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Abstract: In this paper we claim that the Corollary 2 in [V. Pinciu, Dominating sets for outerplanar graphs, WSEAS

Transactions on Mathematics 1(3), 2004, pp. 55–58] is false. In particular, we present a linear-time algorithm for

partial k-trees that solves the problem.
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1 Introduction

The connected domination is a one of the well-known

NP-hard problems, introduced by Sampathkumar and

Walikar in [14]. It is a natural model for some net-

work issues and has been widely studied in literature,

see for example [5], [7] and [9]. In [11] the author

claims that the problem of finding the minimum con-

nected dominating set is NP-hard even for outerplanar

graphs (Corollary 2). In this paper, in two ways, we

prove that this corollary is incorrect: in Section 2 we

express the problem as a logical formula solvable in

linear-time, while in Section 3 present a combinato-

rial algorithm based on dynamic programming.

We generally use standard graph terminology [6]. Let

G = (VG, EG) be a simple finite connected graph. A

connected dominating set D of G is a subset of VG

such that every vertex not in D is adjacent to at least

one vertex in D, and the subgraph G[D] induced by

D is connected. The connected domination number

γc(G) of G is the cardinality of a minimum connected

dominating set of G. A graph G is outerplanar if it

has a crossing-free embedding in the plane such that

all vertices are on the boundary of its outer face. If

addition of a single edge in G results in a graph that is

not outerplanar, then G is called a maximal outerpla-

nar graph. Furthermore, the open neighbourhood of

a vertex u of a graph G, denoted by NG(u), is the set

of all vertices adjacent to u. The closed neighbour-

hood of u, denoted by NG[u], is the set NG(u)∪{u}.

Similarly, for a subset X ⊆ VG of vertices, the open

neighbourhood of X, denoted by NG(X), is defined

to be
⋃

u∈X NG(u), and the closed neighbourhood of

X, denoted by NG[X], is the set NG(X) ∪X.
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2 Complexity

In [13] Robertson and Seymour introduced the con-

cept of the graph parameter, called treewidth, playing

an important role in algorithmic graph theory. Many

problems which are NP-hard on arbitrary graphs can

be solved in polynomial-time on graphs of bounded

treewidth [3]. Moreover, Courcelle’s theorem states

that every decision or optimization problem definable

in the monadic second order logic (MSO) has a linear-

time algorithm on graphs with this property. The

graph problem in question may be defined in terms of

sets of vertices of the given graph and the binary adja-

cency relation between the vertices (see [4] for more

details).

We recall that outerplanar graphs constitute a sub-

class of partial 2-trees, graphs with the treewidth of at

most 2 (see comprehensive characterization in [15]).

Furthermore, the connected domination problem in

graph G = (VG, EG), where D is a connected domi-

nating set, can be expressed in MSO by the following

formula:

∧

u∈VG

∨

v∈VG

(u ∈ D ∨ v ∈ D ∧ adj(u, v)) (1)

and

∧

S⊆VG

[

∨

u,v∈D

(u ∈ S ∧ v /∈ S) ⇒

⇒
∨

x,y∈D

(x ∈ S ∧ y /∈ S ∧ adj(x, y))
]

,
(2)

where adj(·) is an adjacency relation. The expression

ensures that every vertex in VG is dominated (1) and

G[D] is connected (2).
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Corollary 1. There exists a linear-time algorithm for

finding a minimum connected dominating set in outer-

planar graphs. �

Unfortunately, this approach can be inpractical, even

for graphs with treewidth equal to one, because of

hidden constants and complex implementation [8].

Therefore, in the next section, we give a simple com-

binatorial linear-time algorithm solving that problem

in partial k-trees, a supeclass of outerplanar graphs.

3 Algorithm

Our algorithm is based on the standard dynamic

programming method for partial k-trees [16], being

graphs with the treewidth of at most k, and on new

ideas showed in [10]. First, we find an ordered tree

decomposition [13] corresponding to the input graph

G = (VG, EG). Then we traverse it by a bottom-

up technique calculating and storing proper values for

each node.

