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Abstract: In this article we investigate the Web Search Optimization Problem, a NP-hard combinatorial optimiza-
tion problem arising from Software Design. This is a new problem in the combinatorial optimization area. We de-
velop a natural mixed integer linear programming formulation for this problem. The natural model is strengthened
by including in the model valid inequalities. Computational experiments show that, in most cases, the strengthened
model gives an integer solution for the problem. The lower bounds obtained by the strengthened model relaxation
of the considered formulation improve upon those obtained by the natural model relaxation.
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1 Introduction

When searching for a product on the web, groups
of other similar products are proposed in advertis-
ing windows, to the user, based on previous search.
These products are grouped by a similarity measure
into groups with fixed size. This problem of soft-
ware design for web search, named Web Search Op-
timization Problem (WSOP), is a combinatorial prob-
lem that consists of finding K disjoint groups with
fixed size from a set of N items. The objective is to
maximize the overall similarity among the items se-
lected to belong to the same group. This is a NP-hard
[4] clustering type problem with fixed cardinality con-
straints.

To the best of our knowledge, the WOSP has
never been addressed in the scope of combinatorial
optimization. We can find some literature about web
search results in the field of statistics [7] and the use of
genetic meta-heuristics for effective web search using
ranking function optimization is introduced by Fan et
al. [3].

A survey of another combinatorial optimization
problems with fixed cardinality constraints, are de-
scribed in [2], namely the k-cardinality tree prob-
lem, the k-cardinality TSP and related routing prob-
lems, the k-cardinality sub-graph problem, graph par-
titioning problems with a cardinality constraint, lo-
cation problems and packing problems with cardi-
nality constraints. Also a survey of mathematical
programming models for clustering problems can be
found in [5]. In this work, types of clustering and
criteria are presented, also algorithms for hierarchi-

cal, partitioning, sequential, and additive clustering
are addressed. Solution methods like dynamic pro-
gramming, graph theoretical algorithms, branch-and-
bound, cutting planes, column generation and heuris-
tics are applied.

In order to solve the WSOP, in the scope of
Combinatorial Optimization, we developed a natural
mixed-integer formulation to obtain groups of prod-
ucts similar to the product previously searched. Next,
we strengthened the natural formulation with a small
subset of valid inequalities, the star inequalities, re-
sulting in a better approximation of the convex hull
of the problem’s feasible region. With the purpose
of testing the models, we made some computational
experiments with random generated instances. The
results showed that, in most cases, the strengthened
model gives a feasible or the optimal solution for the
problem.

The paper is organized as follows: in Section 2,
we propose a natural mixed-integer formulation for
the Web Search Problem as well as the strengthened
model. Next, in Sections 3 and 4 some computational
experiments and results are given. Finally, in Section
5, we present some conclusions.

2 Natural Formulation

Consider the following notation for the mixed-integer
linear formulation for the Web Search Optimization
Problem:
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N - number of items (N ∈ N )
K - number of clusters (K ∈ N ,K < N)
i, j - items indexes (i, j ∈ {1, . . . , N})
k - cluster index (k ∈ {1, . . . ,K})
Mk - number of items per clusterk

(Mk ∈ N ,
∑

k Mk < N)
sij - similarity between items i and j,

element of a symmetric matrix with
diagonal elements equal to zero
(0 ≤ sij < 1)

Consider now the following binary decision vari-
ables:

xik - binary variable which indicates whether item
i is in cluster k (=1) or not (=0), (i = 1, . . . , N ; k =
1, . . . ,K)
yij - binary variable which indicates whether items i
and j are in the same cluster k (=1) or not (=0) (i =
1, . . . , N − 1; j = i + 1, . . . , N ).

According with the parameters and the variables
defined above, the WSOP can be formulated as a
natural mixed integer linear programming problem
(MILP) as follows, denoted by F :

max
N−1∑
i=1

N∑
j=i+1

sijyij (1)

s.t. yij ≥ xik + xjk − 1 (2)
1 ≤ i < j ≤ N ; k = 1, . . . ,K

N−1∑
i=1

N∑
j=i+1

yij =
K∑
k=1

Mk!

2!(Mk − 2)!
(3)

K∑
k=1

xik ≤ 1 (4)

i = 1, . . . , N
N∑
i=1

xik = Mk (5)

k = 1, . . . ,K
xik ∈ {0, 1} (6)

i = 1, . . . , N ; k = 1, . . . ,K
0 ≤ yij ≤ 1, (7)

1 ≤ i < j ≤ N

The objective function (1) gives the total similar-
ity, which is the sum of the similarity values between
pairs of items placed in the same cluster. Constraints
(2) relate the variables yij and xik. Constraints (3)
give the exact number of variables yij which are equal
to 1. The set of constraints (4) assures that each item
belongs to one cluster at most. Cardinality constraints
(5) do not allow violation of the number of items in
each cluster. Finally, constraints (6)-(7) are the vari-
ables’ domain.

