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Abstract: A discrete spline-wavelet decomposition of the first order is discussed in the framework of the non-
classical approach. The purpose of this paper is to estimate the calculation duration for the discrete spline-wavelet
decomposition with the use of two sorts of computers: One-Processor System (OPS) and Parallel Multi-processor
System (PMS). The main object is the grid functions, which are named flows. The finite dimensional spaces of the
initial flows, wavelet flows and main flows are introduced. These spaces are associated with the original and the
enlarged grids, respectively. Estimates for the duration of the calculations are given with taking into account the
properties of a communication computer environment. The presentation is accompanied with illustrative examples.
We consider the grid functions whose domain is a grid on the real axis (for example, on the set of integers). This
approach is convenient when processing flows are sequences of numbers. Then we discuss a grid enlargement
and construct an embedded discrete spline space. Using a projection operator, we obtain a wavelet decomposition
and give an illustration example of the mentioned decomposition. Taking into account the obtained algorithms
we consider their implementation with OPS and PMS. In the situation of the unlimited concurrency the duration
(runtime) of calculation with PMS does not depend on the data volume (i.e. it does not depend on the length of the
initial flow), on the other hand, the duration of the calculation with OPS is directly proportional to the data volume.
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1 Introduction

Wavelet expansions are widely used in processing nu-
merical information flows. The volumes of such flows
are constantly increasing. It is a stimulus to the fur-
ther development of the theory of wavelets (see [1]-
[2]). The approach to constructing wavelets used in
this paper is based on the approximation relations
(see, for example, [3]).

In contrast to the classic wavelets (see [1]), the
mentioned approach allows us to use an irregular grid
(both finite and infinite). The last one is very impor-
tant for saving the computer resources in the case of
singular changes of data flow. The building wavelet
decompositions in the multidimensional case and on
an arbitrary differentiable manifold (see [4]) can be
applied to the finite element approximations (for ex-
ample, see [7] – [21]). In this way the possibilities of
wavelet decomposition are significantly expanded.

The construction of the wavelet basis in differ-
ent functional spaces is very difficult in the classical
cases. The discussed approach does not require the
preliminary construction of the wavelet basis (if some-
one wishes to construct this basis they can obtain it in
the future). On the other hand, the knowledge of the
wavelet basis allows us to achieve substantial savings

of computer and network resources.

Note that the mentioned savings do not need a
wavelet basis in spaces of functions with a contin-
ual domain. It suffices to get a suitable basis for the
space of wavelet numerical flows, but for this it is
necessary to perform all constructions without use of
functions with a continual domain (see [5] – [6] ).

The purpose of this paper is to estimate the cal-
culation duration (runtime) for the discrete spline-
wavelet decomposition with the use of two sorts of
computers: One Processor System (OPS) and Parallel
Multi-processor System (PMS). We discuss computa-
tion complexity of parallelization for the decomposi-
tion and reconstruction algorithms. At first we con-
sider their implementation on OPS, and then — on
PMS.

In the situation of the unlimited concurrency the
duration of calculation with PMS does not depend on
the data volume (i.e. it does not depend on the length
of the initial flow), on the other hand, the duration of
calculation with OPS is directly proportional to the
data volume.
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2 Background information
In this paper, we consider the grid functions whose
domain is a grid on the real axis (for example, on the
set of integers). This approach is convenient when
processing flows are sequences of numbers.

Consider the grid on the real axis,

Ξ : . . . < ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2 . . . .

The set of functionsu(t) defined on the gridΞ is de-
noted byC(Ξ). It is clear thatC(Ξ) is a linear space.

If a ∈ Ξ, then there isi ∈ Z such thata = ξi.
In this case, we denotea− = ξi−1, a+ = ξi+1. Let’s
assume that

a, b ∈ Ξ, a+ < b−,

i.e. for some i, j ∈ Z, i + 2 < j,
the equalities area = ξi, b = ξj . For
mentioned a and b we introduce the notation
‖a, b‖ = {ξs | a ≤ ξs ≤ b, s ∈ Z}. The set‖a, b‖
will be calleda grid segment.

Consider a linear spaceC‖a, b‖ of functions
u(t) defined on the grid segment‖a, b‖. Obviously,
the spaceC‖a, b‖ has a finite dimension.

