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Abstract: - This paper is focused on the evolution from the initial opening to the initial propagation of a 
preexisting-closed plane-strain hydraulic fracture. An implicit finite difference algorithm is proposed for 
avoiding solving this solid-liquid coupling nonlinear problem composed by lubrication equation for fluid flow 
and elasticity equation for fracture opening. By accurately estimating the main unknowns of the problem at 
each time step: estimating the length of fluid-zone by transient velocity of fluid front, the length of lag-zone by 
zero opening at the fracture tip, and the fracture opening at the next time step by the fluid volume conservation, 
the convergence velocity is deeply improved. In order to improve model accuracy, an adaptive time step 
method is adopted because of gradually decreasing velocity of fluid front. The relationship between grid length 
and time step is discussed for balancing convergence velocity and good accuracy, and a balance threshold 
determining scales of grid length and time step is given. Based on the improved implicit algorithm the 
evolution laws of the first stage from the initial opening to the complete opening and the second stage from 
complete opening to initial propagation are obtained. 
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1 Introduction 
Hydraulic fracturing today as a technique is widely 
applied in the exploitation of petroleum and natural 
gas. Nevertheless, evolution of fluid pressure, 
fracture opening and fracture geometry in hydraulic 
fracture is a very complex mechanical problem, 
related to the nonlinear coupling of fluid and solid 
mechanics: on one hand, the lubrication equation 
governs flow of hydraulic fluid in fracture [1], 
which is a nonlinear partial differential equation of 
fracture opening and fluid pressure obtained by 
combining continuity equation and Poiseuille law; 
on the other hand, the elasticity equation provides a 
relationship between the net pressure (fluid pressure 
minus far-field stress) and formation deformation 
[2]. More complicated is that the two equations are 
calculated not in the same region of hydraulic 
fracture with a fluid lag: lubrication equation is only 
used in the fluid-zone, but elasticity equation 
presents the solution of fracture opening, which 
consists of two terms: one term is the contribution 
of net pressure in fluid-zone and the other is the 
contribution of net pressure in lag-zone. 

Furthermore, because of complex integral form, this 
solution can’t be directly substituted into the 
lubrication equation. In addition, in this mechanical 
problem there are two fronts that need to be 
determined: the fluid front and the fracture front, 
which are respectively determined by the global 
continuity equation of fluid in an integral form 
along the whole fluid-zone and the boundary 
conditions of fracture opening at fracture tip [3,4]. 
Only if locations of the two fronts are known, can 
calculation intervals of the above two governing 
equations be determined, and then solutions of this 
problem can be found. If the seepage of hydraulic 
fluid, inhomogeneity and anisotropy of formation 
are taken into account, this mechanical problem will 
be more difficult to be modeled and solved. 

At present, with the development of numerical 
computation, there are many complex and 
sophisticated numerical methods for simulating 
hydraulic fracturing evolution, including finite 
element method (FED) [5-8], finite-discrete element 
method (FDEM) [9], finite volume method (FVM) 
[10], displacement discontinuity method (DDM) 
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[11,12], which can consider many influence factors 
in models with the help of computer’s high-speed 
computing ability. But in these papers many 
problems, for example, how numerical methods 
work, how these methods iteratively converge, or 
whether there are any methods or measures to 
accelerate convergence, are not given in details. In 
fact, these researches don’t focus on the quality of 
numerical methods, but only on the final numerical 
results. In these numerical methods two-dimensional 
mesh [5-10] and traditional elasticity theory are 
used to obtain the whole stress and strain fields, 
which greatly increase the amount of calculation 
and slowly converge due to the large grid number. It 
is worth noting that Garagash, Detournay and 
Lecampion [13-16] have performed a lot of deep 
researches on the numerical algorithm for plain-
strain hydraulic fracture by considering different 
influence factors. Based on scaling and 
dimensionless formulation, they obtained similarity 
solutions and asymptotic solutions at the early time 
and the large time (a finite lag and zero lag, 
respectively), and then analysed the composition of 
solutions and added the higher order terms to obtain 
the solution at the intermediate time. The complete 
solution consists of the combined solutions at the 
early, the intermediate and the large time. They also 
gave a detailed explanation for discretizing the 
nonlinear partial differential lubrication equation 
and the elasticity equation.  

But the introduction of high order terms and the 
transform of elasticity equation into semi-analytical 
polynomial form for solving the complex integral 
make the final solution more cumbersome and 
complicated, not conducive to numerical 
calculation. In addition, in their algorithms grid 
number is very few, and most grids are concentrated 
near the fracture tip for calculating stress intensity 
factor, which will lead to large errors for fluid-zone. 
Other problem of these algorithms is the slow 
convergence with an average 60 iterations per time 
step in paper [17], the algorithm of which is widely 
used in many papers [13-16] for calculating the 
propagation of plain-strain hydraulic fracture. In 
most papers [5-16] they didn’t analyse and evaluate 
the numerical algorithm and didn’t study improving 
the convergence velocity. It is generally known that 
quality of iterative algorithm is also an important 
criterion for evaluating a model. So in this paper we 
will describe and evaluate in detail a fast 
convergence algorithm aimed at calculating the 
evolution process of a preexisting-closed plain-
strain hydraulic fracture. And this algorithm with 
fast convergence can also be used in the stage of 
hydraulic fracture propagation.  

