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Abstract: In this paper we claim that the Corollary 2 in [V. Pinciu, Dominating sets for outerplanar graphs, WSEAS
Transactions on Mathematics 1(3), 2004, pp. 55-58] is false. In particular, we present a linear-time algorithm for

partial k-trees that solves the problem.
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1 Introduction

The connected domination is a one of the well-known
NP-hard problems, introduced by Sampathkumar and
Walikar in [14]. It is a natural model for some net-
work issues and has been widely studied in literature,
see for example [5], [7] and [9]. In [11] the author
claims that the problem of finding the minimum con-
nected dominating set is NP-hard even for outerplanar
graphs (Corollary 2). In this paper, in two ways, we
prove that this corollary is incorrect: in Section 2 we
express the problem as a logical formula solvable in
linear-time, while in Section 3 present a combinato-
rial algorithm based on dynamic programming.

We generally use standard graph terminology [6]. Let
G = (Vg, E¢) be a simple finite connected graph. A
connected dominating set D of G is a subset of Vi
such that every vertex not in D is adjacent to at least
one vertex in D, and the subgraph G[D] induced by
D is connected. The connected domination number
7¢(G) of G is the cardinality of a minimum connected
dominating set of G. A graph G is outerplanar if it
has a crossing-free embedding in the plane such that
all vertices are on the boundary of its outer face. If
addition of a single edge in G results in a graph that is
not outerplanar, then G is called a maximal outerpla-
nar graph. Furthermore, the open neighbourhood of
a vertex u of a graph G, denoted by N (u), is the set
of all vertices adjacent to u. The closed neighbour-
hood of u, denoted by N¢[u], is the set N (u) U {u}.
Similarly, for a subset X C Vi of vertices, the open
neighbourhood of X, denoted by N¢(X), is defined
to be | J,,c x N (u), and the closed neighbourhood of
X, denoted by N¢[X], is the set Ng(X) U X.
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2 Complexity

In [13] Robertson and Seymour introduced the con-
cept of the graph parameter, called treewidth, playing
an important role in algorithmic graph theory. Many
problems which are NP-hard on arbitrary graphs can
be solved in polynomial-time on graphs of bounded
treewidth [3]. Moreover, Courcelle’s theorem states
that every decision or optimization problem definable
in the monadic second order logic (MSO) has a linear-
time algorithm on graphs with this property. The
graph problem in question may be defined in terms of
sets of vertices of the given graph and the binary adja-
cency relation between the vertices (see [4] for more
details).

We recall that outerplanar graphs constitute a sub-
class of partial 2-trees, graphs with the treewidth of at
most 2 (see comprehensive characterization in [15]).
Furthermore, the connected domination problem in
graph G = (Viz, E), where D is a connected domi-
nating set, can be expressed in MSO by the following
formula:

/\ \/ (u€ DVwveDAadj(u,v)) (1)
ueVg veVg
and
A [ \/ weSAvg¢S)=
SCVe  u,weD (2)
= \/ (reSAye¢S A adj(x,y)) ],
z,yeD

where adj(+) is an adjacency relation. The expression
ensures that every vertex in V¢ is dominated (1) and
G|D] is connected (2).
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Corollary 1. There exists a linear-time algorithm for
finding a minimum connected dominating set in outer-
planar graphs. |

Unfortunately, this approach can be inpractical, even
for graphs with treewidth equal to one, because of
hidden constants and complex implementation [8].
Therefore, in the next section, we give a simple com-
binatorial linear-time algorithm solving that problem
in partial k-trees, a supeclass of outerplanar graphs.

3 Algorithm

Our algorithm is based on the standard dynamic
programming method for partial k-trees [16], being
graphs with the treewidth of at most k£, and on new
ideas showed in [10]. First, we find an ordered tree
decomposition [13] corresponding to the input graph
G = (Vg,Eq). Then we traverse it by a bottom-
up technique calculating and storing proper values for
each node.

Let H = (Vi, Ex) be a k-tree, where Vg = Vg
and Eg C Ep, see Fig 1, and let (v, ..., v, ) be some
perfect elimination ordering (peo) of the vertices in
H, where the set V; = {v;,...,v;} (i < j) induces a
(k + 1)-vertex clique in H under peo, i = 1,...,n —
k. We create the directed tree 7 with the vertex set
{V1,...,; Viu_ } rooted at V,,_, where the parent of the
vertex V; in 7T is the vertex Vj, such that V; NV, = k
and p > ¢ is as small as possible, see Fig 2. The
subgraph of G corresponding to the subgraph of 7
rooted at V; is denoted by G°. It is known that finding
a tree decomposition of a graph requires a linear-time
[2], as well as finding a perfect elimination ordering
[12].

We divide our problem into two natural subprob-
lems: domination and connectivity, giving some nec-
essary definitions. Let X be a subset of Vi and let
Fx; : Vgi — {—1,0,1} be the function corre-
sponding to the domination problem, expressed by the
following formula:

1 ifueX
FX’Z‘(’LL) = 0 ifue NG'L(X)
1 ifud Ne[X].

