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Abstract: - The conventional museum experience offers the visitors glimpses of the past with the narrative 
limited to the static art that garnishes it. Through technology we already can mix the past with the future, 
immersing the visitors in a true dynamic journey across the same walls that guard our history. One of these 
technologies is the Augmented Reality, which aims to enhance our surroundings into a new era of creativity 
and discovery. This paper presents the proof-of-concept of an indoor portable environment pose estimation 
module (PEPE) present inside M5SAR, a project that aims to develop a five senses augmented reality system 
for museums. The current state of development of this module shows that is already achievable real-world 
wall(s) detection and a new environment superimposition over the detection, i.e., it is now possible to have a 
dynamic museum experience with the ability of transforming rooms into historic live stages.  

Keywords: - Augmented Reality, Superimposition, Indoor Localization. 

 

1   Introduction 
Augmented Reality (AR) [2] has benefited from the 
increased hardware capabilities of smartphones and 
novelty algorithms, resulting in a fast evolution 
over a short time, rapidly growing its number of 
users. It allows for a higher level of interaction 
between user and real-world objects, expanding 
this experience and creating a brand-new level of 
edutainment. The M5SAR: Mobile Five Senses 
Augmented Reality System for Museums project 
[29] aims for development of an AR system that 
acts as guide for cultural, historical and museum 
events. Most museums have their own mobile 
applications (App), see e.g. [17, 37], and some also 
have AR applications, see e.g. [14, 26, 33, 38]. The 
innovation in the M5SAR project is to extend the 
AR to the human five senses, see e.g. [29] for more 
details. 

The Mobile Image Recognition based 
Augmented Reality Framework (MIRAR) 
framework is one of the modules of M5SAR 
project[25], aims to: (a) perform all computational 
processing in the client-side (mobile device); (b) 
use in real world with 2D and 3D objects as 
markers for the AR; (c) recognize environments, 
i.e., walls and its respective boundaries; (d) detect 
and segment human shapes; (e) project contents 
(e.g., text and media) onto different objects, walls 

and persons detected and displayed in the mobile 
device’s screen. A framework that integrates these 
goals is completely different from the existing 
(SDK, frameworks, content management, etc.) AR 
systems [1, 6, 19, 20, 24]. 

This paper focus on one of the MIRAR sub-
modules (sub-module c), the environment detection 
and overlapping of information. Considering a 
typical museum wall, there is usually artwork such 
as paintings and tapestry hanging on the walls, 
creating a unique rich environment full of visual 
information. Following the previous method 
introduced on the main object recognition module 
of MIRAR [25], we will use the features detection 
and description matching methods for the 
environment recognition. Considering the expect 
walls as planes, and taking into account the limited 
input information obtained from a monocular 
camera and smartphone performance, any methods 
of 3D matching, such as bundle adjustments, 
iterative closest point, among others, were 
discarded. Furthermore, with planes, it is possible 
not only to perform a faster recognition using the 
same methods used for object recognition, but also 
use the vanishing lines provided by the common 
geometric rules, for which we considered the 
existence of paintings’ frames as a guarantee for 
the existence of vanishing lines. 

In this paper the contribution is to fuse both 
approaches in order to achieve a better wall 
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detection and also user’s localization so that we can 
more accurately project content upon the walls 
through the use of AR superimposition. 

The MIRAR sub-module for object recognition 
and environment detection presented in this paper 
is AR marker-based, often also called image-based 
[7]. AR image-based markers allow adding easily 
detectable preset signals in the environment, using 
computer vision techniques to sense them. There 
are many image-based commercial AR toolkits 
(SDK) such as Catchoom or Kudan [6, 19], and AR 
content management systems such as Catchoom or 
Layar [6, 20], including open source SDKs [1]. 
Some are expensive, others consume too much 
memory (and the present application will have at 
least one marker for each museum piece), while 
others load slowly on the mobile device. The 
increasing massification of AR applications brings 
new challenges, such as the demand for planar 
regions detection (walls), with the more popular 
being developed within the scope of Simultaneous 
Localization And Mapping (SLAM) [3, 9]. RGB-D 
devices or light detection and ranging (LIDAR) 
sensors [16, 27, 41, 34] usually used for image 
acquisition of 3D environments. Some advances 
within environment detection, localization or 
recognition include using Direct Sparse Odometry 
[11], or using descriptors, like ORB SLAM [22] or 
even Large-Scale Direct Monocular SLAM [12]. 
However, the MIRAR framework focuses on 
mobile devices with monocular cameras only. 
Following this, an initial study of an environment 
detection sub-module was presented in [25], using 
a geometric approach to the extracted edges of a 
frame. A frame is always captured from a 
perspective view of the surrounding environment, 
with the usual expected environment being 
characterized by the existence of numerous parallel 
lines which converge to the vanishing point [8, 32]. 