3 Grid enlargement
For a natural numberm we denote

Jm = {0, 1, . . . , m}, J ′
m = {−1, 0, 1, . . . ,m}.

On the grid segment‖a, b‖ ,

a = ξ0 < ξ1 < . . . < ξM−1 < ξM = b,

consider the functions{ωj(t)}j∈J ′M−1
as elements of

the spaceC‖a, b‖
ωj(ξs) = δs,j+1, s ∈ JM . (1)

Below, we assume that ifc > d then the set‖c, d‖
is empty.

Let 5 ≤ K < M . Consider the injective mapping
κ of the setJK into the setJM , for which

κ(0) = 0, κ(i) < κ(i + 1), κ(K) = M.

We introduce the setJ∗ ⊂ JM given by the formula

J∗ = κJK . (2)

A one-to-one inverse mapping is defined on this set by
formulas

∀r ∈ J∗ κ−1 : r −→ s, s ∈ JK , JK = κ−1J∗.

Consider the new grid

X̂ : a = x̂0 < x̂1 < . . . < x̂K = b, (3)

where
x̂i = ξκ(i), i ∈ JK . (4)

Further we considervirtual nodesξ−1 and x̂−1

with the propertiesξ−1 = x̂−1 < a. They are vir-
tual in the sense that they serve for the convenience
of records, but in the final result they have no ef-
fect. By definition we putX = ‖a, b‖ ∪ {ξ−1},
X̂ = {x̂i}i∈{−1,0,...,K}.

We introduce the functionŝωj(t), j ∈ J ′
K−1, t ∈

‖a, b‖, according to the formulas

ω̂i(t) = (t− ξκ(i))(ξκ(i+1) − ξκ(i))
−1

for t ∈ ‖ξ +
κ(i), ξκ(i+1)‖, i ∈ JK−1,

ω̂i(t) = (ξκ(i+2) − t)(ξκ(i+2) − ξκ(i+1))
−1

for t ∈ ‖ξκ(i+1), ξ
−
κ(i+2)‖, i ∈ J ′

K−2;

ω̂i(t) = 0 for t ∈ ‖a, b‖‖\‖ξ +
κ(i), ξ

−
κ(i+2)‖.

It is evident that

ω̂i(ξκ(i+1)) = 1 ∀i ∈ J ′
K−1.

Consider the numberspr,s, r ∈ J ′
K−1, s ∈

J ′
M−1, given by formulas

p−1,j = (ξκ(1) − ξκ(0))
−1(ξκ(1) − ξj+1)

∀j ∈ {κ(0)− 1, κ(0), . . . , κ(1)− 2}, (5)

pi,j = (ξκ(i+1) − ξκ(i))
−1(ξj+1 − ξκ(i))

∀j ∈ {κ(i), κ(i)+1, . . . , κ(i+1)−1} ∀i ∈ JK−2,
(6)

pi,j = (ξκ(i+2) − ξκ(i+1))
−1(ξκ(i+2) − ξj+1)

∀j ∈ {κ(i+1), κ(i)+1, . . . , κ(i+2)−2} ∀i ∈ JK−2,
(7)

pK−1,j = (ξκ(K) − ξκ(K−1))
−1(ξj+1 − ξκ(K−1))

∀j ∈ {κ(K−1), κ(K−1)+1, . . . , κ(K)−1}. (8)

The numberspr,s, r ∈ J ′
K−1, s ∈ J ′

M−1, which
do not appear in these formulas, are zero.

In the following, we consider a matrixP of the
sizeK + 1×M + 1 composed of the numberspr,s,

P = (pr,s)r∈J ′K−1, s∈J ′M−1
. (9)
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4 Discrete spline-wavelet decompo-
sition

DenoteS(X̂) linear space, which is the linear span of
the functionŝωj ,

S(X̂) = L{ω̂i(t) | ∀t ∈ ‖a, b‖ ∀i ∈ J ′
K−1}.

The spaceS(X̂) is calledthe discrete space of the
first degree splines(on the gridX̂).