Let H = (VH , EH) be a k-tree, where VH = VG

and EG ⊆ EH , see Fig 1, and let (v1, ..., vn) be some

perfect elimination ordering (peo) of the vertices in

H , where the set Vi = {vi, ..., vj} (i < j) induces a

(k + 1)-vertex clique in H under peo, i = 1, ..., n −
k. We create the directed tree T with the vertex set

{V1, ..., Vn−k} rooted at Vn−k, where the parent of the

vertex Vi in T is the vertex Vp such that Vi ∩ Vp = k
and p > i is as small as possible, see Fig 2. The

subgraph of G corresponding to the subgraph of T
rooted at Vi is denoted by Gi. It is known that finding

a tree decomposition of a graph requires a linear-time

[2], as well as finding a perfect elimination ordering

[12].

We divide our problem into two natural subprob-

lems: domination and connectivity, giving some nec-

essary definitions. Let X be a subset of VGi and let

FX,i : VGi −→ {−1, 0, 1} be the function corre-

sponding to the domination problem, expressed by the

following formula:

FX,i(u) =







1 if u ∈ X
0 if u ∈ NGi(X)

−1 if u /∈ NGi [X] .

Notice that |
⋃

X⊆V
Gi
{FX,i}| = 2|VGi |. The func-

tion fX,i : Vi −→ {−1, 0, 1} such that f−1
X,i(1) ⊆

F−1
X,i(1), f

−1
X,i(0) ⊆ F−1

X,i(0) and f−1
X,i(−1) ⊆

F−1
X,i(−1) is called the partial function of FX,i and

we say that two partial functions fY,i, fZ,i are equiv-

alent if and only if fY,i(u) = fZ,i(u) for each

vertex u in Vi and some Y,Z ⊆ VGi . Next, let

CFX,i
= {A1, ...., Ap} be the family of vertex sets of

1 23
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Figure 1: An outerplanar graph G (partial 2-

tree) and the maximal outerplnar graph H (2-

tree) obtained by adding (dashed) edges with peo

(1,2,3,4,5,6,7,8,9,10,11,12).

V1={1,3,4} V2={2,3,5}

V3={3,4,5}

V4={4,5,9}

V5={5,7,9} V6={6,7,11}

V7={7,9,11}V8={8,9,10}

V9={9,10,11}

V10={10,11,12}

Figure 2: The tree T of H (Fig 1).

the connected components of Gi[X] and let CfX,i
=

{B1, ..., Bp} be the family of sets such that B1 ⊆

A1, ..., Bp ⊆ Ap and
⋃j=p

j=1Bj = Vi ∩X (notice that

Bj may be the empty set). Now, let Pi be the set of

all possible pairs (fX,i, CfX,i
) of Vi ∈ T , taken over

all X ⊆ VGi . One can observe that the cardinality of

the set of the all non equivalent partial functions for Vi

is at most 3k+1 and the number of different sets CfX,i

for the partial function fX,i is at most Bk, where Bk is

the k-th Bell number (the number of the possible parti-

tions of a set). Thus, we have |Pi| ≤ 3k+1·Bk for each

Vi ∈ T . Observe that D ⊆ VG is a connected domi-

nating set of G if and only if FD,r(u) 6= −1 for each

vertex u ∈ VG and G[F−1
D,r(1)] is connected, where

r = n − k. Hence, similarly as in algorithm for con-

vex domination number proposed in [10], we say that
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a pair is feasible if it fulfills the following three rules:

The domination rule

Recall that if D ⊆ VG is a dominating set of G then

NG[vi] ∩D 6= ∅ for each i ∈ {1, ..., n − k}. Conse-

quently, if (fX,i, CfX,i
) for X ⊆ D is feasible then we

must have fX,i(vi) 6= −1: vi is dominated by itself or

by a vertex in VGi , NG[vi] ∩ (VG \ VGi) = ∅.

The connectivity rules

If D ⊆ VG is a connected dominating set of G,

X ⊆ D and i ∈ {1, ..., n − k} then the following

two properties must be satisfied:

1. if vi ∈ D then vertex vi must be reachable from

any other node belonging to D, especially to D ∩ Vi.