This paper is organized as follows. The 
mathematical model of a preexisting-closed plain-
strain hydraulic fracture is presented in Section 2 
followed by model discretization in Section 3. The 
model discretization is the core idea for calculation, 
it determines which discrete method will be used in 
the model. Section 4 describes the detailed iterative 
algorithm and methods to quickly find the accurate 
numerical solution for improving convergence 
velocity. The numerical evolution results and 
analysis of algorithm quality are given in Section 5. 
Section 6 follows with some conclusions. 
 
 

2 Mathematical Model 
We consider a two-dimensional plane-strain 
hydraulic fracture with a small half-length 0l  under 

completely closed state in an infinite elastic medium 
characterized by Young’s modulus E , Poisson’s 
ratio   and fracture toughness IcK . Because of the 

symmetry of the problem with respect to the 
injection point at 0x   only one fracture wing is 
shown in Fig. 1 (a). After the injection of hydraulic 
fluid into the initially closed fracture, two surfaces 
of fracture start to open under internal fluid pressure 

 ,fp x t  and far-field normal stress 0  

perpendicular to fracture surfaces. As fluid injection 
continues, the proportion of opened fracture 
becomes larger and larger, see Fig. 1 (b), with fl  

being the length of fluid-zone, opl  being the length 

of opened fracture equal to the sum of fluid-zone 
length and lag-zone length. When the tip of opened 
fracture coincides with the tip of initial fracture, 
fracture is completely opened ( 0opl l ), and if stress 

field at some moment satisfies the fracture 
propagation condition, the initial fracture will 
propagate forward. This paper mainly describes the 
phase from the initial open of closed fracture until 
its initial propagation, which is a very short process 
obtained by Pauya [18]. So formation’s permeability 
is neglected. 
 
 
2.1 Elasticity equation 
According to the Linear Elastic Fracture Mechanics 
(LEFM) in infinite elastic and homogeneous 
medium within a fracture, relationship between the 
net pressure and fracture opening w  was formulated 
in an integral form by Sneddon [3]: 
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where 0( , ) ( , )fp t p t    , 0( , ) ( , )lagp t p t      

are net pressures in fluid-zone and lag-zone at 

moment t , respectively.  ,lagp x t  is the pressure 

of lag-zone. The first and the second integrals on the 
right side of equation (1) are contributions of net 
pressure in fluid-zone and net pressure in lag-zone, 
respectively. The integral kernel G  is defined as 
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2 2 2 2
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2.2 Lubrication equation 

The flow of a viscous incompressible Newtonian 
fluid in the fluid-zone ( 0 fx l  ) is determined by 

lubrication equation and continuity equation [1] 
3

0, ,
12

w q w p
q

t x x
  

   
  

           (3) 

where q  denotes the fluid flow rate per unit width 

of the fracture, and   is fluid viscosity. Combining 
the two equations, the nonlinear differential 
equation is obtained 

31
.

12

w p
w

t x x
        

                  (4) 

 
Fig. 1 Profiles of the initial hydraulic fracture: (a) Completely closed state of the initial fracture. (b) Partially 

opened state of the initial fracture at some moment. 
 
 
2.3 Boundary conditions 
The boundary condition at the injection point is 
expressed as constant injection rate: 

3
0 0= , 0

2 12

Q w dp
q x

dx
     (5) 

where 0w  is the fracture opening at 0x  , and 0Q  

the total well injection rate. According to pressure 
continuity along the whole fracture, the boundary 
condition at the fluid front is 

= ,f lag fp p x l                (6) 

where  ,lagp x t  is decided by many factors 

( formation permeability, pore fluid in formation and 
so on). Here we make use of the assumption of a 
zero pressure in the lag-zone as in the paper [16] 

0, .lag f opp l x l                (7) 

The boundary condition at fracture tip in the 

phase of fracture propagation is determined by the 
propagation criterion: stress intensity factor IK  

equals formation toughness IcK [19,20]. But for the 

preexisting fracture the upper and lower surfaces are 
not connected together, as shown in Fig. 1(a), so this 
fracture propagation criterion is not suitable for 
fracture open. Here we replace it with another 
boundary condition, namely, the smooth fracture 
closure condition, which was first proposed by 
Zheltov and Khristianovic [21], proved by 
Barenblatt [4] in mobile equilibrium process of 
fracture propagation and later applied in KGD 
model [22]. Because fracture surfaces are subjected 
to the interior fluid pressure and the far-field stress 
and are not adhered to each other, at the tip of lag-
zone (the end of the opened fracture) the two 
surfaces are needed to be close smoothly, 

w

x

0l

0l

opl
fl

w

x

( )a ( )b
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According to the volume conservation of an 
incompressible fluid, another important condition is 
written as 

0

0
,

2

fl Q t
wdx                         (9) 

the main role of this condition is to determine the 
location of fluid front fl . 

