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Abstract:The differential equation with cubic nonlinearityx′′ = −ax+ bx3 is considered together with the Sturm
- Liouville type boundary conditions. The number of solutions for the Sturm - Liouville boundary value p roblem
is given. The equation for the initial values of solutions to boundary value problem is derived using representation
by Jacobian elliptic functions. An explanatory example is given with a number of visualizations.
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1 Introduction

We consider a nonlinear the second order differential
equation with a cubic nonlinearity

x′′ = −ax + bx3, a > 0, b > 0 (1)

and the respective boundary value problems (BVP in
short) with the Sturm - Liouville boundary conditions.
Equations with a cubic nonlinearity often appear in
applications, for instance, in Ginzburg-Landau the-
ory of superconductivity ([6], [13]). Despite of the
fact that phase portrait and general behaviour of solu-
tions for equation (1) are well known there are some
difficulties in determining the number of solutions to
boundary value problems and their properties.
Namely, the Sturm - Liouville boundary value prob-
lem (1),

α1x(0) + α2x
′(0) = 0, α1 · α2 < 0,

β1x(1) + β2x
′(1) = 0, β1 · β2 > 0

(2)

is considered. After careful analysis of Sturm - Liou-
ville problem (1), (2) we provide the exact number of
solutions for considered problem.

Since boundary conditions (2) does not contain
neither Dirichlet conditions nor Neumann conditions,
in the next section (Section 2) we briefly describe the
results on the Dirichlet and the Neumann problems for
equation (1).

In Section 3 we provide the main result on the
number of solutions to the problem (1), (2). Also the

Cauchy problem (1),

α1x(0)− α2x
′(0) = 0, x(0) 6= 0, x′(0) 6= 0,

x(0) = x0 > 0
(3)

is considered and formulas for solutions of (1), (2) are
obtained using theory of Jacobian elliptic functions
([14], [18]). Then we are able to derive equations
for determining of the valuesx0 (in (3)) which cor-
respond to solutions of the BVP. Finally in Section 4
we demonstrate how all the developed technique and
formulas work in a specific situation.

2 Review of the Dirichlet and Neu-
mann problem

Consider the equation (1). There are three critical
points of equation (1) atx1 = −

√
a
b , x2 = 0,

x3 =
√

a
b . The origin is a center andx1,3 = ±

√
a
b

both are saddle points. Two heteroclinic trajectories
connect the two saddle points. The phase portrait of
equation (1) is depicted in Fig. 1.
Denote open region bounded by the two heteroclinic
trajectories connecting saddle points byG3.
Consider the Neumann boundary value problem (1),

x′(0) = 0, x′(T ) = 0 (4)

and the Dirichlet boundary value problem (1),

x(0) = 0, x(T ) = 0. (5)
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Figure 1:The phase portrait of equation (1), regionG3

In this section first, we provide the results that give
estimates of the exact number of solutions for both
problems. Second, using the theory of Jacobian ellip-
tic functions, we give expressions for solutions of the
Cauchy problems (1),

x(0) = xα, x′(0) = 0, −
√

a

b
< xα <

√
a

b
, xα 6= 0,

(6)
and (1),

x(0) = 0, x′(0) = α, −αmax < α < αmax, α 6= 0,
(7)

whereαmax =:
a√
2b

.

Third, we show how to find the initial valuesxα of
solutions of the problem (1), (4) and respective the
initial valuesα of solutions of the problem (1), (5).

2.1 For the Neumann problem

Consider the problem (1), (4). The following state-
ment is true.

Theorem 1 Let i be a positive integer such that

i π√
a

< T <
(i + 1)π√

a
(8)

whereT is the right end point of the interval in (4).
The Neumann problem (1), (4) has exactly2i nontri-
vial solutions such thatx(0) = xα 6= 0, x′(0) = 0,
−

√
a
b < xα <

√
a
b .

The proof can be found in article [9].
Let us address the eigenvalue problem posed in [13].
Consider the Cauchy problem (1), (6):

x′′ = −ax + bx3, x(0) = xα, x′(0) = 0.