So farS(X̂) ⊂ C‖a, b‖, then we can consider the
operatorP for projection of the spaceC‖a, b‖ on the
subspaceS(X̂),

Pu =
∑

i∈J ′K−1

u(x̂i+1) ω̂i ∀u ∈ C‖a, b‖. (10)

Let Q = I − P , whereI is the identical operator
in C‖a, b‖.

So, in accordance with (6.1) we obtain the direct
decomposition

C‖a, b‖ = S(X̂) + W, (11)

whereW = QC‖a,b‖.
The spaceS(X̂) is calleda basic spaceandW is

nameda wavelet spacein decomposition (11).
Let u ∈ C‖a, b‖. Using relation (11), we obtain

two representations of the elementu

u =
∑

s∈J ′M−1

csωs, (12)

and
u = û + w. (13)

Here

û =
∑

i∈J ′K−1

aiω̂i, w =
∑

j∈J ′M−1

bjωj ,

ai = 〈ĝ(i), u〉 ∀i ∈ J ′
K−1, bj , cs ∈ R1 ∀j, s ∈ J ′

M−1.

Obviously, the relation (6.4) representsthe
wavelet decompositionof the elementu ∈ C‖a, b‖,
whereû ∈ S(X̂), andw ∈ W.

Due to the linear independence of the system
{ωj}j∈J ′M−1

we getreconstruction formulas

cj =
∑

i∈J ′K−1

aipi,j + bj ∀j ∈ J ′
M−1. (14)

The decomposition formulashave the form

bj = cj−
∑

i∈J ′K−1

∑

s∈J ′M−1

csqi,spi,j ∀j ∈ J ′
M−1.

(15)

ai =
∑

s∈J ′M−1

csqi,s ∀i ∈ J ′
K−1, (16)

where

qs,j = δκ(s+1)−1, j for s ∈ J ′
K−1, j ∈ J ′

M−1.
(17)

Consider aprolongation matrixQ of the sizeK+
1×M + 1, composed of elementsqs,j,

Q = (qs,j)s∈J ′K−1, j∈J ′M−1
.

The matrixQ is the left inverse to the result of
transposing for the matrixP, so that

QPT = I. (18)

HereI is the unit matrix of the sizeK + 1×K + 1.

5 Simplification of decomposition
and reconstruction formulas

Consider three vectorsa = (b−1, . . . , bK−1), b =
(b−1, . . . , bM−1), c = (c−1, . . . , cM−1). We will call
them the main, wavelet and source numerical flows,
and the linear spaces of these flows are denoted byA,
B, C respectively.

Ratios

ũ =
∑

i∈J ′K−1

aiω̂i, w =
∑

i∈J ′N−1

biωi, u =
∑

i∈J ′N−1

ciωi

are established linear isomorphisms between just in-
troduced spaces and spacesS(X̂), W, C‖a, b‖ so that

A ∼ S(X̂), B ∼ W, C ∼ C‖a, b‖. (19)

In view of the isomorphisms mentioned above,
we obtain the direct sumC = A+ B.

Introduced vectorsa,b, c and matricesP andQ
allow us to rewrite formulas (14) – (16) in the form

c = b + PTa, (20)

a = Qc, b = c−PTQc.

It is clear to see that the elements[PTQ]i,j, i, j ∈
J ′

M−1, of matrix productPTQ are determined by
the formulas

[PTQ]i,j = 0 for i ∈ J ′
M−1, j + 1 ∈ JM\J∗,

(21)
[PTQ]i,j = pκ−1(j+1)−1,i for i ∈ J ′

M−1, j+1 ∈ J∗.
(22)
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Thusif i + 1, j + 1 ∈ J∗, then

[PTQ]i,j = δi,j .

Theorem 1. For the decomposition formulas the
next ratios hold

ai = cκ(i+1)−1 ∀i ∈ J ′
K−1, (23)

bq = 0 ∀q + 1 ∈ J∗, (24)

Whenq + 1 ∈ JM\J∗, the following equalities are
true

bq = cq − (x̂s+1 − x̂s)−1
[
(x̂s+1 − ξq+1)cκ(s)−1+

+(ξq+1 − x̂s)cκ(s+1)−1

]
(25)

for all q such that

x̂s < ξq+1 < x̂s+1 ∀ ‖x̂s, x̂s+1‖ ⊂ ‖a, b‖. (26)

The reconstruction formulas are obtained by in-
version (25) – (26) and by using relations (23) – (24).
As a result we get the following statement.