 
 
2.4 Initial conditions 
The real initial conditions at 0t  : =0fl , =0w  and 

the known 0l  (see Fig. 1(a)) are singular for solving 

the governing equations of the model. To avoid this 
problem we choose a moment 0t ( 0t  is unknown and 

very close to 0) as the relative initial time. Because 
at this small moment 0t  inlet pressure at the well 0P  

is much great ( 0 0 0P  � ) and the initial length 

of fluid-zone 0
fl  is very small ( 0

0fl l� ), so the fluid 

pressure distribution can be assumed as linear [6]: 
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   (10) 

where 0
opl  represents the length of opened fracture at 

this moment 0t . It is emphasized that the quasi-

linear pressure distribution of fluid-zone at the very 
early time is obtained by Garagash [15]. It means 
that the assumptation of linear pressure distribution 
as the relative initial condition is reasonable. 
 
 

3 Method of Solution 
The whole model is governed by equations (1) and 
(3) with conditions (5) – (10), which is a nonlinear 
differential equation system. Because of the 
complex integral form in equation (1) about w  and 
p , anyone of the two unknown variables in 

equation (3) cannot be substituted by the other. So 
we can only solve the two equations separately and 
make the solutions from equations (1) and (3) 
approximate each other by iteration. 
 
 
3.1 Fracture discretization 
The studied phase from initial open of the closed 
fracture until its initial propagation can be further 
divided into two stage: the first stage is from the 
initial open to complete open. In this stage fluid 
front and front of the opened fracture move forward 
with different velocities until 0opl l ; the second 

stage is from fracture complete open to initial 
propagation, in which only fluid front moves 
forward, the front position of the opened fracture 
keeps still. In the first stage we use a uniform 
moving mesh along the whole opened fracture, 
including fluid-zone and lag-zone, see Fig. 2(a). x  
is the grid length, m  and n  are node numbers in 
fluid-zone and lag-zone at some moment kt , 

respectively. Actually, the total node number is 
1m n   because of the last point in fluid-zone 

coinciding with the first point in lag-zone. fv  and 

opv  denote velocities of fluid front and front of the 

opened fracture. As the fluid front and the front of 
opened fracture move forward, grid numbers of the 
two zones increase. 

 
Fig. 2 Meshing strategy in the two stages 

(b). Uniform moving mesh of the fluid zone and scaled down mesh of 
lag-zone in the second stage. 

(a). Uniform moving mesh in the first stage. 
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In the second stage the length of lag-zone 
becomes smaller and smaller owing to forward 
motion of fluid front, and the stress intensity factor 

IK  is needed to calculate for determining the start 

time of fracture propagation. In order to calculate 

IK  more accurately by the formula [19, 20] 

   
2 2 2 20

, ,
2 ,

f op

f

l lop
I l

op op

l p x t p x t
K dx dx

l x l x

 
  
   
 

(11) 
we need to re-mesh the lag-zone (mesh in fluid-zone 
is unchanged): mesh sizes in lag-zone are scaled 
down in proportion   ( 1  ) from mesh size x  

to an appropriate size x  with node number n , 
see Fig. 2(b). m  is the corresponding node number 
in fluid-zone at some moment kt  in the second 

stage. Owing to 0fv   and 0opv  , the value of 

m  will increase and the value of n  will decrease 
as the fluid front moves forward. The proportion   

is easily obtained by the first mesh size x , the last 
mesh size x and the initial node number N  of re-
meshed lag-zone: 

1
1

.
Nx

x


    
                  (12) 

The reason for re-meshing the lag-zone is that the 
second integral term of equation (11) at fracture tip 
( opx l ) is singular, the smaller mesh size near the 

fracture tip is, the higher accuracy of IK  is 

achieved. 
 
 
3.2 Discretization of lubrication equation 
and boundary conditions 
About numerical discretization of lubrication 
equation (4) there are many different methods: 
integral scheme in FEM [6], central difference 
scheme in FVM [10], differential polynomial 
scheme in [16] and so on. In this paper we make use 
of a central difference format to discretize equation 
(4) for all points ix ( 2,3, , 1i m  ) in fluid-zone 

except the first and last nodes, which are described 
by the boundary conditions (5) and (6), (7), 

 

2

, 1 , , 1 1, 1 1, 1 1, 1 1, 1

3

, 1 1, 1 , 1 1, 1

2

3

12 2 2

2
,

12

i k i k i k i k i k i k i k

i k i k i k i k

w w w w w p p

t x x

w p p p

x





         

     

  
 

  
 


(13) 

where the subscripts i  and k ( 1,2,3k  ) denote 
node number and time step number, respectively. 

t  is the time step. In order to avoid solving the 
nonlinear system of w , we regard the net pressure 
p  as an unknown and w  as a known, equation (13) 

can be rewritten as 
2 3
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(14) 

which can be written in a matrix form, 
,Ap = b                                (15) 

where A is a coefficient matrix with size 
( 2)m m  , in each row of which only three non-

zero elements. p  is the unknown vector of fluid net 

pressure, b  is a vector of the fracture node opening 
increment. The boundary condition (5) at the 
injection point is discretized as 

3
1, 1, 2, 0 =0.