Therefore, if fX,i(vi) = 1, |Vi ∩ X| > 1 and

(fX,i, CfX,i
) is feasible then there must exist at least

one vertex u in Vi sharing the same (connected) com-

ponent with vi ({vi, u} ⊆ B,B ∈ CfX,i
).

2. if Vi is a child of Vj in T , then we must have

|Vi ∩ Vj ∩X| > 0 (otherwise the graph G \ (Vi ∩ Vj)
is not connected). Accordingly, for each feasible

pair belonging to Pi (Pj , respectively) we must have

fX,i(u) = 1 (fX∪(D∩Vj),j(u) = 1, respectively) for at

least one vertex u in Vi ∩ Vj .

The set of all feasible pairs for Vi ∈ T is denoted by

Fi, Fi ⊆ Pi. Furthermore, let M : Pj × Fi −→
Pj be the function M((gY,j , CgY,j

), (hZ,i, ChZ,i
)) =

(fX,j, CfX,j
) matching two pairs, one for vertex Vj in

T , second for its child Vi, where X = Y ∪ Z . There-

fore, f−1
X,j(1) = g−1

Y,j(1), g
−1
Y,j(1)\{x} = h−1

Z,i(1)\{vi}

and g−1
Y,j(0) ∪ (h−1

Z,i(0) \ {vi}) = f−1
X,j(0), where

x ∈ Vj \ Vi. Moreover, if A1, ..., Ap are the ver-

tex sets of the connected components in the graph

Gj [X], then CfX,j
= {B1 ⊆ A1, ..., Bp ⊆ Ap} and

⋃i=p
i=1Bi = Vj ∩ X. Finally, let D(fX,j ,CfX,j

) be the

cardinality of a minimum set X such that all vertices

in ((Gj \ Vj)∪ {vj}) \X have at least one neighbour

in X and (fX,j, CfX,j
) fulfills the domination and con-

nectivity rules.

Now we outline the main steps of our algorithm

for currently visited vertex Vj in T . For simplicity

and clarity of presentation we only show how to cal-

culate the connected domination number of the input

graph G, but it is easy to modify our approach to ob-

tain the relevant minimum connected dominating set.

Accordingly, we use the symbols f, g, h instead of the

full denotations of partial functions, keeping in mind

the definitions.

1. First, we determine all of the feasible pairs

(f, Cf ) ∈ Fj , where Vj is a leaf vertex in T , and

set D(f,Cf ) to zero for each pair. Therefore, we have

|Fj | < |
⋃

X⊆Vj
{FX,j}| = 2k+1.

2. For a non-leaf vertex Vj ∈ T , taking into ac-

count the previous calculated subsolutions for all the

children of Vj , we compute the set Fj and the value

D(f,Cf ) for each (f, Cf ) ∈ Fj , step by step. Let P ′
j

and D′
(f,Cf )

be the set of all possible pairs for Vj , ful-

filling the connectivity rule 2, taken over all X ⊆ Vj

(notice that |P ′
j | < 2k+1) and the value correspond-

ing to (f, Cf ) ∈ P ′
j , initially set to zero, respectively.

We also use auxillary variables P ′′
j and D′′

(f,Cf )
ini-

tially set to P ′
j and D′

(f,Cf )
. Moreover, the subset of

feasible pairs of (updated) P ′
j we denote by F ′

j .

For each child Vi of Vj , in a sequence, first we

expand the set P ′
j by adding new pairs:

∧

(f,Cf )/∈P
′

j

(f,Cf )=M((g,Cg),(h,Ch))
(g,Cg)∈P ′′

j

(h,Ch)∈Fi

: P ′
j := P ′

j ∪ {(f, Cf )} .

Then we set P ′′
j to the (new) P ′

j and we update the

value D′
(f,Cf )

for pair (f, Cf ) ∈ P ′
j using the follow-

ing formula:

D′
(f,Cf )

= min
(f,Cf )=M((g,Cg),(h,Ch))

(g,Cg)∈P ′

j

(h,Ch)∈Fi

(D′′
(g,Cg)

+D(h,Ch)+h(vi)) .