Note that, although the variables yij are continu-
ous, between 0 and 1, they are equal to 0 or 1 in the

optimal solution, due to the maximization objective
and the constraints (2)-(3).

In order to strengthen the model F , the following
star inequalities are included in the model, resulting in
the problem Fstar:

j−1∑
i=1

yij +
N∑

i=j+1

yji =
K∑
k=1

(Mk − 1)xjk,

j = 1, . . . , N
These constraints force, for each j, (Mk−1) vari-

ables yij to be equal to 1, when j is in cluster k.
The star inequalities are presented in the paper of

Park, Lee and Park [6] as facets for the convex hull
of the set of feasible solutions for the edge-weighted
maximal clique problem.

3 Computational Experience - Test
Instances

This section reports the computational experience per-
formed with the strengthened natural formulation for
the Web Search Optimization Problem. As no bench-
mark instances exist for the WSOP, a set of instances
for this problem was generated.

The instances of the WOSP used in the com-
putational experiments were generated with N =
40, based on the instances for the k-cluster
Problem, reported in the CEDRIC’s Library of
instances (http://cedric.cnam.fr/ lamberta/Library/k-
cluster.html) (Billionnet [1]). Each one is defined by
a graph, by its density (d) and by the number M1

of items in the cluster, which is equal to 10 (1
4N),

20 (1
2N) or 30 (3

4N).
Three different graph densities, with values 0.25,

0.50 and 0.75 were considered. For each M1 fixed
and each density d fixed, there are 5 different graphs,
with all edge weights equal to 1. The total number of
different graphs is 15, and the set of 15 graphs consid-
ered for different M1 values is always the same. Note
that, for each graph, 3 different instances exist, each
one with a different number M1 of items in the cluster.
The final number of instances is 45, as can be seen in
table 1.

Table 1: Instance Parameters.
K M1 Graph density (d) N.Inst

1 10 (0.25, 0.50, 0.75) 15
20 (0.25, 0.50, 0.75) 15
30 (0.25, 0.50, 0.75) 15

The WSOP test instances were then obtained by
considering N = 40 and they were based on the 15
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graphs mentioned above. For each edge graph [i, j],
a positive weight sij was randomly generated strictly
between 0 and 1, defining the similarity between items
i and j. The remaining data of these instances were
defined as follows.

Instances with K = 1, 2 and
∑K

k=1 Mk =
10, 20, 30 were generated. For K = 1 we generated
45 instances, 15 for each M1 value. For K = 2,
90 instances were generated, 15 for each value of∑K

k=1 Mk and for each choice of Mk, one with bal-
anced and another one with unbalanced values of Mk,
according with table 2.

Note that, for K = 2, for d fixed and
∑

k Mk

also fixed, there are 2 different instances relative to
the same graph. Then, for those d and

∑
k Mk fixed,

there are 10 instances because 5 different graphs exist
for each density.

Table 2: Instance Parameters with N = 40.
K

∑K

k=1
Mk Mk N.Inst

1 10 M1 = 10 15
20 M1 = 20 15
30 M1 = 30 15

2 10 M1 = 5 ( 1
2

) M2 = 5 ( 1
2

) 15
M1 = 2 ( 1

5
) M2 = 8 ( 4

5
) 15

20 M1 = 10 ( 1
2

) M2 = 10 ( 1
2

) 15
M1 = 4 ( 1

5
) M2 = 16 ( 4

5
) 15

30 M1 = 15 ( 1
2

) M2 = 15 ( 1
2

) 15
M1 = 24 ( 4

5
) M2 = 6 ( 1

5
) 15

4 Computational Results

The models F and Fstar were solved by using the
standard mathematical software CPLEX. The algo-
rithm provided by the Ilog CPLEX 12.6, ran on a i7
computer with 3.60 GHz processor and 8 GB RAM. In
all tests the following CPLEX parameters were con-
sidered: time limit=7200 seconds, clocktype=1, mip
tol absmipgap=0.0, mip tol mipgap=0.0, mip tol inte-
grality=0.0, feasopt tolerance=0, threads=8, while the
other standard CPLEX parameters were used. The
computational tests were made for the instances de-
scribed in the previous section.