12 2
k k kw p p Q

x





             (16) 

The boundary conditions (6) and (7) at the fluid 
front is easy formulated 

, 0 .m kp                             (17) 

Finally, adding the two discrete equations into 
system (15), a well-posed nonhomogeneous system 
with size m m  is obtained, which has a unique 
solution with the reversible matrix A . 

The boundary condition (8) is transformed into 
discrete form 

2, 1,
1,

m n k m n kw w

x
   




           (18) 

where 1  is a very small quantity, denotes the 

calculation tolerance. Because in actual numerical 
calculation condition (8) cannot be achieved, only 
can be rewritten in an approximate form like 
equation (18). The condition of zero fracture 
opening can be satisfied by itself. About calculation 
of the fluid volume in fracture, we can think of fluid 
filled in each mesh segment as a trapezoid, so the 
total fluid volume is the area sum of all trapezoids 
and condition (9) is discretized as follows 

 
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3.3 Discretization of elasticity equation 
According to meshing strategy in section 3.1 the 
whole integral from 0 to opl  for fracture opening (1) 

can be discretized in the sum of piecewise integrals 
in each mesh segment. The net pressure in each 
segment can be seen as a uniform distribution as a 
result of its small length. It means that the net 
pressure inside the integral symbol can be put out as 
follows 
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 


(2

0) 
where subscript 1, 2, , 1I m n   , denotes node 
number of the opened fracture. In the lag-zone net 
pressure is a constant. 
 
 

4 Iterative algorithm 
Governing equations (1) and (4) are complexly 
coupled each other within net pressure ( , )p x t  and 

fracture opening ( , )w x t , so the elimination method 
is not available here, numerical solution of this 
model can be obtained only by iteration 
convergence. 
 
 
4.1 Solution of initial condition 
The initial condition is already given by equation 
(10), in which only the initial length of fluid-zone 

0
fl  is assumed known, the initial inlet pressure 0P  

and the initial length of opened fracture 0
opl  are 

unknowns. Firstly, we give an estimate of inlet 
pressure, note as *

0P . Substituting condition 0w   

at 0
opx l  and equation (10) with the known *

0P  into 

equation (20) yields 

   1 11

1 1
0 0

0
1 1

, , .
2

i ji i

i j

m nx xx x
op opx x

i j

p p
G l d G l d     

 


 

  
(21) 

The relationship between node numbers m  of 
fluid-zone and n  of lag-zone can be estimated by 
using average estimates of integrals in two sides of 
equation (21), 

*
0 0

00
( 1) ( 1) ,f l

f

P
m F n F

l

 
           (22) 

where fF  and lF  are average estimates of the left 

and right integrals in equation (21), respectively. 
The purpose of doing this is to obtain a relatively 

accurate estimate of 0
opl  for reducing iteration 

number and saving computing time. Secondly, 

substitute the two estimates *
0P , 0 *

opl   into boundary 

conditions (16) and (18), and iterate *
0P , 0 *

opl  until 

they meet conditions (16) and (18). At last, the 
relative initial time 0t  is solved by substituting the 

initial fracture opening ,0iw  into equation (19). 

 
 
4.2 Global iteration 
The acquisition of the complete initial conditions 

( ,0iw , ,0ip , 0
fl , 0

opl ) means that model solution 

( , 1i kp  , , 1i kw  , 1k
fl  , 1k

opl  , 1,2,3k   ) at the 

previous time step 1kt   is known. Firstly, giving the 

estimate of k
fl  and then the estimate of ,i kw  at the 

current time step kt , denoted as *k
fl  and *

,i kw , the 

corresponding net pressure *
,i kp  in fluid-zone can be 

obtained by system (15) with equations (16) and 

(17). Secondly, making use of *
,i kp  and equations 

(21) and (22), the relatively accurate estimate of k
opl  

can be obtained, denoted as *
opl . Thirdly, combining 

estimates *
,i kp  and *

opl  to compose the entire net 

pressure through the opened fracture, which will be 
substituted into elasticity equation (20) to obtain a 

new fracture opening **
,i kw , the corresponding net 

pressure **
,i kp and the length of the opened fracture 

**
opl , which are needed to satisfy the boundary 

condition (18) by iterating *
opl . Finally, if the 

estimate *
,i kw  and the new obtained **

,i kw  satisfy the 

following relationship, 

 2** *
, , 2

1

,
m

i k i k
i

w w 


        (23) 

where 2  has the same meaning as 1 , it means that 
**
,i kw and the corresponding **

,i kp  meet the coupled 

system (1) and (4) for the given estimate *k
fl . In 

addition, if **
,i kw  and **

,i kp  is the real solution of the 

model at the current time step, the condition (19) of 
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volume conservation needs to be satisfied. If it is not 

satisfied, iterating the estimates *k
fl , *

,i kw  and *
opl  to 

the above loops until they satisfy the two governing 
equations (15), (20), and the all boundary conditions 
(16), (17) (18) and (19). 
 