The paper is structured as follows: The MIRAR 
framework and architecture is introduced in Sec. 2, 
followed by the environment detection and AR 
overlapping at Sec. 3 and finally concluding with a 
final discussion and future work, Sec. 4. 

 

 

 

Fig. 1. Top: overall simplified system architecture. 
Bottom: MIRAR block diagram. 

2   MIRAR Framework 

The M5SAR system is shown on top of Fig. 1. 
From the left to the right we have the basic server-
client communications, in our case a mobile device, 
where all the computer vision processing is 
computed, and communicated directly without 
Portable Device for Touch, Taste and Smell 
Sensations (PDTTSS) [31] used to enhance the five 
senses, and the displayed Beacons [13] are 
employed in the user’s localization. 

The M5SAR App architecture is divided into 
three main modules: (A) Adaptative User Interfaces 
(AUI), see [29]; (B) Location module, a detailed 
explanation is out of this paper’s focus, and (C) 
MIRAR module (see Fig. 1 bottom). 

The MIRAR divides in four features: (a) the 
detection and recognition of museum objects; (b) 
the detection, recognition and tracking of objects as 
the user moves along the museum, allowing to 
interact digitally the objects displayed, MIRAR 
sub-module (i); (c) detection, recognition, and 
superimposition of content over the museum walls, 
related with the recognized object’s epoch, sub-
module (ii); (d) detection of persons that are 
moving through the museum, replacing the 
everyday wear with clothes from the object’s 
epoch, sub-module (iii). 

Also, given that the sensor used to acquire the 
images from the environment is the smartphone’s 
camera, to save battery, the camera is only 
activated when the AR option is selected in the UI. 
When the activation occurs, the user can see the 
environment in the mobile screen and effectuate the 
previously mentioned actions. As an additional 
effort to limit battery use, the device will enter a 
low-power state if the user turns the phone upside 
down, by dimming the phone’s screen and 
interrupting the processing. 
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Fig. 2. From top to bottom: Example of five 
templates following each other. 

3   Environment Detection 

The conventional museum’s environment is rich 
in details provided by the multiple artwork that 
embellishes it. This scattered information is always 
present along the visitor’s navigation throughout 
the museum when in presence of artwork. In 
continuity of our previous work presented in 
former publications (see e.g. [28, 25, 30, 31]), the 
vast presence of unique features along the museum 
allows us not only to be able to superimpose 
content over the walls, but also to locate the 
visitor’s position within the museum. The visitor’s 
localization is also used within our main module of 
object recognition but using Bluetooth’s beacons 
instead. 

Also, in previous papers [30, 39] two distinct 
approaches were presented to solve the 
environment detection, one focusing on the 
geometry shape of a regular museum’s division, 
assuming that all the vanishing lines are presented 
by the present walls within such division; while the 
other focuses on the recognition of already known 
parts of said walls. In this paper both methods are 
fused together in order to achieve a harmonious 
detection, recognition and localization of the 
environment, to dynamically superimpose different 

types of content over the walls, such as images, 
video, animations, or 3D objects. 

Before continuing, it is important to remind that 
due to the necessity of regular cuboid rooms and 
image recognition, the method presented in this 
paper is intended to be only used on previously 
scanned and prepared environments. It is also 
relevant to remind that the purpose of this AR 
application is to be able to run seamlessly on any 
current monocular smartphones, from which only a 
RGB image is provided by the camera, without any 
additional depth information. 

