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Abstract: - This paper presents a model for generating intravalues of time-series. The model uses a mean 
reverting stochastic process (MRSP). The deterministic or mean part of the process is forecasted by an 
autoregressive of order n, AR(n), model. The unobservable AR(n) coefficients are calculated by a Kalman 
Filter using n time series observations. The stochastic part of the process is a Brownian motion multiplied by a 
volatility term. Measures of the Kalman filter covariance matrix along with the process itself are used to 
capture the volatility dynamics for the intravalues of the time-series. The MRSP model also provides for the 
evolution of the intravalues of the time series. Experimental results are presented demonstrating the 
applicability of the model using daily data from the Dow Jones Industrial Average (DJIA) time series. 
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1 Introduction 
A time series is a set of data points or observations 

 ,  0,1,2,..., Ntx t   measured generally at equally 

spaced time intervals. The values of the time series 

tx  fluctuate up-and-down as time  0 , Nt t t  

progresses. These up-and-down fluctuations is 
termed the high frequency data of the time series. A 
center value of these fluctuations is termed the 
volatility of the time series. Within the last decades 
the estimation of volatility is of major concern. It is 
of enormous value since it provides information for 
the future dispersion of the time series. 

One volatility measure, regarding say a time 
series of a stock, is the “breakout volatility”, that is, 
the difference between the high and low values of 
the previous day. A 70% of this value is considered 
a volatility estimate. Another measure, is to look 
into a number of past high and low values along 
with open and close values and calculate a 
deterministic value for the volatility [1], [2], [3]. In 
addition, it is well known that the distribution of the 
volatility has fat tails, that is, it has very high or low 
values with high probability [4], [5]. Also it may 
have long range dependency, meaning that a value 
in the long past, say 20 days ago, may still have an 
impact in future values. Thus, an additional 
approach for volatility estimation is to use 
heterogeneous autoregressive models [4] utilizing 
past data. Yet, in the daily volatility forecasts higher 
statistics such as skewness and kurtosis may also be 
considered based say on a per minute time series. 

Other approaches consider volatility clustering; the 
phenomenon of calm periods (relatively no change 
in the values) and periods of high volatility of the 
time series. Here the Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) models 
[5] are very prominent. These approaches since they 
are autoregressive depend on past square 
observations and past variances to model current 
and future variances. 

The intraday volatility aspects of time series 
have been studied extensively [6], [7], [8], [9], [10]. 
In [6] a time-inhomogeneous diffusion model was 
adopted and using log penalized splines the 
volatility was estimated for the high-frequency 
intraday five-minute Shanghai Stock Exchange 
Composite Index (SHCI). In [7] the long memory 
and periodicity in intraday volatility was considered 
through the parameterization of the Fractionally 
Integrated Periodic EGARCH and the Seasonal 
Fractional Integrated Periodic EGARCH. In [8] new 
empirical evidence was provided for intraday 
scaling behaviour of stock market returns utilizing a 
5-minute stock market index (the Dow Jones 
Industrial Average) from the New York Stock 
Exchange, showing that the return time series has a 
multifractal nature during the day. In [9] the 
volatility in the Japanese stock market based on a 4-
year sample of 5-minute Nikkei 225 returns from 
1994 through 1997 was considered, showing that the 
intraday volatility exhibits a doubly U-shaped 
pattern associated with the opening and closing of 
the separate morning and afternoon trading sessions 
on the Tokyo Stock Exchange. In [10] the intraday 
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behaviour of stock returns and trading volume using 
the data on OMXS 30 stocks was analyzed. They 
found that returns follow a reverse J-shaped pattern 
with the peak at the beginning of the trading day, 
while trading volume attains its maximum towards 
the market closure. The highest volatility and 
kurtosis are observed at 09:30-10:00 and 11:30-
12:00 daily periods, when the macroeconomic news 
are released. 