 
4.3 Improvement of iteration method 
It can be seen that in the global iteration algorithm 

there are 3 loop iterations: iteration of solution k
opl  

corresponds to condition (18), iteration of solution 

,i kw  corresponds to condition (23) and iteration of 

solution k
fl  corresponding to condition (19). It 

means that the estimates of k
opl , ,i kw  and k

fl  

determine calculation time and iteration number. If 
the estimates are closer to the accurate solution, it 
will waste less time and fewer iteration number by 
using appropriate iteration direction. The relative 

accurate estimate of k
opl  is given by equations (21) 

and (22).  
The estimate of ,i kw  closer to the accurate we 

can obtain by fluid volume conservation. The fluid 
volumes at the previous and current time steps are 
written as 

1

1 10 0
( , ) , ( , ) .

k k
f fl l

k k k kV w x t dx V w x t dx


     (24) 

It is known that fracture opening of plain-strain 
hydraulic fracture has self-similarity [23], so we 
assume that fracture openings at time steps 1kt   and 

kt  satisfy the following relationship, 

 
1

1, , , 0
k
f k

k k k fk
f

l
w x t w x t M x l

l





 
    

 
 (25) 

where kM  is a constant, has the meaning of average 

proportional coefficient about fracture openings. 
Substituting equation (25) into equation (24) and by 
variable substitution 

11
,

k
f

k k kk
f

l
V M V

l                   (26) 

The two fluid volumes can also be obtained by 
inlet injection rate 

0 0
1 1, .

2 2k k k k

Q Q
V t V t             (27) 

Combining equations (26) and (27), the constant 

kM  is obtained, 
1

1

1,
k

k f
k k

k f

t l
M

t l





                     (28) 

where kM  being greater than 1 means that fracture 

opening at current time on the whole is greater than 
fracture opening at previous time for every nodes. 

The estimate of k
fl  closer to the accurate can be 

obtained by the transient velocity of fluid front 
instead of average velocity at the interval t , which 
is described by lubrication theory [1], 

2

= ,
12f f

w dp
v x l

dx
              (29) 

which is written in discrete form 
2

, 1 1, 1 , 1* 1 .
12
m k m k m kk k

f f

w p p
l l t

x
    

  


   (30) 

Actually, *k
fl  is little larger than the real value 

because the transient velocity at 1kt   is greater than 

the average at interval  1 ,k kt t . 

 
 
4.4 Strategy of iteration direction 
In order to accelerate convergence, for iteration 

direction of k
opl  and k

fl  we choose the interpolation 

search with time complexity O( log(log )n ) better 

than O( n ) or O( log n ) of the traditional sequential 
search or binary search [24]. For iteration direction 
of ,i kw  we choose the method of weighted mean, 

the detailed process is as follows ： at the first 

iteration the estimate 1
,i kw  is used to get the new 

fracture opening 1,1
,i kw  by equations (15) and (20) 

(see section 4.2), and the error is calculated 
 

 21,1 1
1 , ,

1

,
m

i k i k
i

w w


         (31) 

If 1 2  , iteration stops, else 2 1 1,1
, , ,= ( + ) 2i k i k i kw w w  

as the new estimate of the second iteration is 
substituted into the governing equations (15) and 

(20) for obtaining the new fracture opening 2,2
,i kw  

and the second new error 2 . If 2 2  , iteration 

stops, else from the third iteration the new estimate 

,
j

i kw  is obtained by weighted mean of the two 

iterative average values  2 2, 2
, ,+ 2j j j

i k i kw w    and 

 1 1, 1
, ,+ 2j j j

i k i kw w   in the previous two iterations 

with the weights of reciprocal of their corresponding 
errors 
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   
 

2 2, 2 1 1, 1
1 , , 2 , ,

,

1 2

+ +
,

2

j j j j j j
j i k i k j i k i kj

i k

j j

w w w w
w

     
 

 

 


 
 

(32) 
where 3j  , it means that from the third iteration 
the iterating direction is slightly adjusted to quickly 
find accurate solution. 

This strategy is able to guarantee that the 
estimate with smaller error contributes more to the 
new estimate for the next iteration, which makes the 

difference between the estimate ,
j

i kw  and the new 

fracture opening ,
jj

i kw  going to smaller and smaller 

in general as the iteration continues until 
convergence is achieved. 
 
 
4.5 Determination of initial time scale 
One important advantage of this model is that in 
solution of the initial conditions (section 4.1) a 
quantity of time scale, namely, the relative initial 
time 0t  is obtained according to fluid volume 

conservation 
0

0
0 00

0 0

2 2
( ) ,

flV
t w x dx

Q Q
            (33) 

where 0V  is fluid volume at the time 0t , and 0 ( )w x  

is the corresponding fracture opening. So we can 
use the magnitude of 0t  as the initial time step t . 

It is more important to notice that as the fluid 
injection continues, velocity of fluid front becomes 
smaller, the number of fluid advancing meshes at 
each time step t  will decrease, maybe even less 
than one mesh at some moment, so a certain 
threshold for advancing mesh number is necessary 
to ensure calculation continuity. 
 