Notice that ’UXgVGi{FX,i}’ = 92IV6il. The func-
tion fx; : V; — {—1,0,1} such that f51(1) C
Fei(1), fx5(0) € Fgi(0) and fii(-1) ¢
F)Ell(—l) is called the partial function of F'x; and
we say that two partial functions fy;, fz; are equiv-
alent if and only if fy;(u) = fzi(u) for each
vertex u in V; and some Y,Z C V. Next, let
Cryx, = {A1,...., Ay} be the family of vertex sets of
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Figure 1: An outerplanar graph G (partial 2-
tree) and the maximal outerplnar graph H (2-
tree) obtained by adding (dashed) edges with peo
(1,2,3,4,5,6,7,8,9,10,11,12).

Vio={10,11,12}

[V5={5.7.9} |
!

[Ve={67.11} ]

Figure 2: The tree 7 of H (Fig 1).

the connected components of G*[X] and let Cy, , =
{Bi,...,Bp} be the family of sets such that B; C
Ay, ..y By € Apand JjZ) B; = V; N X (notice that
Bj may be the empty set). Now, let P; be the set of
all possible pairs (fX,ivax,i) of V; € T, taken over
all X C Vgi. One can observe that the cardinality of
the set of the all non equivalent partial functions for V;
is at most 3**1 and the number of different sets C Fxa
for the partial function fx ; is at most By, where By, is
the k-th Bell number (the number of the possible parti-
tions of a set). Thus, we have |P;| < 3¥*1. By, for each
V; € T. Observe that D C V is a connected domi-
nating set of G if and only if F')p ,(u) # —1 for each
vertex u € Vg and G[F 517,(1)] is connected, where
r = n — k. Hence, similarly as in algorithm for con-
vex domination number proposed in [10], we say that
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a pair is feasible if it fulfills the following three rules:

The domination rule

Recall that if D C Vj is a dominating set of G then
Ng[v;)N' D # () foreach i € {1,...,n — k}. Conse-
quently, if (fx i, Cyy ;) for X C D is feasible then we
must have fx ;(v;) # —1: v; is dominated by itself or
by a vertex in Vizi, Ng[vi] N (Vg \ Vi) = 0.

The connectivity rules

If D C Vg is a connected dominating set of G,
X € Dandi € {l,....,n — k} then the following
two properties must be satisfied:

1. if v; € D then vertex v; must be reachable from
any other node belonging to D, especially to D N V.
Therefore, if fx;(v;) = 1, |[V; N X| > 1 and
(fx,i>Csyx,) is feasible then there must exist at least
one vertex u in V; sharing the same (connected) com-
ponent with v; ({vi,u} C B, B € Cyy ).

2. if V; is a child of V; in 7, then we must have
|ViNV; N X| > 0 (otherwise the graph G \ (V; N'V})
is not connected). Accordingly, for each feasible
pair belonging to P; (P;, respectively) we must have
fxi(u) =1 (fxupnv;),j(u) = 1, respectively) for at
least one vertex v in V; N V.

The set of all feasible pairs for V; € T is denoted by
Fi, Fi € P;. Furthermore, let M : P; x F; —
P; be the function M((gy,;,Cyy, ), (hziChy,)) =
(fx.j,Cry, ;) matching two pairs, one for vertex V; in
T, second for its child V;, where X =Y U Z. There-
fore, £ 5(1) = gy; (1), gy (D \{z} = h5(1)\{vi}
and gy(0) U (h;10) \ {vi}) = fx}(0), where
x € V; \ Vi. Moreover, if Ay,..., A, are the ver-
tex sets of the connected components in the graph
GI[X], then Cy, , = {B1 C Ay,...,B, C Ay} and
U;Zi B; = V; N X. Finally, let D(fx,jvcfx,j) be the
cardinality of a minimum set X such that all vertices
in ((G7\ V;) U{v;})\ X have at least one neighbour
in X and (fx j,Cyy ;) fulfills the domination and con-
nectivity rules.

Now we outline the main steps of our algorithm
for currently visited vertex V; in 7. For simplicity
and clarity of presentation we only show how to cal-
culate the connected domination number of the input
graph G, but it is easy to modify our approach to ob-
tain the relevant minimum connected dominating set.
Accordingly, we use the symbols f, g, h instead of the
full denotations of partial functions, keeping in mind
the definitions.

