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Abstract: The economic dispatch of energy on power systems with high penetration of renewable generation is a
mathematical problem of optimization. The solution techniques that have been used are programming techniques
and heuristic approaches. In both cases, it is important to have a well-defined target function to be optimized.
Nowadays, the power systems are more complex with the introduction of the renewable sources of energy with
highly stochastic behavior. For this as follows it was pretended to obtain a model for the penalty costs in a
photovoltaic generator. This paper shows a mathematical analysis with probabilistic methods contrasted with
an analytic development for controllable renewable systems to be included in the target functions of economic
dispatch problems. In order to validate the mathematical approach, Monte Carlo simulation was used to obtain the
underestimation and overestimation penalty values of the scheduled power for the uncertainty cost of photo-voltaic
(PV) generation in an instance of energy storage. Developed under a model with a uniform distribution of power,
the document presents the validation for the uncertainty cost factor (UCF) comparing the Monte Carlo simulation
with the analytic proposal where the low error in the results proved the advantages of using the analytic model due
to its quadratic form and its coherence with the simulations that were performed.
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1 Introduction
With the broad diffusion of alternative and renewable
forms for energy generation in recent years, the ne-
cessity has raised to calculate the generation cost and
to propose new ways to perform for this calculation
[1], [2], [3]. To this end [1] shows the different
components that affect the energy costs in an electric
system e.g, the variation in demand. This case of
variable in [2]. is gaining relevance, because it gives
some uncertainty to the system and helps to make
some important decisions in the economic dispatch.

The economic dispatch of energy on power
systems with high penetration of renewable is a
mathematical problem of optimization. The solution
techniques that has been used are programming
techniques and heuristic approaches [4]-[8]. These
techniques can be linear or non-linear, however, great

majority of these methods assume that the power
system is deterministic, which is invalid in terms
of clean energy [9]-[10]. It is for this reason that
the heuristic approaches in this type of scheduling
problems are used [12]-[14].

Nowadays, some loads for the electric systems
are controllable, which means that the uncertainty
of the system is growing with the use of solar
photo-voltaic and wind generation, and with the
implementation of electric vehicles. Thus, the need
arises to describe probabilistically the behavior of
loads and power generation. This mathematical
concept was first studied with eolic generation in
[15]. In the present document, the solar photo-voltaic
generation is controlled with a battery bank.

In places where there is no historical data on de-
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mand the necessity to describe the system stochasti-
cally is showed in [15] and [16] , expanding the study
for the uncertainty costs in different times of the day.
The penalty cost for distributed generation connected
with the electric network appears in [16]. This is pos-
sible using different probability distributions. In the
case of the present article, the uniform distribution
with uncertainty at twelve oclock is used in places
where there is no certainty of the distribution. The
most recent antecedent about uncertainty cost is in
[17] on hydroelectric power plants. The table 1 shows
the considerations of the previous work for economic
dispatch with controllable renewable systems.

Table 1: Considerations of Scheduling Approaches
Considerations References

Uncertainty Consideration [1], [4], [5], [13]
Demand Response [2]
Heuristic Optimization [3], [7], [10], [13], [14], [15]
Stochastic optimization [2], [4], [5], [17]
Energy Storage Systems [5], [6]
Electric Vehicles [9], [16]

2 Analytical method
The need to provide a model for the economic dis-
patch is evident. Thus, an analytic proposal will be de-
veloped and further proved with a Monte Carlo simu-
lation. First, assume that the probability density func-
tion for the generated power f [P ] is defined with an
uniform distribution:

f [P ] =


1

Pmax−Pmin
for Pmin ≤ P ≤ Pmax,

0 for P < Pmin or P > Pmax

For a linear function for the penalty cost due to an un-
derestimation y = Cu[P ] = Cu(P−Ps), it is possible
to determine the corresponding expected penalty cost
function as follows:

E[y] =

∫ ∞
−∞

yf(y)dy

=

∫ Cu(Pmax−Ps)

0
y

1

Cu(Pmax − Pmin)
dy

=
1

Cu(Pmax − Pmin)

(
y2

2

) ∣∣∣Cu(Pmax−Ps)

0

→ E[Cu(P )] =
Cu

Pmax − Pmin

(
P 2
s

2
−

PsPmax +
P 2
max

2

) (1)

Similarly, the expected cost function for the overesti-
mation with z = Co[P ] = Co(Ps − P ) can be ob-
tained:

E[z] =

∫ ∞
−∞

zf(z)dz

=

∫ 0

Co(Ps−Pmin)
z

−1
Co(Pmax − Pmin)

dz

=
−1

Co(Pmax − Pmin)

(
z2

2

) ∣∣∣0
Co(Ps−Pmin)

→ E[Co(P )] =
Co

Pmax − Pmin

(
P 2
s

2
−

PsPmin +
P 2
min

2

) (2)

The previous results make it possible to calculate
the expected uncertainty cost function (UCF), which
describes a remarkable quadratic pattern, something
useful for conventional economic dispatch software.