The current algorithm divides itself in four 
different stages: the bundle creation (a), the 
recognition and localization (b), tracking (c), and 
superimposition (d). 

It is self-explanatory that the first stage is not 
performed inside the runtime, see below for a detail 
explanation, while the other two complement each 
other. All of the results presented were obtained 
running on an Intel i7-4820K CPU running on a 
single-thread. Beginning with the bundles’ creation 
(a), for this task there are two distinct types of 
bundles created: a FLANN Index (FI) bundle, and a 
FLANN Based Matcher (FBM) bundle. The reason 
for this peculiar choice is based on performance 
evaluations made while testing the multiple 
alternatives available, being the Brute Forced 
Matcher out of the scope of this paper, due to its 
lack of “flexibility” present on a previous 
publication. Both methods used the same index 
parameters, with the chosen algorithm being the 
Locality-Sensitive Hashing (LSH), due to the 
choice of using non-patent binary descriptors, the 
number of tables used were only 1, with a key size 
of 12, and only 1 multiprobe level. The addition of 
a multiprobe to the LSH allowed for the reduction 
of the number of hash tables, which allow for a 
better performance while maintain the same 
obtained results. We observed an average reduction 
of 76.56% of processing time across different 
binary features detectors and descriptors (AKAZE, 

Features Number  
of Features 

 FLANN  
Based Matcher 

FLANN 
Index 

Performance 
Difference 

Parameters 

AKAZE 9500  10.62 ms 3.09 ms -70.90 % Default 
BRISK 14521  22.64 ms 10.19 ms -54.99 % Default 
BRISK 11299  17.01 ms 3.5 ms -79.42 % thresh=30, octaves=5, 

patternScale=float(2.0) 
ORB 10891  11.72 ms 5.35 ms -54.35 % Default 
ORB 35311  40.62 ms 22.90 ms -43.62 % nFeatures=2000 

Table 1.  Comparison of the performance between FLANN Based Matched and FLANN Index, presenting 
the results obtained from the matching of a real-world image to an index of 71 prepared images.  
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BRISK, ORB) [35], with the default and tweaked 
specifications, while using only 1 hash table versus 
the 6 hash tables originally recommended, with the 
corresponding images’ indexes returned with equal 
accuracy. 

Regarding the choice of having two bundles of 
similar matchers, although the FBM is built upon 
the FI, we performed search tests with the same 
query image on both and obtained a better result 
retrieving the matching image index by an average 
of 60.66% less processing time while using the FI, 
as can be seen at table 1. This justifies the creation 
of an FI bundle, although while matching using the 
FI only the original image index is retrieved, 
accompanied by the KNN’s distances. This way, it 
is only possible to know what image was matched 
but it is impossible to find the homography of said 
image with the queried one, which prevents the 
possibility of user’s localization. In order to 
contour this limitation, a second bundle was 
created. With the Flann Based Matcher, the 
matches obtained are correlated between the trained 
index and the queried image. Furthermore, in our 
tests the Flann Based Matcher, while using a single 
image, matched with an average processing time of 
5.5 ms. This allows for an initial faster and broad 
user’s localization within the museum environment, 
followed by a more specific approach once the 
localization is found. It is important to notice that, 
with our method, even when adding the FI and the 
posterior FBM processing time, it is still faster 
comparing to the only use of the FBM. 

An additional method was also analyzed based 
on ASIFT. Due to the nature of the application, it is 
expected that the users explore the superimposed 
content not only frontal-facing to the walls, but also 
shifting the smartphone to the side, which creates 
an image perspective more difficult to match. With 
the ASIFT algorithm we expected to explore the 
additional affine matching while using the FLANN 
index matcher to maintain an acceptable 
performance with the new additional descriptors. 
Unfortunately, the obtained results, while 
successful, returned a large reduction of matched 
indexes, in some cases more than 13 times less. For 
this reason, further tests and analyses will be 
performed and presented on a future publication. 