In Tables 3 and 4 presented below, the first two
columns are the graph density and the values of∑

k Mk, respectively. The Gap and the CPU time of
F and Fstar models are the average values for 5 in-
stances in Table 3 and average values for 10 instances
in Table 4. The Gap at the root node of the search
tree is equal to v(P̄ )−v(P )

v(P ) ∗ 100%, where v(P ) is the
optimum value of the problem and v(P̄ ) is the linear
relaxation optimum value of the same problem. When

there is no optimal solution available, the best inte-
ger solution was considered for the gap computation.
Columns 3 and 5, headed by Average gap, give the av-
erage gap in percentage. In columns 4 and 6, headed
by Average CPU time, we find the average CPU time
(in seconds) required to solve the formulations F and
Fstar, respectively.

Table 3: Results for models F and Fstar for K=1.
F F Fstar Fstar

d
∑
k

Mk Average Average Average Average

gap (%) CPU
time (s)

gap (%) CPU
time (s)

10 188 368 177 46
25 20 373(1) 7200 299 3296

30 51 50 35 13
10 88 70 85 29

50 20 167 5834 148 2288
30 21 8 16 7
10 54 35 52 19

75 20 101 2649 91 1307
30 13 7 10 6

(1) - 5 instances not solved.

For K = 1, from Table 3, we note that the model
Fstar with valid inequalities substantially improves
the linear relaxation relative to the model F . This
strengthened model gives the optimal solution for all
instances in the time limit of 7200 sec, as opposed
to model F which did not solve 5 instances in the
same time limit. For both models, the average gap
for the set of instances corresponding to d = 25,
d = 50, d = 75 and

∑
k Mk = 30, is lower than

the gap obtained for d = 25, d = 50, d = 75 and∑
k Mk = 10, 20. Then, the F and Fstar models per-

form better for instances with higher elements in the
group. As for the CPU time, it is verified that Fstar

model has smaller computational times than F model,
although it has one more set of constraints.

For K = 2, from Table 4, the model Fstar gave
the optimal value for the instances d = 25,

∑
k Mk =

10, d = 50,
∑

k Mk = 10 and for the instances with
d = 75 and

∑
k Mk = 10. For the other instances the

CPLEX did not obtained the optimal solution in the
time limit of 7200 seconds, or gave the message ”out
of memory”.

The model Fstar with the valid inequalities for
K = 2 also improves the linear relaxation relative
to the model F . We remember that for the unsolved
instances, the gap values are obtained from the best
given feasible solution. This is why there are two av-
erage gap values for Fstar higher than the correspond-
ing values for F .

Note that the number of messages ”out of mem-
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Table 4: Results for models F and Fstar for K=2.
F F Fstar Fstar

d
∑
k

Mk Average Average Average Average

gap (%) CPU
time (s)

gap (%) CPU
time (s)

10 104 288 101 39
25 20 265(1) 7200 212(6) 7200

30 192(2) 7200 222(7) 7200
10 53 796 48 29

50 20 177(3) 6003 123(8) 6926
30 101(1) 7200 107(7) 7200
10 31 38 30 18

75 20 77(4) 4392 70(9) 4412
30 70(5) 6333 65(5) 6343

(1) - 3 out of memory and 7 instances not solved
(2) - 8 out of memory and 2 instances not solved
(3) - 5 out of memory and 5 instances not solved
(4) - 4 out of memory and 2 instances not solved

(5) - 8 instances not solved
(6) - 4 out of memory and 6 instances not solved

(7) - 10 instances not solved
(8) - 5 out of memory and 1 instance not solved

(9) - 3 out of memory and 2 instances not solved.

ory” substantially decreased from model F to model
Fstar. Also, the number of solved instances is bigger
for Fstar model.

Although some instances were not solved for
K = 2, the model Fstar performs well with high den-
sities and a greater number of elements in the groups.

As for the CPU times, we observe that the Fstar

model has, in general, lower computational times. For
some groups of instances, the average CPU times are
bigger for Fstar because more instances were solved
or ran in the time limit, thus influencing the average
values.

5 Conclusions

This paper presents a natural formulation for the web
search optimization problem. This formulation is
strengthened with valid inequalities, the star inequali-
ties, in order to improve the linear relaxation bound.

Computational experiments show that the
CPLEX solver with the strength model, solved all the
instances of the problem, for K = 1. For K = 2, the
CPLEX solved all instances with

∑
k Mk = 10 and

for all instances with
∑

k Mk = 30, the model Fstar

gave a feasible or the optimal solution.
We conclude that the model Fstar performs better

with high densities and a greater number of elements
in the groups.

Research should be continued to developed
heuristics in order to obtain lower bounds for all size

instances. The study of other formulations and valid
inequalities should also be made to reinforce linear
relaxations to get better upper bounds for the optimal
value.
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