→ E[UCF ] = E[Cu(P )] + E[Co(P )] (3)

Furthermore, it is possible to define other helpful
statistical variables that complement the model. For
instance, a variance analysis can be performed with
the following formulation:

V ar[Cu(P )] = E[Cu(P )
2]− E[Cu(P )]

2 (4)

V ar[Co(P )] = E[Co(P )
2]− E[Co(P )]

2 (5)

Thus, for the underestimation case we have:

E[y2] =

∫ Cu(Pmax−Ps)

0
y2

1

Cu(Pmax − Pmin)
dy

=
1

Cu(Pmax − Pmin)

(
y3

3

) ∣∣∣Cu(Pmax−Ps)

0

→ E[Cu(P )
2] =

C2
u

Pmax − Pmin

(Pmax − Ps)
3

3
(6)

→ V ar[Cu(P )] =
C2
u(Pmax − Ps)

3

3(Pmax − Pmin)
− E[Cu(P )]

2

and for the overestimation case we have:

E[z2] =

∫ 0

Co(Ps−Pmin)
z2

−1
Co(Pmax − Pmin)

dz

=
−1

Co(Pmax − Pmin)

(
z3

3

) ∣∣∣0
Co(Ps−Pmin)
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→ E[Co(P )
2] =

C2
o

Pmax − Pmin

(Ps − Pmin)
3

3
(7)

→ V ar[Co(P )] =
C2
o (Ps − Pmin)

3

3(Pmax − Pmin)
− E[Co(P )]

2

Now, the distribution function for the probability
of an underestimation or an overestimation is needed
for the UCF. It can be expressed as follows:

P [P > Ps] =

∫ Pmax

Ps

f [P ]dP

=

∫ Pmax

Ps

1

Pmax − Pmin
dP

=
P

Pmax − Pmin

∣∣∣Pmax

Ps

→ P [P > Ps] =
Pmax − Ps

Pmax − Pmin
(8)

P [P < Ps] =

∫ Ps

Pmin

f [P ]dP

=

∫ Ps

Pmin

1

Pmax − Pmin
dP

=
P

Pmax − Pmin

∣∣∣Ps

Pmin

→ P [P < Ps] =
Ps − Pmin

Pmax − Pmin
(9)

It makes possible to calculate the probability for the
UCF (only in the underestimation case) as follows:

1 = P [P < Ps] +

∫ Cu(Pmax−Ps)

0
f [UCFu]dP

1 =
Ps − Pmin

Pmax − Pmin
+ f [UCFu]Cu(Pmax − Ps)

This leads to a definition of the UCFu probability
density function:

→ f [UCFu] = f1 =
1− Ps−Pmin

Pmax−Pmin

Cu(Pmax − Ps)
(10)

Similarly, it is possible to calculate the probability for
the UCF (only in the overestimation case) as follows:

1 = P [P > Ps] +

∫ Co(Ps−Pmin)

0
f [UCFo]dP

1 =
Pmax − Ps

Pmax − Pmin
+ f [UCFo]Co(Ps − Pmin)

This leads to a definition of the UCFo probability
density function:

→ f [UCFo] = f2 =
1− Pmax−Ps

Pmax−Pmin

Co(Ps − Pmin)
(11)

The definition for the variance associated with the
UCF can be finally obtained with the equation:

V ar[UCF ] = E[UCF 2]− E[UCF ]2 (12)

With E[UCF ] defined in Eq.(3), the remain term
can be calculated as a piecewise function defined by
Co(Ps − Pmin) < Cu(Pmax − Ps):

E[UCF 2] =

∫ Co(Ps−Pmin)

0
UCF 2(f1 + f2)dUCF

+

∫ Cu(Pmax−Ps)

Co(Ps−Pmin)
UCF 2f1dUCF

= (f1 + f2)
(Co(Ps − Pmin))

3

3

+ f1
(Cu(Pmax − Ps))

3 − (Co(Ps − Pmin))
3

3

→ E[UCF 2] =
f2(Co(Ps − Pmin))

3

3
+

f1(Cu(Pmax − Ps))
3

3

(13)

And also defined by
Co(Ps − Pmin) > Cu(Pmax − Ps):

E[UCF 2] =

∫ Cu(Pmax−Ps)

0
UCF 2(f1 + f2)dUCF

+

∫ Co(Ps−Pmin)

Cu(Pmax−Ps)
UCF 2f2dUCF

= (f1 + f2)
(Cu(Pmax − Ps))

3

3

+ f2
(Co(Ps − Pmin))

3 − (Cu(Pmax − Ps))
3

3

→ E[UCF 2] =
f2(Co(Ps − Pmin))

3

3
+

f1(Cu(Pmax − Ps))
3

3

(14)

Here, it can be noticed that Eq. (13) and (14) are the
same. Thus, we can conclude that Eq. (12) can be
calculated only with Eq. (14) and (3).