Volatility though does not provide the evolution 
of the time series but the dispersion of the up-and-
down changes around a level value. In addition, this 
paper is concerned with the evolution of the 
intravalues of a time series. It focuses on a model to 
provide intravalues or high frequency (tick) 
forecasts of a time-series using a combination of 
four algorithmic techniques: A mean reverting 
stochastic process, a volatility measure, an AR(n) 
autoregressive model, and a Kalman filter. The 
mean reverting stochastic model consists of two 
parts. The deterministic part, which gives the 
evolution of the time series, and it is the difference 
between a mean value the process reverts to and the 
current value of the process itself. In addition, this 
difference is multiplied by a positive constant or a 
positive time dependent function called speed of 
reversion. The other part, called stochastic, consists 
of a Brownian motion multiplied by some volatility 
term of the time series. This volatility term may be a 
positive constant, a positive time dependent function 
or envelop, and/or even a positive function of the 
process itself. For the estimation of the process 
mean reverting value, an autoregressive model of 
order n, [AR(n)], is used based on a sample of n past 
values. The AR(n) model is formalized in state 
space. Its unobservable coefficients are realized 
using a Kalman filter. The trace and/or the 
determinant of the Kalman filter covariance matrix 
is used along with the evolution of the process itself 
to capture the evolution dynamics of the volatility of 
the time series. Experimental results are presented 
demonstrating the applicability of the model using 
the Dow Jones Industrial Average (DJIA) time 
series. 

This paper is organized as follows: Section 2 
gives the mathematical preliminaries for the mean 
reverting stochastic process, the state space 
formulation of the autoregressive model and the 
discrete Kalman Filter equations. Section 3 provides 
the framework for the discretization of the mean 
reverting stochastic process, and gives possible 
deterministic and/or stochastic volatility functions 
which could be used in the model to forecast high 
frequency values (intravalues, intraday or tick 
values) of the time-series. Section 4 gives 

simulation results for the intravalues of the time-
series data of Dow Jones Industrial Average (DJIA) 
along with their assessment. Finally, section 5 
provides the conclusions of this work and gives 
possible further directions. 
 

2 Mathematical Preliminaries 
2.1 Description of the Mean Reverting 

Stochastic Process 
The differential equation of the general mean 
reverting stochastic process tS , formally, has the 

form [11], [12]: 
 

   
0

( ) ( ) ,  

 
t t t tdS A t t S dt G t S dB

S initial condition

  


  (1) 

 
The parameter ( )A t  is a constant or a 

deterministic function of time t  but always a 
positive quantity and denotes the rate (speed or 
strength) of reversion. The parameter ( )t  is 
allowed to be a constant or a deterministic function 
of t  or even a stochastic process and denotes the 
mean value (also called long term mean) around 
which the process tends to oscillate. The stochastic 
term  , t tG t S dB  consists of two parts. The 

diffusion-coefficient  , 0tG t S  , which is a 

deterministic or even a stochastic positive function 
of time, and the continuous scalar constant-diffusion 

 ,tB   , being the Brownian motion (or Wiener or 

Wiener-Levy) process having the following 
properties: 
Property 1: It is a process with independent 
increments, that is, the set of N  random variables 

      1, ,i i iB t B t      , for 0,1,...,i N , are 

mutually independent for any partition 

0 1 ... Nt t t    of the time interval 0 0t   and 

Nt T . 

Property 2: At time 0t ,  0 , 0iB t   , for all 

i   (  is the probability sample space 

consisting of all possible outcomes of an experiment 

and i  is an outcome), except possibly at a set i  

of probability zero (by convention). 
Property 3: The process independent increments are 
Gaussian random variables, such that, for any time 

instants it  and 1it   in T , the mean is 

    1 0i iE B t B t   , and the variance is 
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       2

1 1
 

i i i i
E B t B t q t t

 
   . The parameter 

0q  is the diffusion of the process  ,B   . 

Usually, the scalar Brownian motion process 

 0,tB t t , is assumed to be of unit variance 1q  . 

This assumption is without loss of generality, since 
1q   can be absorbed in the diffusion-coefficient

 , tG t S , that is, replace  , tG t S  with 

 , tqG t S . 

The behaviour of the deterministic part of the 
process is that when ( )tS t , the so called drift 

term  ( ) ( ) tA t t S   is negative, which results in a 

pull of the process tS  back down toward the 

equilibrium level. Conversely, if ( )tS t , the drift 

term  ( ) ( ) tA t t S   is positive, which pulls the 

process tS  back up to a higher equilibrium 

value.For the stochastic term  , t tG t S dB , since 

 ,iB t   for a given it T  is a random variable 

composed of a sum of independent Gaussian 
increments, it is also Gaussian with mean value 

    0
i iB tm E B t     and variance 

     2

1i i i iB tV E B t q t t      . Thus, q  indicates 

how fast the mean square value of  ,B    diverges 

from its initial zero value at 0t . 