 

5 Numerical results 
The algorithm is implemented in MATLAB 
R2018a, in which there are a lot of ready-made 
mathematical functions, especially integral 
calculation and its grammar is simple. The 
disadvantage is that when mesh number is large, 
computing speed for piecewise integral calculation 
will be slow. Relevant calculation parameters: 
Young’s modulus 30E GPa , Poisson’s ratio 

0.2  , inlet injection rate 4 2
0 3 10Q m s  , 

far-field stress 0 1MPa  , initial fracture length 

0 0.5l m , mesh size 31 10x m   , tolerances 
4

1 1 10   , 7
2 1 10   , toughness 

0.50.5IcK MPa m   and fluid viscosity 
31 10 Pa s    . The initial fluid-zone length at 

the corresponding relative initial time 0t (unknown) 

is given as 0 -3=5 10fl m , namely 5 grid lengths. 

 
 
5.1 Initial conditions and scale of time step 
As shown in section 4.1 the pressure distribution of 
fluid-zone (10) is composed by the estimate inlet 

pressure *
0P  with the known 0

fl , which are 

substituted into the boundary condition (18) to 
obtain the corresponding length of opened fracture 

0 *
opl . Moreover, *

0P  and 0 *
opl  need to satisfy the 

boundary condition (16) at the wellbore by iterating 
*

0P . Table 1 shows the results of all initial 

conditions under 0 -3=5 10fl m . So according to the 

obtained value of the relative initial time we can set 
the initial time step -4=2.5 10t s  , which can 
guarantee that magnitude of initial time step is the 
same as initial magnitude of time in this model. 

Table 1. All initial conditions under 0 -3=5 10fl m  

l
0 

f  (m) t0 (s) l0
 
op(m) 

P0 
(MPa) 

V0 (m2) 

5×10-3 2.3×10-4 23×10-3 14.07 3.5×10-8 

 
 
5.2 Evolution results 
The evolution of fluid pressure and fracture opening 
at the first stage from initial partial open 

0 -3=23 10opl m  to complete open -3=500 10opl m  

is presented in Fig. 3 and 4. From the two figures it 
can be seen that evolution of preexisting fracture 
open has the self-similarity as the evolution of 
fracture propagation [23]. In Fig. 3 we find that as 
fluid front moves forward, fluid pressure 
distribution become closer and closer to uniform. In 
Fig. 4 each curve of fracture opening is composed of 
two different lines: solid line and dotted line, which 
represent fluid-zone and lag-zone, respectively. The 
last curve is the contour of fracture opening when 
the preexisting fracture is opened completely, in 
which the ratio of fluid-zone and lag-zone agrees 
with the result in paper [25] when the fracture 
toughness is zero. 

Figs. 5 and 6 show the evolution of fluid pressure 
and fracture opening from the first stage to the 
second stage. In the two figures the first curve 
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( =0.123190t ) is the last one in the first stage (see 
Figs. 3 and 4), and the others are the distributions of 
fluid pressure and fracture opening in the second 
stage, in which length of opened fracture 0=opl l  and 

fluid front keeps moving forward until fracture 
propagation condition I IcK K  is satisfied. From 

Fig. 6 it can be seen that fracture surface contour at 
the fracture tip changes from smooth tangent surface 
( =0.123190t ) to arc surface ( =0.187296t ), which 
is due to existence of medium toughness ( 0IcK  ). 

This result is consistent with the experiment results 
[26]. This experiment study obtains that at the 
reopening phase the gradient of fracture width near 
the fracture tip is gradually decreasing to zero, but is 
increasing rapidly with the reducing distance to 
fracture front at the propagation phase. 
Evolutions of inlet pressure and fluid front velocity 
in two stages are presented in Fig. 7, which suggests 
that at the initial injection the inlet pressure 
decreases rapidly on account of high fluid velocity, 
and as the injection continues, the fluid velocity 
becomes small, the inlet pressure decreases very 
slowly. It should be noted that because of mesh 
discreteness in numerical calculation there are 
stepped-decreases in evolution of fluid front 
velocity. In Fig.8 are illustrated evolutions about 
length of fluid-zone and length of opened fracture. 
This figure shows that in the first stage (left part of 
the vertical dotted line) the front of opened fracture 
moves faster than fluid front (slopes of the two 
curves), which leads to that length of lag-zone is 
increasing as injection continues, and at the end of 
the first stage velocity of fluid front is close to 
velocity of opened fracture front. When entering 
into the second stage (right part of the vertical 
dotted line, 0=opl l ), initial fracture is completely 

opened, fracture tip doesn’t move forward until 
satisfying fracture propagation condition I IcK K , 

while velocity of fluid front continues to decrease.  
Theoretically, because at the beginning the 

fracture is pre-existed, just closed, it means that 
there is no fracture toughness ( 0IcK  ) at the 

opened facture tip, so the stress intensity factor IK  

at the first stage theoretically equals zero. The 
corresponding numerical results of stress intensity 
factor at the tip of opened fracture are showed in 
Fig. 9. The blue dots are the stress intensity factors 
in the first stage, the values are very close to zero, 
but not equal to zero of theoretical result. This is 
because that there are errors in calculating stress 
intensity as a result of singularity at the tip of 
opened fracture. the magnitude of errors about 

3 0.510 Pa m is very small compared with the 
magnitude of actual formation fracture toughness, 
which means that the algorithm accuracy is high. 
The second stage is the energy accumulation 
process, in which only fluid front moves, fracture 
front keeps still, which causes stress intensity factor 
to rise rapidly until equal to toughness (pink dots in 
Fig. 9). 