Theorem 2. The next equations hold

cq = bq + (x̂s+1 − x̂s)−1
[
(x̂s+1 − ξq+1)as−1+

+(ξq+1 − x̂s)as

]
(27)

for all q for which

x̂s < ξq+1 < x̂s+1 ∀ ‖x̂s, x̂s+1‖ ⊂ ‖a, b‖. (28)

Note that the spaceB of wavelet flows has the
form

B = {b | b = (b−1, b0, . . . , bM−1) ∀bj−1 ∈ R1 ∀j ∈ JM\J∗,

b i−1 = 0 ∀i ∈ J∗}. (29)

Thus, the wavelet space is a linear span of the
orthonormal1 system

ej = ([ej ]−1, [ej ]0, . . . , [ej ]M−1),

where[ej ]i = δi,j , i, j ∈ J ′
M−1.

1In this case we can discuss Euclidean spaceRM+1 with a
standard scalar product.

6 Illustrative example of wavelet de-
composition

We putM = 10 and on the grid segment‖a, b‖, con-
sider the grid

a = ξ0 < ξ1 < . . . < ξ9 < ξ10 = b.

As a discrete basis (1) we discuss elements
{ωj(t)}j∈J ′M−1

of the spaceC‖a, b‖,

ωj(ξs) = δs,j+1, s ∈ J10.

Consider the new grid

X̂ : a = x̂0 < x̂1 < . . . < x̂8 = b,

where x̂i = ξκ(i), i ∈ J8,and the mappingκ(i) is
defined by the relations

κ(0) = 0, κ(1) = 1, . . . , κ(5) = 5,

κ(6) = 8, κ(7) = 9, κ(8) = 10.

So, the considered case isK = 8, and the subset
J∗ of the setJ10, obtained by formula (2), has the
form

J∗ = {0, 1, 2, 3, 4, 5, 8, 9, 10}.
It is clear to seeJ10\J∗ = {6, 7}.

We introduce the functionŝωj(t), j ∈ J ′
7, ac-

cording to formulas (5) – (8) and consider the vectors

ω̂(t) = (ω̂−1(t), ω̂0(t), . . . , ω̂7(t))T ,

ω(t) = (ω−1(t), ω0(t), . . . , ω9(t))T .

From formulas (5) – (9) it follows that̂ω(t) =
Pω(t) so that the calibration relations are determined
by the matrixP.

Therefore

ω̂i(t) = ωi(t) for i ∈ {−1, 0, 1, 2, 3},

ω̂4(t) = ω4(t) +
ξ8 − ξ6

ξ8 − ξ5
· ω5(t) +

ξ7 − ξ6

ξ8 − ξ5
· ω6(t),

ω̂5(t) =
ξ6 − ξ5

ξ8 − ξ5
· ω5(t) +

ξ7 − ξ5

ξ8 − ξ5
· ω6(t) + ω7(t),

ω̂i(t) = ωi+2(t) for i ∈ {6, 7}.
The operation for projection of the spaceC‖a, b‖

of initial flows on the spaceS(X̂) is defined by for-
mulas (10), (16) and (23).

Ultimately, this projection means the application
of prolongation matrixQ to the original flowc ∈ C:
a = Qc. According to formulas (17) in this case, the
matrix Q forms the flowa so that

ai = ci for i ∈ {−1, 0, 1, 2, 3, 4}, (30)
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ai = ci+2 for i ∈ {7, 8}. (31)

It is easy to see thatQPT = I, where I is
the unit square matrix of the size9 × 9. By (21) –
(22) it follows that square matrixPTQ has the size
11 × 11. Note that the components of the wavelet
b = c − PTQc is obviously zero if their numbersj
are such that the numbersj+1 are contained in the set
J∗. Wavelet flowb is obtained from the source flow
c using formulas (25). In this case, we obtain

bj = 0 for j ∈ {−1, 0, 1, 2, 3, 4, 7, 8, 9},
(32)

b5 = −ξ8 − ξ6

ξ8 − ξ5
c4 + c5 − ξ6 − ξ5

ξ8 − ξ5
c7, (33)

b6 = −ξ8 − ξ7

ξ8 − ξ5
c4 + c6 − ξ7 − ξ5

ξ8 − ξ5
c7. (34)