Because the coefficients of the linear equation 
(1) are measurable (in other words, the random 
process is completely determined by the realization 

of tS ) and bounded on the interval  0 ,t T , there 

exists a unique continuous solution for 0t t T 
taking the form [12]: 
 

     0

0

( ) (s)
0 ( ) (s)

tA t t t A t s
t st

S e S e t ds dB        (2) 

 
which has the characteristic that fluctuates 
randomly, but tends to revert to some fundamental 
level ( )t  with some reversion behavior, which 
depends upon the choices of the speed of the 
reversion parameter ( ) 0A t  , and the nonrandom 

or random but continuous function  , 0tG t S  . 

 
 

2.2 State space - Autoregressive model - 
Discrete-time Kalman Filter 

A linear, discrete-time, finite-dimensional system 
with noisy input and noisy output is described with 
the following state-space equations [13], [14]: 
 

1k k k kx F x w     (3) 
T

k k k k k kz y v H x v     (4) 

 
where the unobserved variables of interest is the 

system state kx  at discrete-time 0k  , ky is the 

system output. Since this usually is noisy, a noise 

process  kv  is added to it resulting in the observed 

measurement process  kz . The matrices kF  and 

kH  are of proper dimensions and known. The 

system input noise process  kw  and the 

measurement output noise process  kv , are 

independent and individually Gaussian white 
(uncorrelated from instant to instant and stationary) 
noise with zero mean and known covariance, i.e., 

   ~ 0,k k ksw WN Q   and    ~ 0,k k ksv WN R  , 

where ks denotes the Kronecker delta which is 1 for 

k s  and zero otherwise. We assume that the initial 

state 0x  is a Gaussian random variable with known 

mean  0 0E x x  and known covariance 

   2

0 0 0 0 0E x x x x P   , and also that it is 

independent of kw  and kv , for any k . 

Now a model that expresses a univariate time-

series system output ky as a linear combination of 

past observations k ny   and white noise kv (which is 

the observed measurements kz ) is referred to as an 

autoregressive model of order n (or ( )AR n )model 
and is given by the equation: 
 

(1) (2) ( )
1 2 ... n

k k k k k k k n ky a y a y a y v         (5) 

 

In (5) the unknown parameters (1) ( ),..., n
k ka a are 

referred to as the ( )AR n  coefficients, which in case 

they are constant, with sufficient ky  measurements, 

can be found by solving a set of linear equations. 

Due to random errors in ky  though, it is more 

realistic to consider the coefficients ( ) ,  1,...,i
ka i n , 
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as being noisy. Thus, it is assumed that they are of 

the form ( ) ( ) ( )
1

i i i
k k ka a w   , where each  ( )i

kw  is a 

zero mean, white, Gaussian random process, 
independent of  ( )j

kw  for i j , and also 

independent of  kv . Defining now all these 

unknown noisy ( )AR n  coefficients as an n -
dimensional state vector 

(1) (2) ( ) (1) (2) ( )T Tn n
k k k k k k kx x x x a a a        � 

, and also defining an n -dimensional, white, zero 

mean, Gaussian process  kw as the vector process 

formed from the  ( )i
kw , we get the following 

system state equation: 
 

1k k kx x w       (6) 

 
Also, by defining the row vector of observations: 
 

 1 2
T
k k k k nH y y y       (7) 

 

and the process  kz by k kz y , then Eq. (5) with 

(7) becomes the observed state measurements 
equation: 
 

T
k k k k kz y H x v      (8) 

 
Thus, with the above definitions, the ( )AR n  model 
has been transformed into a linear, discrete-time, 
finite-dimensional noisy input state space Eq. (6) 
with Eq. (8) being the noisy output. 
 
Remark 1: In this state space formulation of the 

( )AR n  model, it is not required for the time series 
data to be stationary. This is in contrast to the 
classical formulation of ARMA and ARIMA 
models, where it is necessary for the time series data 
to be transformed by differencing or by removing 
trend and seasonal components before processing 
[15],[16]. Also, ARMA and ARIMA models need a 
lot of past (historical) data (usually more than 50) in 
order to produce predictions. A third reason for not 
considering the classical ARMA and ARIMA 
models is that the more than 50 past observations in 
no way can indicate the time series behavior in the 
next time interval. With these in mind, a reasonable 
value of n = 3 to 5 historical data values are 
sufficient. 