Let a andT (in (4)) be given. We wish to findxα

such that the respective solutionsx(t;xα) of the above
problem satisfy the boundary conditionx′(T ) = 0,
i.e. x(t; xα) solve the Neumann problem (1), (4). The
following assertion provides the explicit formula for a
solution of (1), (6).

Lemma 2 The function

x(t, a, b, xα) = xαcd

(√
a− 1

2
b x2

α t; k

)
, (9)

wherek =
√

b x2
α

2a−b x2
α

is a solution of the Cauchy prob-

lem (1), (6).

The proof is given in article [11].

Denotef(t, a, b, xα) = x′t(t, a, b, xα). This derivative
can be computed and the following formula is valid.

f(t, a, b, xα) = xαcd′ t
(√

a− 1
2b x2

α t; k
)

=

= xα

√
a−b x2

α√
2

(
k2 − 1

)
nd

(√
a− 1

2b x2
α t; k

)
×

×sd
(√

a− 1
2b x2

α t; k
)

.

(10)

The following statement is true.

Lemma 3 [11] The eigenvalue problem (1), (4) fora
andT given can be solved now by solving the equa-
tion with respect toxα

f(T, a, b, xα) = 0. (11)

Theorem 4 [11] A solution to the Neumann problem
(1), (4) is given by (9) wherexα is a solution of (11).

2.2 For the Dirichlet problem

Consider the problem (1), (5).

Theorem 5 Let i be a positive integer such that

i π√
a

< T <
(i + 1)π√

a
(12)

whereT is the right end point of the interval in (5).
The Dirichlet problem (1), (5) has exactly2i nontri-
vial solutions such thatx(0) = 0, x′(0) = α 6= 0,
−αmax < α < αmax.

Proof: Consider solutions of the Cauchy problem (1),
(7), where0 < α < αmax. Solutions forα small
enough behave like solutions of the equation of varia-
tionsy′′ = −ay around the trivial solution

y(t) =
α√
a

sin
√

at. (13)
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Due to the assumption
i π√

a
< T <

(i + 1)π√
a

solutions

y(t) along with solutionsx(t;α) (for small enoughα)
have exactlyi zeros in the interval(0, T ). These zeros
move monotonically to the right asα increases. Solu-
tions x(t; α) with 0 < α < αmax and close enough
to αmax have not zeros in(0, T ] since the respective
trajectories are close to the upper heteroclinic (and the
“period” of a heteroclinic solution is infinite). There-
fore there are exactlyi solutions of the problem (1),
(5). The additionali solutions are obtained consider-
ing solutions withα ∈ (−αmax, 0) due to symmetry
arguments. Hence the proof.

Consider representation of solution of the Dirich-
let problem using Jacobian elliptic functions.
Sinceα2 = ax2

α − 1
2bx4

α and α ∈ (0, a/
√

2b) we

obtaina2 − 2bα2 > 0. Note that0 < xα <
√

a
b we

have

xα =

√
a−√a2 − 2bα2

b
. (14)

Lemma 6 [10] The function

x(t, a, b, α) =
√

a−√a2−2bα2

b sn

[√
a+
√

a2−2bα2

2 t, k

]
,

k =
√

a−√a2−2bα2

a+
√

a2−2bα2

(15)
is a solution of the Cauchy problem (1), (7).

Lemma 7 [10] The eigenvalue problem (1), (5) fora
andT given can be solved now by solving the equa-
tion with respect toα

x(T, a, b, α) = 0. (16)

Theorem 8 [10] A solution to the Dirichlet problem
(1), (5) is given by (15) whereα is a solution of (16).

3 Main results

3.1 Multiplicity of solutions

Equation (1) written in polar coordinates

x(t) = ρ(t) sin φ(t), x′(t) = ρ(t) cos φ(t) (17)

turns to a system (18):
{

φ′(t) = cos2 φ(t) + a sin2 φ(t)− ρ2(t) b sin4 φ(t),
ρ′(t) = 1

2ρ(t) sin 2φ(t)
(
1− a + ρ2(t) b sin2 φ(t)

)
.