Regarding the templates used to train the 
FLANN indexes, it was observed while advancing 
the presented algorithm that the wooden frames of 
the museum’s artworks represented a large part of 
the retrieved features from the images, as can be 
seen on Fig. 3. When implemented, it was verified 
that the wooden frames’ descriptors matched vastly 
between themselves across different artworks, 

which introduced plenty of false positive matches. 
To prevent this result, we applied masks over the 
templates, as can also be seen on Fig. 3, allowing 
only the features present on the artworks to be 
computed as descriptors. This improved the 
performance and reduced the observed false 
positives. The nature of the shape and form of the 
template’s images will be further explained at the 
finding homography step. In continuity of our 
previous work, the height of the templates was 
limited to 480 pixels, which is the obtained height 
of the smartphones’ camera frame, and the detector 
and descriptor remains the BRISK, which allows 
for some image scaling in the recognition, which is 
expecting to occur while the users navigate the 
museum. 

 

Fig. 3. Top and Bottom: Example of the different 
amount of keypoints once the painting's frame is 

removed through the use of masks. 

 
Advancing to the recognition and localization 

stage (b) of the algorithm, while retrieving the 
frames from the user’s smartphone camera, if there 
isn’t a previous matched frame, the FLANN Index 
is used to find the corresponding image’s index. As 
the FI usually returns the more approached image 
to the frame’s descriptors, it is always necessary to 
perform at least the corresponding FLANN Based 
Matcher of the obtained image index to discard the 
insufficient matches. It was observed that the 
amount of returned matches from the FI is not 
correlated to the certainty of the retrieved match. 
Nevertheless, this method continues to be faster 
than a plain FBM use. All the matches obtained 
from the FBM are subjected to the Lowe’s ratio 
test, where only the matches with distances inferior 
to a relation of 0.65 are considered good matches. 
When a match is found with at least 10 good 
matches, then we proceed to find the homography. 
Normally only 4 matches are needed for the 
homography calculation, but as mentioned on 
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previous work, for this AR application it is 
mandatory the computation of a good homography, 
and therefore the number of minimal good matches 
was increased. The following homography 
refinement method can be found on our previous 
publication, with the addition of a symmetry test 
and also a verification if the return matrix isn’t 
transposed, being this way possible to salvage some 
bad outputs [36]. Having in mind the necessity of a 
considerable amount of good matches but also a 
smooth performance, the amount of descriptors 
detected from the frame is directly associated with 
the previous frame processing time, with all being 
firstly sorted by their response parameter. 

As referred before, the templates’ shape form 
was made with a purpose. When calculating the 
homography we found the perspective relation 
between two different planes: an image in the 2D 
world, and an object in the 3D world. Due to the 
similar construction structure between different 
smartphones, we were able to observe a limited 
variation in the intrinsic camera matrix, which 
allow us to assume a acceptable outcome within 
error, if needed we might implement an auto-
calibration method as future work [21]. In order to 
reduce additional computing calculations, when the 
template’s images where obtained, the 
corresponding wall height was included, which 
allows for a direct relation between the artworks 
full of features and the plain walls that lack them. It 
is important to refer that a panoramic of all the 
walls of a museum room was also created, but 
giving the vastness of the information, the 
panoramic reduced the performance and increased 
the false positives matches, therefore increasing the 
amount of bad homographies computed. The 
current arrangement of templates covers 
completely the walls of the museum room with at 
least two artworks always present, with the 
exception of large artwork pieces. Using these 
limits, and with each template preceding the other 
and never overlaying, it is possible to retrieve the 
already known shape of the room without the need 
of advanced 3D calculations.  

With the homography known, the next steps are 
the fusion of the previous two methods presented 
on former publications. A Gaussian Blur is applied 
to the obtained frame. A dynamically adjusted 
Canny edge detection [5] is applied to the camera’s 
frame, using the Otsu threshold [23] to replace the 
high Canny’s threshold while the lower varies with 
a direct proportion of 10% to the higher. 

From there, the Probabilistic Hough Transform 
[15, 18] is applied in order to retrieve the presented 
lines in the environment, as can be seen in Fig. 4. 

 

 

Fig. 4. Example of the lines found in the 
environment through different perspectives. 