The one-step prediction problem now is to 
produce an estimate at time 1k   of the system 

states 1/ 1ˆk kx    (which are the ( )AR n  coefficients) 

using n noisy measured time-series data 

1 2, ,...,k k k nz z z   , and from (8) the predicted 

1 1ˆk kz y   can be calculated. In this case, the 

solution to the problem, is given by the discrete-
time Kalman filter recursive equations [13], [14] as 
follows: 

(a) Time update (or prediction equations): 
 

1/ /ˆ ˆk k k kx x     (9) 

1/ /k k k k kP P Q     (10) 

 
(b) Measurement update (or correction) 

equations: 
 

1

1 1/ 1 1 1/ 1 1

T

k k k k k k k k kK P H H P H R


           (11) 

11/ 1 1/ 1 1 1/
ˆ ˆ ˆ

k

T

k k k k k k k kx x K z H x
           (12) 

   
11/ 1 1 1 1/ 1 1 1 1 k

Tnxn T nxn T T

k k k k k k k k k kP I K H P I K H K R K
              (13) 

 

where the matrices 2
k kR E v    , T

k k kQ E w w    , 

and nxnI  is the nxn  identity matrix (all 1’s in the 
main diagonal and zeros elsewhere). 

Equation (12) is initialized with 1/0x̂ set equal to 

the vector of a priori estimates of the coefficients. 
The term 

1 1/ˆ
k

T
k kH x

   is one step predicted output ˆkz  

and the quantity 
11 1/ˆ

k

T
k k kz H x

     is one step 

prediction sequence, usually called innovation or 

residual, 
11 1 1/ˆ

k

T
k k k kr z H x

      . 

Eq. (13) is initialized with 1/0P set equal to the a 

priori covariance matrix of the error in the estimate 
of these coefficients. 

The matrix 1kK  is called the Kalman filter gain. 

Notice that the gain matrix 1kK   depends inversely 

on 1kR   - the larger the variance of the measurement 

error, the lower the weight is given to the 
measurement in making the forecast for the next 
period, given the current information set. 

The matrix kQ  describes the confidence in the 

system state equation (3); an increase in this matrix 
means that we trust less the process model and more 
the measurements. kQ  can be estimated using the 

Maximum Likelihood Estimation method [13], [14], 
but often is picked by simulations to be, nxn

kQ I , 

with 0   being a scalar. 
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The error covariance matrix 1/ 1k kP   depends on 

the measurements via 1kK  . As the k

measurementsare processed, it is desirable for the 
covariance to be 1/ 1

nxn
k k kP I   , where the scalar 

0k   approaches zero or a small number  , as 

k   . Then, for almost all the measurements the 
mean square parameter estimation error will 
approach zero, or some small quantity [13]. 
 
 

3 Forecasting high frequency 
(intravalues) time-series data using 
Mean Reverting Stochastic Process 
and Kalman filter daily closing 
predictions 
3.1 Discrete time Mean Reverting Stochastic 

Process 
Since the time-series data is available at discrete 
time intervals, we need to discretize the mean 
reverting stochastic process (1). For the 
discretization, we consider the interval  0,  T . The 

required step interval dt , can then be /dt T N , 
for some integer N . Now, for 1, 2,...,i N , with 

iB  denoting 
it

B , where it idt , from Property 2 

(see Subsection 2.1), the Brownian motion gives 

0 0B   with probability 1, and from Properties 2 

and 3, we get 1i i iB B dB  , where each idB  is an 

independent random variable of the form 

(0,1)qdtN , where (0,1)N  is the normal 

distribution with mean zero and variance 1. 
Now, in order to solve numerically Eq. (1) in the 
interval  0,  T , we apply the method of Euler–

Maruyama [17], and obtain an approximation for the 
proposed mean reverting stochastic process 

it
S , 

denoted by iS , for 1, 2,...,i N , as follows: 

 

   1

0

( ) ( ) , ;

(0,1),   

i i i i i i

i i

S A t T S dt G t S dB

dB qdtN S initial condition

   

 
     (14) 

 
The behavior of the discretized mean reverting 

stochastic process iS  remains the same as for the 

continuous case tS , described in Subsection 2.1. 

That is, once the speed of the reversion parameter 
(t ) 0iA  , and the random or nonrandom discrete 

function  , 0i iG t S   have been chosen, the 

process would evolve randomly to reach the 
specified long term mean ( )T . 