Formulas(30) – (34) are decomposition formulas.
Using the formula (20), we obtain formulas for

the reconstruction of the original flowc:

cj = aj + bj for j ∈ {−1, 0, 1, 2, 3, 4},

c5 =
ξ8 − ξ6

ξ8 − ξ5
· a4 +

ξ6 − ξ5

ξ8 − ξ5
· a5 + b5,

c6 =
ξ8 − ξ7

ξ8 − ξ5
· a4 +

ξ7 − ξ5

ξ8 − ξ5
· a5 + b6,

cj = aj−2 + bj for j ∈ {7, 8, 9}.

7 Further supposition
The calculation of the wavelet decomposition involves
two stages: the first stage is the implementation of
decomposition formulas, and the second stage is the
implementation of the reconstruction formulas.

The implementation of decomposition formulas
contains two tasks: looking for the main flow and
looking for the wavelet flow. The first of these tasks is
usually more important than the second one because
in most cases, it is the main flow that gives an idea of
the nature of the source flow.

It is further believed that the considered compu-
tational system (CS) is a discrete action computing
system which works synchronously (in cycles). Any
considered time interval has integer length (see [5]).

When the above algorithms are implemented, you
have to extract the element from some array (i.e. you
assign its values to some intermediate variable), im-
merse the element to another array (i.e. assign the
value of the intermediate variable to element array),
and also to do certain arithmetic and logical opera-
tions.

We introduce some notation. LetA be an array.
The elementsAi of the array are numbers of typefA.
For simplicity, we discuss the numbers of one type.
For example, we can assume thatfA = f , wheref
means the type ofreal.We will not consider the spe-
cific representation of the typesfA andf in CS.

Let’s assume that̆TA is the time (i.e. the length
of the time segment2) extracting thei-th elementAi

of arrayA into a simple (auxiliary) variable; the time
required to immerse a simple variable value in the el-
ementAi of this array we denote bŷTA

3.
For brevity, hereafter, the storage for flowsa, b, c

is denoted by the same symbols. Thereforea, b, c are
also storage (arrays) for the mentioned flows. Such
agreement applies to other similar objects:X, X̂, Js,
J∗, etc. All arrays considered further are discussed as
dynamically extensible (i.e. the length of the array in
advance is not fixed, when we add an element to an
array, its length increases per unit).

8 Wavelet decomposition (single
processor approach)

Consider the decomposition formulas (23) – (24) and
(25) – (26). You can imagine a number of calculation
options for these kinds of formulas. Consider one of
these, assuming that

a = 0, b = M, ξi = i, (35)

Thus

X = {−1, a = 0, 1, 2, . . . , M − 1,M = b}.

In this casêxi = κ(i), i ∈ {0, 1, . . . , K}, and

X̂ = {−1, a = κ(0), κ(1), κ(2), . . . , κ(K−1), κ(K) = b}.

It is evident thatX = JM X̂ = J∗.
Using (35) in formulas (25) – (26), we obtain

bq = cq−(κ(i+1)−κ(i))−1
[
(κ(i+1)−q−1)cκ(i)−1+

+((q + 1− κ(i))cκ(i+1)−1

]
, (36)

where

κ(i)+1 ≤ q+1 ≤ κ(i+1)−1 ∀‖x̂i, x̂i+1‖ ⊂ ‖a, b‖.
(37)

2Recall that considered time is discrete, the unit of time is
equal to the length of the clock cycle

3We believe that the mentioned times do not depend on the
numberi of the element in question, but may depend on the type
of array elements and on its length
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Let the implementation of the algorithm for finding
j = κ(i) requireτi units of time; we assume that the
additive operation requiresta time units, and multi-
plicativetm units of time.

For clarity, as a rule, we indicate the names of in-
termediate variables, although their presence implied
(for example, instead of assigningj := κ(i + 1) with
further use of the simple variablej we will talk ”cal-
culateκ(i + 1)”).