The Line Segment Detector was also considered, 
but it presented a performance 3 times worse for 
the same amount of lines retrieved. The obtained 
lines are then filtered with the vertical and 
horizontal lines being discarded relatively to the 
horizon line. Afterwards the similar lines are 
removed, remaining only the unique lines, expected 
to be the environment vanishing lines. The 
intersecting points between these lines are calculate 
following the Cramer’s Rule. The obtained 
intersecting points are added to a k-means 
clustering, where the densest cluster is chosen, and 
its centroid is considered as vanishing point. The 
already found lines from the homography are then 
adjusted to the obtained lines corresponding to the 
walls’ horizontal delimitations, improving the 
already refined homography. 

Following the last steps comes the stage of 
tracking (c). As referred in previous publications, it 
is not expected the possibility of always achieving 
a valid match with the templates. In order to be 
able to continue tracking the user’s navigation it is 
necessary to deploy different methods for 
confirming the user’s actions. The direct method is 
to continue tracking the matching image and the 
ones surrounding it to the left and right. We also 
used the retrieved homography perspective to 
generate a mask which is used while the same 
image is matched, which allows discarding 
unnecessary descriptors from the frame. With the 
fusion of both methods previously presented we are 
able to use a novel approach, where we apply 
Kalman Filters to the vanishing point and 
corresponding points of the found and adjusted 
homography through vanishing lines. This method 
allows for a better perception of the user’s 
movement and smooths the transitions of the 
superimposed content. 

Finally, we reach the last stage, the 
superimposition (d). Although it was already 
possible after the second stage, we decided it was a 
higher priority to first start tracking so we could 
evaluate the initial tracking frames, and after a 
small amount of good tracked frames, initializing 
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the projection of content over the walls. 
Considering the purpose of the users’ visit being 
the museum’s artwork, to be able to superimpose 
contents while maintaining the artwork visible, the 
templates’ masks already generated and used while 
building the bundles, are used here. With all the 
templates following each other, an example can be 
seen of Fig. 2; we are able to find where the 
corresponding vanishing line end and another 
perpendicular wall commences, allowing us to 
generate a perspective matrix corresponding to the 
projected wall(s). With this information, we can 
project specific content on different walls 
throughout the museum’s rooms. A desired result is 
presented on Fig. 5. 

 

Fig. 5. Left to right: the desired segmentation of the 
environment's walls, two examples of 

superimposing results. 

4   Conclusions 

The current state of this module shows 
promising results, presenting the fusion of two 
different methods previously introduced that allow 
for a better filtering and recovery of bad 
homographies, while introducing an additional 
geometric tracking method. With the possibility of 
acquiring mainly good homographies, it is possible 
to consider the calculations of the user’s camera 
pose on the real world [10, 4, 40], which in future 
work is being considered to be projected into a 2D 
map of the museum and the localization and 
direction of the users being computed using 
Kalman Filters to reject the remaining bad 
homographies. 

The presented form of the templates are 
considered the final version, with the complete wall 
height and shape in the templates being used to 

retrieve the walls’ horizontal limits and localization 
while also using masks to discard the unwanted 
features retrieved from the paintings’ frames, and 
being continuous to each other in the real world, 
allowing the calculation of an accurate perspective 
matrix in order to superimpose content. 

Regarding the search and matching between 
templates and the camera frame, this was also 
addressed with the introduction of a mixed FLANN 
indexes search engine, which has shown excellent 
time results and allows for a faster and broader 
localization while remaining with a more specific 
matching intended for the AR superimposition 
method. 

For future work, the unexpected occurrence of 
few returned indexes while adding and training 
using the ASIFT method to the current algorithm 
could be further explored and evaluated. Although, 
with the environment’s vanishing lines, it is also 
possible to continue the tracking into more obtuse 
view perspectives, as can be seen on Fig. 4, which 
could disprove the necessity of properly 
implementing the ASIFT method. 

With the expected algorithm fully implemented, 
a battery of tests shall be produced to evaluate the 
performance and quality of this module in real-time 
and introducing additional rooms with different 
configurations. 
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