We can allow now the long term mean ( )T  to 

be ˆ ˆˆ( ) T
k k k kT y z H x     (Eq. 2.8) with T

kH  

known from the measurements and ˆkx  as being 

estimated by the discrete Kalman filter (Eqs. (9) - 
(13)). Choosing, for example, 1 minutedt  , then 
within a daily interval of 6.5 hoursT  , the 
solution of (15) would provide 390N   estimated 
intravalues. For the random evolution (or trajectory) 
of these intravalues though, we have to specify the 
volatility function  , 0i iG t S   at each instant of 

time 1, 2,..., 390i N  . 
 
3.2 Volatility choices for the mean reverting 

stochastic process 
The choices for the volatility function, as described 
in Section 2.1, are deterministic and/or stochastic 
and vary according to different behaviours one 
might select for the process to evolve throughout the 
interval instances 1, 2,..., 390i N  . That is, one 
might select a specific discrete determinist or a 
specific discrete stochastic or even both 
deterministic and stochastic discrete volatility 
function  , 0i iG t S  , for all the time instances, or 

segment the time interval instances 
1, 2,..., 390i N   within the day and choose 

different volatility functions for each segment. 
A few possible choices for the volatility function 

 , 0i iG t S    are as follows: 

 With iH , iL , iC , and iO  denoting the high, 

low, close, and open values of the time series, 
respectively, possible deterministic volatilities 
for the whole interval are: 
i) Average of high and low values of the 

previous day, or n  previous days. 
ii) Previous day closing value, or average of n  

previous closing values. 
iii) Variance of n  previous closing values. 
iv) Parkinson (1980) [1]:

  2

1

1

4 ln(2)

n

Parkinson i i
i

H L
n




   

v) Garman Klass (1980) [2]:
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     2 2

1

1
2ln(2) 1

2

n

GK i i i i
i

H L C O
n




    
 

vi) Rogers and Satchell (1991) [3]:
 

      
1

1 n

RS i i i i i i i i

i

H C H O L C L O
n




     
 

vii) Yang-Zhang (2000) [18]: 
2 2 2(1 )Close to Open Open to Close RSk k         

 

with 
1

1
0.34 1.34

1

n
k

n


 


 
 
 

 

 Another choice used in this work is to use the 
Kalman filter covariance matrix which provides 
information for the spread of error in the 
estimation of the ( )AR n  coefficients for the one 
day ahead predicted measurement. That is, for 
the estimate 1/ˆk kx   of the unobservable system 

state 1/k kx  , the error covariance is 

   1/ 1/ 1/ 1/ 1/ˆ ˆ T

k k k k k k k k k kP E x x x x       . 

The rows of this error covariance matrix span the 
error space of the ( )AR n  coefficients. Since this 
matrix is positive definite, different possibilities 
of volatility measures may include 

 1/det 0k kP   ,  1/ 0k keigenvalues P   , 

 1/ 0k ktrace P   ,  1/ 0k knorm P   , or 

combinations of these. As the order of the 
autoregressive model increases though, so are 
these measures of the Kalman filter covariance 
matrix (which all give constant volatility for the 
whole interval). 
The determinant of the Kalman filter covariance 

matrix,  1/det 0k kP   , can be thought as an 

estimate of volatility spanning the error space, 
since from linear algebra it is known that for a 
set of linearly independent vectors 1 2, , , nu u u  

in nR , the absolute value of the determinant of 
the matrix M  with rows 1 2, , , nu u u  indicates 

the volume    V det M   of the 

parallelepiped 

 1 1 2 2 ... :0 1 ,  1,2,...,n n ia u a u a u a i n        

formed by these vectors. When 2n  ,   is a 
parallelogram and  V   denotes the area of  . 

In general,   0V    if and only if the vectors 

1 2, , , nu u u  are linearly dependent (i.e., if and 

only if the vectors do not form a coordinate 
system in nR ). 
Also the trace of the Kalman filter covariance 

matrix,  1/ 0k ktrace P   , gives another 

estimate of volatility, since the trace is the sum 
of the diagonal elements of a matrix, and for the 
error covariance the trace is the sum of the mean 
square errors, which is a performance index. 
Similar volatility measures are provided by the 
real part of eigenvalues and the norm of the 
Kalman filter covariance matrix since the 
eigenvalues and the norm are interrelated for a 
positive definite matrix. 

 Use the stochastic process 0iS   itself, at each 

instance 1, 2,..., 390i N  , and/or any of the 

above constants multiplied by the process 0iS   

at each instance 1, 2,..., 390i N   (gives 
stochastic volatility varying throughout the 
interval). 