The implementation of the decomposition will be
represented as sequence stages. Consider thei + 1-th
stage of the decomposition process.

To indicate the state of the arrays at thei-th stage,
we will usei as a subscript.

Before the beginning of thei+1-th stage, the state
of the arrays is characterized as follows:

a/ calculated the value ofκ(i) (and saved in some
simple variable)

b/ arrayXi is represented as

Xi = {0, 1, 2, . . . , i− 1, i},

and arrayJ∗i = X̂i looks like

X̂i = {a = κ(0), κ(1), κ(2), . . . , κ(i)},
c/ arraya is filled up to the elementaκ(i−1), so

that
ai = {aκ(0), aκ(1), . . . , aκ(i−1)},

d/ arrayb is filled up to the elementbκ(i−1)−1,
those.

bi = {bκ(i0+1), . . . , bκ(i1)−1},
wherei0 = min{i | i ∈ X\X̂}, i1 = max{i | i ∈
X\X̂},

e/ calculated the value ofcκ(i)−1.
Carrying out thei + 1 th stage consists of the fol-

lowing actions.
1. First, we computeκ(i+1); it will require τi+ta

units of time.
2. Connect to the arraŷXi the next elementκ(i+

1); this will require T̂
X̂

units of time, and the array
will take the form of the algorithm.

3. Calculation and extraction of the element
cκ(i+1)−1 from arrayc additionally requiresta + T̆c

units of time.
4. Adding the elementai = cκ(i+1)−1 to the array

a will require T̂a units of time (recall that the value of
κ(i + 1)− 1 already computed and placed in a simple
variable whose name is not mentioned in accordance
with the agreement).

5. Using formulas (36) – (37), we calculatebq for
each

q ∈ {κ(i), κ(i) + 1, . . . , κ(i + 1)− 2} (38)

(notice, that the set of indices (38) is not empty, be-
causeq + 1 ∈ JM\J∗).

Since the elements ofκ(i), κ(i + 1) andcκ(i)−1

are already calculated, then you only need to extract
the elementcκ(i+1)−1 from arrayc and make up the

difference κ(i + 1) − κ(i); this will requireT̆c + ta
units of time.

To calculatebq, we setq = κ(i) + j, so that

bκ(i)+j = cκ(i)+j−
−(κ(i+1)−κ(i))−1

[
(κ(i+1)−κ(i)+j−1)cκ(i)−1+

+(j + 1)cκ(i+1)−1

]
, (39)

and create a loop onj ∈ {0, 1, . . . , κ(i+1)−κ(i)−2}.
Thej-th iteration of this cycle will require certain

time units.
1). Extraction ofcκ(i)+j from the arrayc requires

ta+T̆c time units. 2). The expression in square brack-
ets of (39) require four additive operations and two
multiplicative (previously performed operations natu-
rally in this counting is not counted). Thus they re-
quire4ta + 2tm units of time.

3). Outside, the square brackets will need to per-
form one multiplicative and one additive operation.
They will taketa + tm time units.

4). The resulting valuebq = bκ(i)+j is needed to

immerse in the arrayb. That will requireT̂b units of
time.

So, for the implementation of a single iteration
of the loop in j required6ta + 3tm + T̆c units of
time, and such iterations totalκ(i + 1) − κ(i) − 1
(obviously, there are no iterations in the case when
κ(i+1) = κ(i)+1). Taking into account the prepara-
tory operations mentioned above to find all required
values ofbq at the i + 1-th stage will be required
T̆c + ta +(6ta +3tm + T̆c + T̂b)(κ(i+1)−κ(i)−1)
units of time.

Now it is clear that for the implementation of the
i + 1-th stage as a whole required

τi + 3ta + T̂
X̂

+ T̆c + T̂a+

+(6ta + 3tm + T̆c + T̂b)(κ(i + 1)− κ(i)− 1) (40)

units of time. Summing (40) fori ∈ {0, 1, . . . , K−1},
we obtain the next assertion.

