(x(t+ 1)) > S(x(t)) or the set of particles, leading at 

time t + 1, consists of particles such that these 

particles do not belong to the set of particles, 

leading at time t. A particle may become leading 

again only if the value  decreases. Therefore,  if  

the  system  does  not  result  in  a  state  of  free 

movement, the value of  will be smaller. Hence, 

either the system results in a state of free movement 

or the value  becomes equal to 1. However, if 

(4) holds, the value  may be equal to 1 only in 

the case of 2M = d. However, if  (x) = 1, 2M = 

d, then x is a state of free movement. Thus the 

system results in a state of free movement from any 

initial state. Theorem 1 has been proved.   

 

7 Necessary Condition for Self-

Organization 
In Section 7, it is proved that the sufficient condition 

for self-organisation (Section 6) is also a necessary 

condition, under some additional restrictions. 

 
holds, and, for the state x, there is a vacant cell 

between any two particles of each particles of each 

con-tour. Then a necessary and sufficient condition 

for the state x to be not a state of free movement is 

the following. There exist the numbers j1, j2 such 

that the difference of the remainders of dividing 

these numbers by modulo d is equal to −1, 0, or 1, 

and, under the assumption that the system is in the 

state x, the cells (1, j1) and (2, j1) are occupied. 

 

Proof: Suppose, at time t0 there are particles in the 

cells (1, j1), (2, j2) with indexes j1, j2 satisfying the 

conditions of the lemma. If no particle passes to the 

other contour, then one of the particles delays (if no 

delays occurred earlier) at time t0 + z1,0 N1, where 

z1,0 is minimum integer non-negative valuez1such 

that there exists an integer non-negative number z2 

= z2,0 such that one of the equalities 

 
hold  (addition  and  subtraction  by  modulo d on  

the right-hand  side  of  the  equations  (6)–(8).   

Under the conditions of the theorem, the right-hand 

side of the equation (6), (7), or (8) is divided by d, 

and, in accordance with the condition for existence 

of the equation (2) solution (Section 2), the system 

cannot be in a state of free movement at time t0. 

Assume that, at time t0, two particles are in the same 

contour, and, after passing the node, one of these 

particles will be in the same contour, and the other 

particle transits to the other contour. Let us consider 

the difference (by modulo d) of the cells indexes 

such that these cells are occupied by two the 

particles. If this difference is equal −1, 0, or 1, then, 

after particles passing the node, the difference will 

be the same. From this, Lemma 5 follows. 

 

Theorem 7 Suppose (5) holds and (4) does not 

hold; then there is no state of free movement. 

 

Proof: Over a time with finite expectation, the 

system results in a state, satisfying the condition of 

Lemma 5. Theorem 2 follows from Lemma 5. 

 

8 Conclusion 
We consider a dynamical system. This system 

contains two contours. There are Ni cells in the ith 

contour, i = 1, 2. There is a common cell of the 

contours. There are M particles in the system. At 

any moment t = 0, 1, 2,..., each particles occupies a 

cell. If, at time t, the cell ahead the particle is 

vacant, then the particle will be in this cell at time t 

+1. If two particle are at the node simultaneously, 

then only one particle moves. This particle is chosen 

in accordance with a given deterministic or 

stochastic competition resolution rule. With 

probability αij, after the movement in the ith 

contour, a particle moves in the jth contour, i, j = 1, 

2. We study conditions for the system to result in a 

state of free movement, i.e., a state such that all 

particles move at current moment and in the future. 

We have proved that, for any competition resolution 

rule, the sufficient condition for the system to result 

in a state of free movement over a time with a finite 

expectation from any initial state is that the 

condition 2M ≤ d to hold, where d is the greatest 

common divisor of the number N1, N2, and, under 

the assumption αij > 0, i, j= 1, 2, this sufficient 

condition is a condition for a state of free movement 

to exist. 
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