 Use any of the above constant volatilities 
multiplied by a uniform distribution of some 
level at each instance 1, 2,..., 390i N   (gives 
stochastic volatility varying throughout the 
interval). 

 Use any of the above volatilities multiplied by a 
binomial distribution at each instance 

1, 2,..., 390i N   to model possible instances 
of inactivities (gives stochastic volatility varying 
throughout the interval). 

 

4 MRSP structure, parameters, 
simulations, and assessment of results 
The general structure of the time series mean 
reverting stochastic process (MRSP) predictions and 
evolution of intravalues is presented in Fig. 1. 

In Fig. 1 the bottom part represents the time 

series data values  , 0,1,2,..., Ntz t  . The part 

above it represents the AR(n)-Kalman filter 

predicted values ky  based on a set of n previous 

time series data values  1 2, ,... nz z z . The top part 

represents the mean reverting stochastic process 

(MRSP) intravalues iS  generated while the process 

evolves to reach the predicted values ky . 
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Fig. 1: Time Series Mean Reverting Stochastic 
Process (MRSP) Predictions and evolution of 

intravalues. 
 

The parameters of the mean reverting stochastic 
model chosen for simulation are as follows: 
 The strength of the mean reversion is calculated 

adaptively as ( ) ( ) 0iA i i dt T S      for 

1, 2,..., 390i N   with (1)A  being some small 

positive number, e.g., (1) 0.001A  . This 

adaptive calculation of ( )A i keeps track of the 

deviations of iS  as it evolves toward its end 

AR(n)-Kalman filter estimated value ( )T . As 

this deviation increases the ( )A i  values increase 
as well to bring the process as close as possible 
to ( )T . 

 The volatility term as previously stated can be 
both deterministic and stochastic as well as a 
function of the process itself. Here it is chosen as 

      1/ 1/ 1/, deti k i k k k k iG k S tr P P S    . This 

choice stems from the Cox-Ingersoll-Ross model 
[19] which captures the mean reverting 
phenomenon and avoids the possibility of 
negative values for all values of ( ) 0A t   and 

( ) 0T   once the condition 

    1/ 1/2 ( ) ( ) detk k k kA t T tr P P     is satisfied. 

The stochastic part of this MRSP has the 

standard deviation     1/ 1/detk k k ktr P P   and 

is proportional to iS . According to [19] this is 

significant because it states that as the short-rate 
increases, the standard deviation will decrease. 

 The mean reverting term ( )T  is the AR(n)-

Kalman filter estimate ˆ ˆˆ( ) T
k k k kT y z H x    . 

The daily time interval is 6.5 T hours  (Dow 
Jones Industrial Average (DJIA) trading hours 
per day), which gives the per minute intraday 
time instances 1, 2,..., 390i N  . The order of 

the autoregressive model is chosen as (3)AR , 

indicating regression over the past three ( 3n  ) 
daily closing values. 

 The initial conditions, 1S , of the mean reverting 

stochastic model is chosen to be the current 
daily Open value. 

 The Kalman filter initial covariance matrix is 
picked arbitrarily as (

1/0
)1.5* *n nxnn IP  . 

 The covariance matrix kQ  describes the 

confidence in the system state equation (2.3); an 
increase in this matrix means that we trust less 
the process model and more the measurements. 
The traditional adaptation method proposed in 

[20] is used to adaptively calculate kQ  using the 

residuals and the Kalman filter gain,

1 11 1

1
k k

T T

k k kQ K r r K
n     

 
 

. 

 The measurement covariance kR is set equal to 

the variance of the n observations vector 

 1 2
T
k k k k nH y y y      . 

 The initial condition for the state is 

  1

1/0ˆ 0.35* 1 1 1
Tnx

x    . 

For the simulation of mean reverting stochastic 
model the DJIA daily data is used. Specifically, a 
sample of 21 trading days from 4 April, 2017 until 4 
May, 2017. 

Fig. 2 presents this time series data sample with 
the corresponding High, Low, and Close values. 
This sample is considered to be adequate for our 
purposes as it possesses enough variability in the 
values as shown. 
 

 
Fig. 2: DJIA index values for Close, High, and 

Low from 4 April, 2017 until 4 May, 2017. 
 