Theorem 3. TimeT required for the realiza-
tion algorithm decomposition with the OPS is calcu-
lated by the formula

T =
K−1∑

i=0

τi + K(3ta + T̂
X̂

+ 2T̆c+

+T̂a) + (6ta + 3tm + T̆c + T̂b)(M −K).
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9 Wavelet reconstruction (single
processor approach)

The evaluation of the reconstruction time is carried
out similarly. Provided (35) formulas (27) – (28) take
the form (as before, the division onκ(i + 1) − κ(i)
is distributed between the terms to reduce rounding
errors)

cj =
κ(i + 1)− j − 1
κ(i + 1)− κ(i)

·ai−1+
j + 1− κ(i)

κ(i + 1)− κ(i)
·ai+bj

(41)
∀j ∈ J ′

M−1,

wherei is defined by relation (28),

κ(i) ≤ j + 1 ≤ κ(i + 1). (42)

The search for the numberscj is done in a loop
by j ∈ {−1, 0, 1, . . . , M − 1}.

Let the time required to assign a value for simple
variable is equal tots. Let the comparison operation
requirestc units of time.

Theorem 4. QuantityT ∗ of time required for
realization reconstruction algorithm with the OPS, is
calculated by the formula

T ∗ = (8ta + 4tc + 4tm + 2T̆a + T̆b + T̂c)×

×(M + 1) +
K∑

i=0

τi + 2ts. (43)

Proof. We divide the proof into five steps.Each of
which deals with a specific part in the implementation
of the proposed algorithm.

0). Before the start of the cycle we assumei = 0,
j = −1 and findκ(1). This will require2ts + τ1 units
of time.

1). First we calculateκ(i + 1). It will require
ta + τi+1 units of time.

2). In each iteration of the cycle, we check equal-
ity j + 1 = κ(i + 1), and if it is true, then we set
i = i + 1. This will requireta + tc units of time. The
time τi+1 of calculation ofκ(i + 1) will be accounted
later.

3). Now we calculatecj using the formula (41).
We need to make four multiplicative and five additive
operations, two extracts from the arraya, one extract
from arrayb, and immersing the result in the arrayc.
So we need to use4tm + 5ta + 2T̆a + T̆b + T̂c time
units.

4). We end the iteration of the loop, settingj =
j + 1. Here you needta + tc units of time.

5). We check the equalityj +1 = M . If it is true,
then the cycle is over, the initial flow is found. If it

is not correct, we need to go to the beginning of the
cycle. This will requiretc + tl units of time.

So, one iteration of the loop will be used8ta +
4tc + 4tm + 2T̆a + T̆b + T̆c (excluding sometimes
appearing addτi+1). The number of loop iterations
is the number of elements in the streamc, i.e. equals
M + 1. Considering previously added calculations of
the values ofτi+1, we see what’s on the implementa-
tion of the loop (along with preparatory assignments
zero stage) will require units of time. Thus we obtain
equality (43). This concludes the proof.

10 On wavelet interpretation with
parallel system

In the following, parallelization of decomposition and
reconstruction algorithms is considered. We discuss
the situation of the unlimited concurrency. Therefore
1) there are so many parallel processors (cores), as
needed for the considered tasks, 2) there is potentially
unlimited memory (i.e. again, there is as much mem-
ory as it is needed for tasks), 3) processors have free
access to the memory without collisions.

Let T̆a, T̆b, T̆c be the number of time units re-
quired to retrieve an element from arraysa, b, c re-
spectively.4

Let T̂a, T̂b, T̂c be the number of time units, which
are necessary for immersing an element into arraysa,
b, c respectively.5

Let ta, tm be the number of time units for (paral-
lel) additive and multiplicative operations.

Let ts, tc, tl, t∗ be the number of time units for
(parallel) assignment, comparison, logical transition
and exchange between ”neighboring” processors, re-
spectively.

Finally, assume that the mapping calculationκ(i)
takesτ time units.

Note that in parallel computing the group of
simultaneous operations are calleddeck. The number
of these operations is called thewidth of the deck.In
our case, it is assumed that the implementation time
of the deck may be different. This allows you to use
a deck of complex structure. Such decks are called
a stratum. They may be considered as small parallel
forms.

The time of implementation (runtime) of the stra-
tum is calledthe height of the stratum. In parallel
form, the stratums are ordered so that the operands for

4As beforeconsidered time is discrete, the unit of time is equal
to the length of the clock cycle.