(18)
Consider any solution of equation (1) with the initial
conditions(x(t0), x′(t0)) ∈ G3. Let initial conditions
be written as

φ(t0) = φ0, ρ(t0) = ρ0, (φ0, ρ0) ∈ G3, ρ0 > 0.
(19)

Lemma 9 The angular function of any solution of
(18), (19) is monotonically increasing.

Proof given in paper [11], [8].

Consider the problem (1), (2). The following
statement is true.

Theorem 10 Consider linear equationy′′ = −ay.
Let i be the number of pointτi ∈ (0, 1), such that the
solutiony(t) of the initial value problemy′′ = −ay,
α1y(0)−α2y

′(0) = 0, y2(0)+y′2(0) = 1 (y(0) > 0,
y′(0) > 0) satisfiesβ1y(τi) + β2y

′(τi) = 0. Then
there exist at least2i nontrivial solutions of the Sturm
- Liouville problem (1), (2).

Proof: Consider solutions of the Cauchy problem (1),

α1x(0)− α2x
′(0) = 0, x(0) 6= 0, x′(0) 6= 0,

x(0) = x0 > 0.
(20)

Solutions of (1), (20) forx(0) = x0 > 0 small
enough behave like solutions of the equation of varia-
tionsy′′ = −a y with conditionsα1y(0)− α2y

′(0) =
0, y2(0) + y′2(0) = 1 (y(0) > 0, y′(0) > 0)
and have exactlyi points of τi ∈ (0, 1) such that
β1y(τi) + β2y

′(τi) = 0. These zeros due to Lemma 9
move monotonically to the right asx(0) = x0 > 0 in-
creases. Solutionsx(t) with x(0) = x0 > 0 and such
that(x(0), x′(0)), x(0) > 0, x′(0) > 0 close enough
to heteroclinic orbit have not zeros in(0, 1 ] since they
are very slow (the “period” of a heteroclinic solution
is infinite). Therefore there are at leasti solutions of
the problem (1), (2). The additionali solutions are ob-
tained considering solutions withx(0) < 0, x′(0) < 0
due to symmetry arguments.

Remark 11 We can computeτi in the following way:
consider the linear equationy′′ = −a y with initial
conditiony(0) − y′(0) = 0, y2(0) + y′2(0) = 1. So-
lution of this linear equation is

y(t) =
1√
2a

sin
√

at +
1√
2

cos
√

at (21)

and

y′(t) =
1√
2

cos
√

at−
√

a

2
sin
√

at. (22)

Now we are looking forτi which satisfy the condition
y(τi) + y′(τi) = 0:

y(τ)+y′(τ) =
1−√a√

2a
sin
√

aτ +
2√
2

cos
√

aτ = 0,

(23)
1− a√

2a
tan

√
aτ = − 2√

2
, (24)
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tan
√

aτ =
2
√

a

a− 1
, (25)

τ =
1√
a

arctan
2
√

a

a− 1
+

π√
a
k, k ∈ Z. (26)

There existi values and respectiveτi that y(τi) +
y′(τi) = 0.

Remark 12 In fact the number of solutions to BVP
(1), (2) in Theorem 10 is exact. The proof of this fact
is currently not in hand.

3.2 Formulae of solutions

Consider problem

x′′ = −ax + bx3,
α1x(0)− α2x

′(0) = 0, x(0) 6= 0, x′(0) 6= 0
x(0) = x0 > 0.

(27)
The first equation in problem (27) has an integral

x′2(t) = −ax2(t) +
1
2
bx4(t) + C, (28)

whereC is an arbitrary constant. The formula for the
“upper” heteroclinic trajectory is

x′2 + ax2 − 1
2
bx4 =

a2

2b
, (29)

wherex(0) = 0, x′ = a√
2b

. Sincex′ = α1
α2

x, then

b

2
x4 −

(
α2

1

α2
2

+ a

)
x2 +

a2

2b
= 0, (30)

where

x∗ =

√√√√a

b
+

α2
1

bα2
2

−
√

2ab2α2
1α

2
2 + b2α4

1

b2α2
2

(31)

is the end value ofx0 in (27). Therefore0 < x(0) =
x0 < x∗.
Consider equation (28) where