 
Fig. 3 Evolution of fluid pressure in the first stage. 

 

 
Fig. 4 Evolution of fracture opening in the first stage 
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Fig. 5 Evolution of fluid pressure from the first stage 
to the second stage 

 
Fig. 6 Evolution of fracture opening from the first 

stage to the second stage 
 

 
Fig. 7 Evolutions of inlet pressure and fluid front 

velocity in the two stages 
 

 
Fig. 8 Evolutions of length of fluid-zone and length of 

opened fracture 
 

 
Fig. 9 Evolution of stress intensity factor at the tip of 

opened fractur 
 
 
5.3 Analysis of  algorithm 
As analyzed in Section 4 at the first stage there are 3 
unknowns k

fl , k
opl , kw  that need to be solved by 

iteration, at the second stage only 2 unknowns k
fl , 

kw  remain to be determined. We have to estimate 
the values of these unknowns in advance due to the 
application of implicit algorithm for avoiding 
solving the nonlinear system. In Section 4 the 
detailed estimating methods for these unknowns are 
given, Figs. 10-13 show the corresponding results. 
Estimate and numerical values of lag-zone length at 
each time step are shown in Fig. 10, in which the 
estimates are obtained by equation (22), and the 
numerical values are convergence results. It can be 
seen that estimates are larger, but close to the 
numerical values on the whole, especially at the 
beginning.  

 
Fig. 10 Estimated and numerical node numbers n  of 

lag-zone for each time step in the first stage 
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Fig. 11 compared the estimated and numerical 
values of proportional coefficient kM . From this 

figure it can be seen that estimated values coincide 
very well with numerical values, which shows that 
estimates of fracture opening based on equation (28) 
is very close to numerical solutions. Also in Fig. 12 
is given the result of estimated and numerical values 
of fluid front velocity at each time step, from which 
we can see that using the transient velocity of fluid 
front as an estimate of average velocity at period t  
is more reasonable and accurate. Fig. 13 shows the 
iteration numbers at each time step to verify the fast 
convergence of this improved iteration algorithm. 
From this figure we can see that iteration number 
exceeds 30 only 3 times, and the most iteration 
numbers are near 10 times, nearly a half are below 
10 times. Our improved algorithm is faster than the 
numerical algorithm in the paper [17] with average 
60 iteration times, which was widely used in many 
papers [13-16] for calculating the hydraulic 
problems. 

 Fig. 11 Estimated and numerical values of kM  for each 

time step in two stages 
 

According to fluid volume conservation (9) we 
analyse the accuracy of this algorithm. Fig. 14 gives 
the relative errors of fluid volume at each time step: 
the accurate fluid volume is obtained by 

0 2k kV Q t , the actual fluid volume kV   is the 

volume enclosed by fracture contour in fluid-zone. 
And the relative error is calculated as 

.k k k kV V V                     (34) 

From this figure it can been seen that only at the 
beginning relative errors are little larger, but the 
largest error 3.5%k  , most relative errors are 

less than 0.5%, which can verify that this improved 
algorithm have a high accuracy. From the above 
analysis, we can see that this implicit algorithm not 

only guarantees accuracy, but also greatly decreases 
iteration number and saves calculation time by 
utilizing accurate estimations of unknowns in the 
model.  

 Fig. 12 Estimated and numerical values of fv  for each 

time step in two stages 
 
 
5.3 Analysis of  mesh length and time step 
The average proportional coefficient kM  from 

equation (28) can be rewritten as 

    1
1 1 1

1 1

+
1 ,

k k
k f k f k

k k k
k f f k

t t l l l lt
M

t l l t t


  

 

    
      

(35) 
Theoretically, kM  is greater than 1, so the 

following condition must be satisfied 
1

1

1

0.
k
f k

k

l l

t t







 


               (36) 

The first and the second terms of inequality (36) 
have meanings of average velocity of fluid front at 

time intervals  -10, kt  and  -1,k kt t , respectively. 