5Recall once more that the mentioned times do not depend on
the numberi of the element in question, but may depend on the
type of array elements and on its length
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theoperationsof each stratum are obtained on previ-
ous stratums, or are the original algorithm data. Par-
allel algorithm (parallel form) is the ordered system
of stratums. The sum of the stratum heights for the
parallel algorithm is calledthe height of the parallel
form. In conditions unlimited concurrency we will try
to find the parallel form of small height.

11 Calculating the wavelet decom-
position (parallel processor ap-
proach)

The implementation of formulas (36) – (37) on PMS
can be discussed in different ways. Consider the fol-
lowing calculation steps.

1. Using the stratum of heightτ and widthK +1,
we find all the values ofκ(i), i ∈ J ′

K−1. Thus we
define the subsetJ∗ of the setJ ′

M−1.
2. We perform two additive operations (we find

j + 1 and i + 1). Then we exchange two parts of
information (to receiveκ(j + 1) andcκ(i+1)−1). Now
we extract numberscκ(i)−1 and immerse them in an
arraya. At last we do two additive operations. For
all of these operations we have to construct a stratum
with height2t∗+ T̆κ+T̆c+T̂a+4ta and widthM +1.

3. Findingbq by formulas (24), (36) – (37) will
require extraction of elements from arrayc andκ, im-
mersing results into the arrayc, as well as five ad-
ditive and four multiplicative operations. Thus, the
height of this stratum is̆Tc + T̆κ + T̂b + 5ta + 4tm,
and its width isM + 1.

Thus, the following statement is established.
Theorem 5. For the realization of decomposi-

tion formulas there is a parallel form of height

H = τ +2t∗+2T̆κ+2T̆c+T̂a+T̂b+9ta+4tm (44)

with a width ofW = M + 1.

12 Calculating of the wavelet recon-
struction (parallel processor ap-
proach)

Consider a parallel implementation of formulas (41)
– (42). We know that with successive calculations,
finding the numberscj was carried out in a loop on
j ∈ J ′

M−1. We notice, that loop iterations can be
considered independently from each other. Therefore
they can be calculated by a parallel system effectively.
Here we will need

1. Extraction of elements from arraysκ(i), a,
b,what is required the height of stratum̆Tκ + T̆a + T̆b

and widthsM + 1.

2. Six additive operations and four multiplica-
tive operations, and besides, two exchanges between
neighboring processors for sending valuesai−1 and
κ(i + 1). This can be done by the parallel form of
height6ta + 4tm + 2t∗.

3. Immersing the result in the arrayc requires a
parallel form of height̂Tc and widthM + 1.

Thus we have proved the next assertion.
Theorem 6. For realization of reconstruction

algorithm with PMS there is a parallel form of height

H∗ = T̆κ + T̆a + T̆b + 6ta + 4tm + 2t∗ + T̂c

and widthW ∗ = M + 1.

13 Conclusion
The numerical implementation of the wavelet decom-
position requires the original gridX and the nested
grid X̂. This construction is usually determined by
the original flowc. It may require significant com-
puter resources. Notice that the algorithm for the con-
struction of the embedded grid used here is optimal in
a certain sense. The disadvantage of this algorithm is
that it is an essentially sequential process. Though in
real situations it can be handled as OPS, and on PMS.

Taking into account the obtained algorithms we
consider their implementation with OPS and PMS. In
the situation of the unlimited concurrency the duration
of calculation with PMS does not depend on the data
volume (i.e. it does not depend on the length of the
initial flow), on the other hand, the duration of cal-
culation with OPS is directly proportional to the data
volume.

The application of a sequential algorithm (or par-
allel algorithm of small width) is preferable in the case
of the arrival of the initial flow in real time. In this
case, the entire flow is not yet received. If the source
flow has already been received, then its processing on
PMS can be very effective due to the splitting flow
into sufficiently long fragments, the number of which
is equal to the number ofparallel processors. The pro-
cessing each of these parts carried out sequentially as-
signed to this part computational module with the sub-
sequent connection of these parts in the original order.
These questions will be discussed in the wider version
of this paper.
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