The simulation results are presented and 
described in the following figures: 

Fig.3 presents the Root-Mean-Square (RMS) 
errors between the (3)AR -Kalman filter predictions 
and the corresponding daily close values (top), 
between the (3)AR -Kalman and the mean reverting 
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stochastic process (MRSP) predictions (middle), and 
between the MRSP predictions and the 
corresponding daily close values (bottom). It is 
observed that these RMS errors are relatively small, 
considering the data values which are in the order of 
20 thousands. The MSE (Mean Square Error) 
measures are based on scale dependent and measure 

the model performance, i.e.,  2

1

1 n

k k
k

MSE z y
n 

  . 

Thus the MSE can only provide a relative 
comparison between different models. These 
measures are zero if and only if the values are 
identical. 
 

Fig. 3: RMS errors between: AR(3)-Kalman filter 
predictions and DJIA Close values (top), AR(3)-

Kalman filter and MRSP predictions (middle), and 
MRSP predictions and data measurements 

(bottom). 
 

Fig.4 presents the Mean-Absolute-Percentage-
Error (MAPE) errors between the (3)AR -Kalman 
filter predictions and the corresponding daily close 
values (top), between the (3)AR -Kalman and the 
mean reverting stochastic process (MRSP) 
predictions (middle), and between the MRSP 
predictions and the corresponding daily close values 
(bottom). 
 

 
Fig. 4: MAPE errors between: AR(3)-Kalman filter 

predictions and DJIA Close values (top), AR(3)-
Kalman filter and MRSP predictions (middle), and 

MRSP predictions and data measurements 
(bottom). 

It is observed that these MAPE errors are extremely 
small, considering the data values which are in the 
order of 20 thousands. The MAPE is the average 
value of the absolute values of errors expressed in 
percentage terms. We consider data to be in a 
relative scale if they are strictly positive and the 
importance of the difference is given by the ratio 
and not by the arithmetic itself, i.e., 

1

100 n
k k

t k

z y
MAPE

n z


  .The MAPE cannot be 

determined if the measured values are equal to zero 
and it tends to infinity if measurements are small or 
near to zero. This is a typical behavior, when 
relative errors are considered. 

Next Fig. 5, Fig. 6, Fig. 7 and Fig. 8, present the 
MRSP intravalues in blue starting from the daily 
Open value indicated with the red square in the left 
hand side of the plot. At the right hand side of the 
plot the corresponding daily Close values are shown 
with a magenta square and the predicted values with 
the green square. The plots correspond to the DJIA 
trading days 28 April, 2017 until 3 May, 2017 
(excluding the weekend), with corresponding Close 
values 2.0940x104, 2.0913x104, 2.0949x104, and 
2.0957x104. 
 

 
Fig. 5: MRSP Intravalues for day 28 April, 2017. 

Close value 2.0940x104. 

 
Fig. 6: MRSP Intravalues for day 1 May, 2017. 

Close value 2.0913x104. 
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Fig. 7: MRSP Intravalues for day 2 May, 2017. 

Close value 2.0949x104. 

Fig. 8: MRSP Intravalues for day 3 May, 2017. 
Close value 2.0957x104. 

 
Fig.9 presents the MRSP intravalues for day 4 

May, 2017 with Close value 2.0951x104. 
 

 
Fig. 9: MRSP Intravalues for day 4 May, 2017. 

Close value 2.0951x104. 
 

Next Fig. 10 and Fig. 11 present the adaptive 
values of the MRSP strength coefficient A for the 
last day and the last+1 day, respectively, from the 
starting value A(1)=0.001 as the intravalues evolve. 
 

Fig.10: MRSP Adaptive Strength A values for last 
day as intravalues evolve. 

 
Fig. 11: MRSP Adaptive Strength A values for 

last+1 day as intravalues evolve. 
 

Next Fig. 12 and Fig.13 show the volatility 

values       1/ 1/, deti i k k k k iG t S tr P P S    for 

last day and last+1 day, respectively, as MRSP 
intravalues evolve. 
 

 
Fig. 12: MRSP Volatility values for last day as 

intravalues evolve. 
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Fig. 13: MRSP Volatility values for last+1 day as 

intravalues evolve. 
 