C =

(
α2

1

α2
2

+ a

)
x2

0 −
b

2
x4

0 = α2 (32)

and from (15) we have the formula of solution of the
Cauchy problem (27).
Introduce a new variable

C(x0) =

(
α2

1

α2
2

+ a

)
x2

0 −
b

2
x4

0. (33)

Lemma 13 The function

x(t, a, b, x0) =

√
a−
√

a2−2b C(x0)

b ×

×sn

[√
a+
√

a2−2b C(x0)

2 (t + Γ), k

]
,

(34)

wherek =

√
a−
√

a2−2b C(x0)

a+
√

a2−2b C(x0)
,

Γ =
√

2

a+
√

a2−2b C(x0)
×

×sn−1

(
x0

√
b

a−
√

a2−2b C(x0)
, k

) (35)

is a solution of the Cauchy problem (27).

Denote

F (t, a, b, x0) = β1x(t, a, b, x0) + β2x
′
t(t, a, b, x0),

(36)
where

x′t(t, a, b, x0) =

= C(x0)cn

[√
a+
√

a2−2b C(x0)

2 (t + Γ), k

]
×

×dn

[√
a+
√

a2−2b C(x0)

2 (t + Γ), k

]

(37)
The following statement is true.

Lemma 14 The initial valuesx0 in (27) correspon-
ding to solutions of the Sturm - Liouville boundary
value problem (1), (2) are found by solving the equa-
tion

F (t, a, b, x0) = 0 (38)

.

Theorem 15 A solution to the Sturm - Liouville
boundary value problem (1), (2) is given by (34),
wherex0 is a solution of (38).

4 Example

Consider equation (1) witha = 50, b = 25:

x′′ = −50x + 25x3, (39)

the Sturm -Liouville type conditions are

x(0)− x′(0) = 0,
x(1) + x′(1) = 0.

(40)
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Consider linearized equation of variations with res-
pect to the trivial solutionx ≡ 0:

y′′ = −50y, (41)

with the initial conditions

y(0)− y′(0) = 0,
y(0) = 1.

(42)

From equation (25) we have that

g(τ) := tan
√

50τ − 2
√

50
49

. (43)

Let us look for zeros ofg(τ). For this consider Fig. 2.
There existτ1, τ2, τ3 such thaty(τi) + y′(τi) = 0.

Figure 2:The graph of the functiong(τ) given in (43).

Hence by Theorem 10 we will have 6 nontrivial solu-
tions. We wish to construct three of them with pos-
itive x0. Additional three solutions of BVP can be
constructed symmetrically forx(0) < 0.
Consider the initial value problem (39),

x(0)− x′(0) = 0,
x(0) = x0 > 0.

(44)

We wish to find three initial values ofx0 such that
the problem (39), (40) has solution. The graphs of
solutions are depicted in Fig. 3, Fig. 5, Fig. 7. The
respectively phase trajectories are depicted in Fig. 4,
Fig. 6, Fig. 8.

In Fig. 9 depicted the graph of the function
F (t, a, b, x0) = F (1, 50, 25, x0) (defined in (38)).
The zeros correspond tox0 for three solutions of BVP
(39), (40).

Conclusions

We proved that the number of solutions to the Sturm
-Liouville problem (1), (2) is defined by the equation
of variationsy′′ = −a y, Theorem 10. The precise
estimate is given. Also equations for determining of
the initial values for solutions of the Sturm -Liouville
problem (1), (2) are derived.

Figure 3:Solution of the problem (39), (40),x0 = 0.575.

Figure 4:The phase trajectory (dashed) for solution of the prob-
lem (39), (40),x0 = 0.575.

Figure 5:Solution of the problem (39), (40),x0 = 1.236.

Figure 6:The phase trajectory (dashed) for solution of the prob-
lem (39), (40),x0 = 1.236.
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Figure 7:Solution of the problem (39), (40),x0 = 1.2798.

Figure 8:The phase trajectory (dashed) for solution of the prob-
lem (39), (40),x0 = 1.2798.
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Figure 9:The graph of the functionF (t, a, b, x0) =
F (1, 50, 25, x0) (defined in (38)).
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