Notice that this values can be computed by going

through all pairs (g, Cg) ∈ P ′
j (matched with proper

pairs (h, Ch) ∈ Fi) and storing the temporary (for

just visited (g, Cg)) minimum of D′
(f,Cf )

. Next, we

remove the pairs (f, Cf ), which do not belong to the

set of values of function M (there does not exist

proper pair (h, Ch) in Fi), from the set P ′
j , and at

last we set D′′
(f,Cf )

to the (new) D′
(f,Cf )

. Observe now

that after all updates for all children of Vj , we have

Fj ⊆ Pj = F ′
j ⊆ P ′

j and D(f,Cf ) = D′
(f,Cf )

for each

(f, Cf ) ∈ Fj .

4. Finally, when reaching the root Tr, where r =
n− k, we compute the connected domination number

γc(G) as follows:

γc(G) = min
(f,Cf )∈Fr

|Cf |=1

(D(f,Cf ) +
n
∑

i=r

f(vi)).

To get better understanding of above steps see the fol-

lowing example reffering to Fig 1 and 2.

Example for visited vertex V3

Let F1 =
⋃

i=4
i=1{(hi, Chi

)} be the set of already cal-

culted feasible pairs for leaf vertex V1, where:

h1(1) = 0, h1(3) = −1, h1(4) = 1, Ch1
= {{1}};
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h2(1) = h2(4) = 1, h2(3) = −1, Ch2
= {{1, 4}};

h3(1) = 0, h3(3) = h3(4) = 1, Ch3
= {{3}, {4}};

h4(1) = h4(3) = h4(4) = 1, Ch4
= {{1, 4}, {3}},

and F2 =
⋃

i=10
i=5 {(hi, Chi

)} be the set of already cal-

culted feasible pairs for leaf vertex V2, where:

h5(2) = 0, h5(3) = 1, h5(5) = −1, Ch5
= {{3}};

h6(2) = 0, h6(3) = −1, h6(5) = 1, Ch6
= {{5}};

h7(2) = h7(3) = 1, h7(5) = 0, Ch7
= {{2, 3}};

h8(2) = h8(5) = 1, h8(3) = 0, Ch8
= {{2, 5}};

h9(2) = 0, h9(3) = h9(5) = 1, Ch9
= {{3}, {5}};

h10(2) = h10(3) = h10(5) = 1, Ch10
= {{2, 3, 5}}.

Next, F3 is calculated in three steps. Initially P ′
3 =

⋃

i=4
i=1{(gi, Cgi)}. Accordingly, let:

g1(3) = g1(4) = g1(5) = 1, Cg1 = {{3}, {4, 5}};

g2(3) = g2(4) = 1, g2(5) = 0, Cg2 = {{3}, {4}};

g3(3) = g3(5) = 1, g3(4) = 0, Cg3 = {{3}, {5}};

g4(3) = −1, g4(4) = g4(5) = 1, Cg4 = {{4, 5}}.

For V1 we remove one pair: P ′
3 := P ′

3 \ {(g3, Cg3)},

while visiting V2 we are adding two new pairs: P ′
3 :=

P ′
3 ∪ {(g5, Cg5)} ∪ {(g6, Cg6)}, where

(g5, Cg5) = M((g1, Cg1), (h10, Ch10
));

(g6, Cg6) = M((g4, Cg4), (h8, Ch8
)),

and

g5(3) = g5(4) = g5(5) = 1, Cg5 = {{3, 4, 5}};

g6(3) = 0, g6(4) = g6(5) = 1, Cg6 = {{4, 5}}.

Finally, the set F3 = {(g5, Cg5), (g6, Cg6)} and

D(g5,Cg5 )
= D(g6,Cg6 )

= 1.

In conclusion, the correctness of the algorithm di-

rectly follows from the induction on tree T . Namely,

we use the following invariant: after each step of the

algorithm, partial solutions for so handled vertex in

T have stored proper values, fulfilling the domination

and connectivity rules. We omit the details. Next,

the running time mostly depends on the number of

nodes in T . For each vertex, we compute at most

3k+1 · Bk subsolutions and perform some additional

calculations depending on the constant k. This gives

a linear-time complexity (for fixed k), which can be

inefficent for large values of k, even if the number of

subsolutions for each node is much smaller in prac-

tice. However, our approach is effective for outerpla-

nar graphs.
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