3 Monte Carlo simulation
The Monte Carlo method has shown an extended ap-
proval for the validation of physical models including
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variables that have an associated probability density
distribution (e.g. solar radiation). Therefore, a Monte
Carlo simulation program was developed in order to
study the behavior of overestimation and underestima-
tion instances for a previously scheduled power value
with a set of 100,000 uniformly distributed expected
power values.

For this framework, test values were initially set
to Ps = 29, Pmin = 26, Pmax = 30, Cu = 300,
and Co = 700. After an elapsed simulation time of
around 1 second, multiple statistical parameters were
obtained. It includes expected values and variances
associated with the different cost functions that were
modeled for the photovoltaic (PV) generation.

The resulting statistical values were:
E[Cu(P )] = 37.6, E[Cu(P )] = 787.2,
E[UCF ] = 824.8, V ar[Cu(P )] = 6123.3,
V ar[Cu(P )] = 480921.6 and V ar[UCF ] =
427819.1.
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Figure 1: Histograms for the power and the different
resulting costs.
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Figure 2: Histogram for the Uncertainty Cost Func-
tion.

Cost due to underestimation [US$]

0 50 100 150 200 250 300

S
c
e
n
a
ri
o
s
 

×104

0

5

10
Histograms

Cost due to overestimation [US$]

0 500 1,000 1,500 2,000 2,500

S
c
e
n
a
ri
o
s

×104

0

2

4

6

Figure 3: Histograms for underestimation only and
overestimation only.

4 Validation
In order to validate the proposed analytic method, its
equations were also calculated. It took around 500
milliseconds to obtain the resulting statistical values:
E[Cu(P )] = 37.5, E[Cu(P )] = 787.5, E[UCF ] =
825, V ar[Cu(P )] = 6093.8, V ar[Cu(P )] =
482343.75 and V ar[UCF ] = 429375. A simple
comparison with the Monte Carlo results leads to er-
rors below the ε = 1% for all the variables under anal-
ysis.

Also, an stronger validation was obtained due to
a more general simulation with Ps, Pmin and Pmax

randomly chosen between a valid range of values that
lead to UCF errors below ε = 0.7%.
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Figure 4: Error plot for different UCF calculations.

Finally, the importance of the resulting quadratic
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formula for UCF motivated a simulation were Ps was
evaluated for several values between 100 and 200 with
fixed limits Pmin = 50 and Pmax = 250.

The results between Monte Carlo simulations and
the analytic method validated the proposal, both of
them showing a quadratic trend in accordance to the
expected analytic equation (15) and the curve fitting
results (16) that confirm the same for the Monte Carlo
data with a coefficient of determination R2 = 0.9999.

→ E[UCF ]analytic = 2.5P 2
s −550Ps+51250 (15)

→ E[UCF ]fit = 2.48P 2
s − 546.78Ps + 51044.24

(16)
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Figure 5: Comparison between Analytic and Monte
Carlo results for UCF.

5 Conclusions and future work
A simple mathematical model in eq.(1) and eq.(2) ex-
hibits a quadratic structure for the calculation of ex-
pected penalty cost values associated with the overes-
timation and underestimation of scheduled power in a
PV generator working under uniform distribution for
its available power.

The proposed model has been verified under
Monte Carlo simulations with a remarkably low er-
ror associated with the expected UCF values Fig.(4).
Thus, a simple method could be used to improve
penalty cost estimations for PV generators lacking in-
formation for its available power probability distri-
bution. This way, only with a uniform distribution
model and a classic economic dispatch software han-
dling eq.(1) and eq.(2) an optimized scheduled power
could be easily obtained.

Research related to a deeper understanding of
the practical implications in the results that were

obtained is important. The analysis of the limitations
using this model with specialized software for classic
economic dispatch, experimental testing of the analit-
ical methods that were exposed, analysis under other
probability distributions and applications to different
generation technologies are some important topics
that can be reviwed in the future.
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