1. First, we determine all of the feasible pairs
(f,C¢) € Fj;, where Vj is a leaf vertex in 7, and
set Dy c,) to zero for each pair. Therefore, we have

IFil <Uxcy, {Fx = 2+,
2. For a non-leaf vertex V; € T, taking into ac-
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count the previous calculated subsolutions for all the
children of V};, we compute the set F; and the value
Dy, for each (f,Cy) € Fj, step by step. Let P}
and DE £C5) be the set of all possible pairs for V;, ful-
filling the connectivity rule 2, taken over all X C V;
(notice that [P}| < 2**!) and the value correspond-
ing to (f,Cy) € P}, initially set to zero, respectively.
We also use auxillary variables P; and D&Cf) ini-
tially set to 77]’- and DE £Ch)" Moreover, the subset of

feasible pairs of (updated) P]’- we denote by ]:]’
For each child V; of V}, in a sequence, first we
expand the set Pj’- by adding new pairs:

A

(f,C)¢P;
(f7cf):M((gvcg)7(h7Ch))
(9.C)EP]
(h,Cp)€EF;

P} =Py U{(f.C)}-

Then we set P} to the (new) P} and we update the
value DE £05) for pair (f,Cy) € 773/» using the follow-
ing formula:

D = min
(f?cf) (f,cf):M((g,Cg),(hvch))
(9.C9)EP;}

(h7ch)€]_—l

Notice that this values can be computed by going
through all pairs (g,C,4) € PJ’» (matched with proper
pairs (h,C) € F;) and storing the temporary (for
just visited (g,Cy)) minimum of DE £Cr)" Next, we

remove the pairs (f,Cy), which do not belong to the
set of values of function M (there does not exist
proper pair (h,Cp) in F;), from the set P, and at

1/
last we set D( £.Cs

that after all updates for all children of V;, we have
Fj CPj=F; CPiand Dsc,) = sz’cf) for each
(f, C f) e F e

4. Finally, when reaching the root 7., where r =
n — k, we compute the connected domination number
7:(QG) as follows:

/
) to the (new) D( £C) Observe now

(Disep) + > fF(vi).

=T

min
(f?cf)EJ:T'
ICsl=1

’70(G) =

To get better understanding of above steps see the fol-
lowing example reffering to Fig 1 and 2.

Example for visited vertex V3
Let F1 = JZH{(hi,Ch,)} be the set of already cal-
culted feasible pairs for leaf vertex Vi, where:

hl(l) =0, hl('?’) = _17h1(4) = 1,Ch1 = {{1}}’
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h ( ) h2( ) L, ho (3) _17Ch2 = {{174}};
h3(1) = 0,h3(3) = h3(4) = 1,Chy = {{3}, {4} };
ha(1) = ha(3) = ha(4) = 1,Cp, = {{1. 4}, {3}},

and F» = (JZ1%{(h;,Cp,)} be the set of already cal-
culted feas1ble palrs for leaf vertex V5, where:

hs(2) =0,h5(3) =1,h5(5) = —1,Cp, = {{3}};
he(2) = 0,h6(3) = —1,he(5) = 1,Cp = {{5} 11
h7(2) = h7(3) = 1,h7(5) = 0,Ch; = {{2,3} 15
hs(2) = hs(5) = 1,hg(3) = 0,Chs = {{2,5} 1
hg(2) = 0,ho(3) = ho(5) = 1,Che = {{3}, {5} };

h10(2) = th( ) = h10(5) = 17Ch1o = {{273’ 5}}

Next F3 is calculated in three steps. Initially P =
Ui=H(gi,Cy;)}- Accordingly, let:

913) = gq1(4) = 91(5) = 1,Cq, = {{3},{4,5} ;s
92(3) = g2(4) = 1,92(5) = 0,C, = {{3}, {4} }s
93(3) = g3(5) = 1,93(4) = 0,Cq, = {{3}, {5} }s
94(3) = —1,94(4) = g94(5) = 1,Cq, = {{4,5}}.

For Vi we remove one pair: Pg := P5 \ {(g3,Cg5)}.
while visiting V5 we are adding two new pairs: P} :=
P3U{(95,Cy5)} U {(96,Cos)}, Where

(95,Cg5) = M((glacm)v (h10>ch10));
(96765]6) = M((g4acg4)7 (h87chs))’

and

95(3) = 95(4) = g5(5) = 1,Cg; = {{3,4,5}};
96(3) = 0,96(4) = g6(5) = 1,Cys = {{4,5}}.

Finally, the set 3 = {(g5,Cy;),(96,Cq5)} and

D(957Cg5) = D(967C96) = 1'

In conclusion, the correctness of the algorithm di-
rectly follows from the induction on tree 7. Namely,
we use the following invariant: after each step of the
algorithm, partial solutions for so handled vertex in
T have stored proper values, fulfilling the domination
and connectivity rules. We omit the details. Next,
the running time mostly depends on the number of
nodes in 7. For each vertex, we compute at most
3k+1. By, subsolutions and perform some additional
calculations depending on the constant k. This gives
a linear-time complexity (for fixed k), which can be
inefficent for large values of k, even if the number of
subsolutions for each node is much smaller in prac-
tice. However, our approach is effective for outerpla-
nar graphs.
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