This inequality is invariable, because transient 
velocity of fluid front is a monotonically decreasing 

function of time (see Fig. 12). It is known that k
fl  

monotonically increases with time, the difference of 
the first and the second terms of inequality (36), 
noted as kv , is a monotonically decreasing 

function of time, which is presented in Fig. 15. So it 
can be obtained from equation (35) that kM  is also 

a monotonically decreasing function of time under 
the condition of the constant t , namely 

+1 .k kM M  

Although theoretically all kM  are greater than 1, 

actually at some moment certainly happens: 
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+1 1kM   for numerical calculation, this is because 

at the previous time step kM  is very close to 1 and 

there is a calculation error owing to meshing 
discreteness. In order to avoid this case, we need to 
ensure that kM  is not too close to 1 in the whole 

calculation. In this paper a method of adaptive time 
step kt  when 1kM   is applied to guarantee all 

+1 1kM  . Fig. 11 presents the evolution of kM  at 

every time step by using the adaptive time step 
method. From this figure it can be seen that the most 
values of kM  fluctuate around 1.02, the purpose of 

which is not only to ensure fast convergence but 
also to ensure calculation accuracy, because when 

kt  is larger, kM  will be much greater than 1 

according to equation (35), convergence can be 
obtained rapidly, but calculation accuracy cannot be 
ensured; Otherwise, if t  is smaller, kM  will be 

very close to 1, this means kw  is very close to 1kw   

of previous time step, which will make it very 
difficult to converge. So in this model we use the 
condition 

1.01 1.03kM                        (37) 
as a balance of accuracy and convergence for this 
model. Need to point out that at the beginning kM  

doesn’t satisfy condition (38) because of large fluid 
velocity, and this condition is applied only to steady 
fluid flow when the velocity gradient of fluid front 
is small. Furthermore, this condition also affects 
scales of time step and mesh length, because at 
every time step moving length of fluid front must 
satisfy 

,k
k fl v t x                     (38) 

where x  is the grid length, satisfying condition 
(38) can ensure that at every time step fluid front 
can move forward not less than one grid length. In 

addition, k
fv  is decreasing with time (see Fig. 12), 

and x is constant (see Fig. 2), so the method of 
adaptive time step kt  is also needed to ensure that 

inequality (39) is always true. Evolution of time step 
with respect to calculating number k  is presented in 
Fig. 16. It can be seen that kt  is gradually 

increasing with calculating number, except the two 
black dots. Need to point out that the first black dot 
is the critical point from the first stage to the second 
stage, at which needs to satisfy the condition of the 
opened fracture length equal to the initial fracture 
length ( 0=opl l ), this is the reason why the time step 

increases sharply. And then after entering into the 

second stage time step returns to a reasonable value. 
The last black dot shows that time step decreases, 
this is because at that point need to satisfy the 
condition of fracture propagation ( I IcK K ) . 

Finally, the two combined inequalities (37) and (38) 
determinate time step and grid length for ensuring a 
fast convergence velocity and good accuracy. 

 
Fig. 13 Iteration numbers kN  for each time step in two 

stages 

 
Fig. 14 Relative error k  of fluid volume at each time 

step in two stages 

 
Fig. 15 Difference of two average velocities in inequality 

(36) with respect to time 
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Fig. 16 Evolution of time step t  with respect to the 

calculating number k  
 
 

6 Conclusion 
In this paper, we studied a new implicit algorithm to 
calculate the process from initial opening to initial 
propagation of a preexisting plain-strain hydraulic 
fracture with a fluid lag. In the algorithm an implicit 
difference scheme is adopted to avoid solving 
nonlinear equation system and the elasticity 
equation is transformed into the sum of piecewise 
integrals instead of the discrete polynomial 
expression to simplify calculation procedure, which 
is easily achieved in MATLAB R2018a. In this 
algorithm the relative accurate estimates of 
important unknowns: the length of fluid-zone fl , 

the length of opened fracture opl  and fracture 

opening w  at the next time step are obtained 
through transient velocity of fluid front, the 
condition of zero opening at the tip of opened 
fracture and the condition of fluid volume 
conservation, respectively; The weighted mean 
method with the weight of error’s reciprocal is 
chosen as iteration direction. A fast convergence 
with an average 15 iterations per time step and the 
average error below 0.5% are obtained by this 
algorithm. In order to ensure the balance between 
convergence speed and calculation accuracy, a 
balance threshold (1.01 1.03kM  ) about scales 

of time step and grid length is put forward. The 
adaptive time step method is adopted in the whole 
calculation process to ensure that the average 
proportional coefficient kM  is within the balance 

threshold. 
The overall numerical results show that self-

similarity of fracture opening appears in the whole 
process. According to different boundary conditions 

at the front of opened fracture, the whole evolution 
is divided in two stages: the first stage from initial 
opening to full opening with the Barenblatt 
condition; the second stage from full opening to 
initial propagation with the fracture propagation 
condition being satisfied at the front of opened 
fracture, respectively. Different boundary conditions 
lead to different evolution characteristics of fracture 
opening especially near the fracture tip: at the first 
stage the opened fracture has a smooth closure, but 
upon entering into the second stage fracture contour 
at the tip becomes a blunt arc closure. At beginning 
fluid pressure distribution transforms very fast from 
steep straight type to elliptical type, then changes 
very slowly and approaches a quasi-uniform 
distribution as time goes on. In the whole evolution 
process stress intensity factor is equal to zero in the 
first stage because of preexisting-closed state of the 
fracture, and in the second stage stress intensity 
factor quasi-linearly and rapidly increases until 
reaching fracture toughness. The numerical results 
of stress intensity factor in the first stage also show 
that the calculation accuracy and the meshing 
strategy are reasonable. 
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