Comments: From Fig. 5, Fig. 6, Fig. 7, and Fig. 8 it 
can be deduced that the intravalues produced by the 
proposed MRSP model starting from the Open 
values do not end far away from their corresponding 
actual Close values. Similar results were obtained 
for all the previous simulated DJIA data values (too 
many to be presented here). Also, from the same 
figures the following observations come out: 
 When the Open value is high enough or low 

enough relative to the close value, the MRSP 
evolves quite fast in the beginning of the time 
interval in such a way to reach the estimated 
level of the Close value, and then from there, it 
“cruises” towards this Close value for the rest of 
the time interval (see Fig. 5, Fig. 6, and Fig. 7). 

 On the other hand, when the Open and estimated 
Close values are relatively in the same level, then 
the MRSP wanders towards the Close value 
throughout the whole time interval (see Fig. 8). 
This behavior of the MRSP model seems most 
often to be similar to the actual evolution of the 
time series during the day. 

 In addition, since the MRSP model by 
construction ends up close to the daily Close 
value starting from an Open value, the evolution 
of the intravalues it produces, exhibits the U-
shaped patterns [9] as well as the reverse J-
shaped patterns [10] as reported in the literature 
(see Fig. 5, Fig. 6, Fig. 8 and Fig. 9). 

Thus, based on these observations, the MRSP 
model can be used for trading purposes throughout 
the time interval from the actual Open and its 
estimated Close values, since it provides a stochastic 
evolution of intravalues of a time series, within of 
course, the chosen values for its parameters and the 
volatility measure implemented. 
 
Remark 2: The sensitivity of the model depends on 
the “seed” value of the MATLAB random number 
generator routine rng(.). For the simulations here, 

using a few runs with the command rng('shuffle'), 
the seed value was chosen as rng(1111414785). The 
other parameter having an impact on the model’s 
results is the Kalman filter initial error covariance

1/0P . This though did not have a large of an impact, 

since after a few iterations its value is regulated with 
the incoming covariance of the observations. Also 
from simulations, the AR(n) model of order n=3 
seemed to provide more acceptable results, since 
more past historical data does not necessarily 
indicate the time series behavior in the next time 
interval. The used in the simulations volatility term 

      1/ 1/, deti i k k k k iG t S tr P P S   , consisting of 

the trace and the determinant of the Kalman filter 
covariance matrix multiplied by the process itself, 
for all time instants 1, 2,..., 390i N  , gave 
values which are not far apart from the 
corresponding values calculated with Parkinson’s 
[1] volatility formula. 
 

5 Conclusion and further research 
This paper has presented a MRSP model for 
generating intravalues (or tick data) of a time series 
along with their evolution. The theoretical and 
practical aspects of the model have been described 
in details. The proposed MRSP uses a combination 
of four algorithmic techniques: (a) A deterministic 
part providing the directional evolution and a 
stochastic part giving the up-and-down fluctuations, 
(b) a volatility measure for the size of the 
fluctuations, (c) a state space formalized AR(n) 
model for estimating the final value of the process 
direction, and (d) a Kalman filter providing for the 
coefficients of the AR(n) model as well as 
contributing through the trace and/or determinant of 
its covariance matrix for the process volatility term. 

Acceptable simulation results have been 
presented for the DJIA time series demonstrating 
the applicability of the model. That is, the proposed 
MRSP model starting from the daily Open values 
evolves within an acceptable error towards the 
predicted daily Close value, giving during the day 
high frequency (intravalues or every minute tick 
data) forecast values based on the chosen volatility 
measure for the time series and the values of its 
parameters. 

Based on these results, some further research 
direction would be the examination of various 
advanced stochastic control theory techniques to 
adaptively determine the ( ) 0A i   parameter for the 
evolution of the MRSP throughout the interval of 
interest. 
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A second direction is to examine the results of an 
additive Jump-Diffusion term to the mean reverting 
stochastic process to account for fat tails which are 
present in the tick data. Moreover, since the 
intravalues exhibit small and/or larger jumps, and 
for some instances do not change at all, it is realistic 
to consider any of the above deterministic and/or 
stochastic volatilities, but in addition, it is realistic 
to use an additive Jump-Diffusion term to the mean 
reverting stochastic process to account for fat tails. 
Then, such a model would be 

   ( ) ( ) ,t t t t tdS A t t S dt G t S dB dJ     [21], [22], 

where the jumps are defined as 
( )

( )
1

( ) ,   ( ) ( )
P t

j P t
j

J t Y dJ t Y dP t


  , with ( )P t  being a 

Poisson process with intensity  , and with jY  

being independent identically distributed (iid) 
random variables modeling the size of the -j th  

jump, independent of P  and B . 
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