WSEAS TRANSACTIONS on MATHEMATICS I. D. Miroshnichenko, E. F. Musafarova

On Splines’ Smoothness

Yu. K. Dem’yanovich I. D. Miroshnichenko E. F. Musafarova
St. Petersburg State University  St. Petersburg State University St. Petersburg State University
Department of Parallel AlgorithmsDepartment of Parallel Algorithm®epartment of Parallel Algorithms

7/9 Universitetskaya nab. 7/9 Universitetskaya nab. 7/9 Universitetskaya nab.
St. Petersburg, RUSSIA St. Petersburg, RUSSIA St. Petersburg, RUSSIA
y.demjanovich@spbu.ru Yuri.Demjanovich@gmail.com e.muzafar@yandex.ru

Abstract: The aim of this article is to discuss the generalized smoothness for the spligesogared manifold,
wheregq is the natural number. By using mentioned smoothness it is possible to consider the different types o
smoothness, for example, the integral smoothness, the weight smoothness, the derivatives smoothness, etc.
find the necessary and sufficient conditions for calculation of basic splines with a’priori prescribed smoothness
The mentioned smoothness may contain no moredgt{orcally formulated) linearly independentconditions. If the
number of the conditions is exactly then the discussed spline spaces on the embedded grids are also embedded
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1 Introduction wherea; areqg-component vectors (columns) with the
. _ property

Splines are a well-known processing apparatus

forstreams of numerical information (see [1] - [5], det(aj,aj11,...,8j49-1) #0 VieZ, (4)

[12], [14], [22] - [24]). Science researches are in- _ _

terested in such qualities as an approximation prop- #(t) is ag-component vector function.

erty, interpolation property, property of anaccuracy on ~_ The approximation relations (2) contain the next

certain linear subspaces, the property ofsmoothness Objects: the generating vector functip(t), the com-

in one sense or another (see [6] - [11], [13], [15]). Plete chain ofvect(_)rfﬁaj}jez,the location of the sup-

The last property is important in the questions of re- Ports (3), the multiplicityg of the cover by the men-

fining approximation, in theconstruction of the finite ~ tioned supports of the desired basic functiangt).

element methods, in the wavelet decomposition, etc. ~ The generating vector functiop(t) determines

(see [16] - [22)). the structurgl characterlgtlcs Qf the spline (polynomlal,
The history of the splines’ development has not {rigonometric, exponential,mixed, etc.). The chain of

one decade (not later than the forties of the last cen- VeCtors{a; };cz determines the degree and nature of

tury). Just now it is time to find the approach to the SPline smoothness (the number of available deriva-

methods for construction of splines with a’priori pre-  tives or integral smoothness,weight smoothness, etc.).

scribed properties (see [6] - [11], [16] - [22]). In addition, the vector chain defines the embedding
A universal source of splines is approximation re- property for spline spaces. The mentioned chain also
lations. determines interpolation properties of the splines. The

location (3) of the basic spline supports determines

Consider the simplest case. On the real axis, con- . , .
the spline type (splines of the Lagrangian type or the

sider the grid Hermitian type, splines of a mixed type etc.). Finally,
X: . . <o <wzo<aL<... ) the muItipIicityqdete;rmir_les approximation properties
(the order ofapproximation).
) ) The aim of this article is to discuss the general-
a= lim z, f= Zifinoo Li- ized smoothness for the splines grtovered mani-

) ] ] ] fold, wheregq is the natural number. By using the
Discuss the approximation relations mentioned smoothness it is possible to consider the
different types of smoothness, for example, the inte-
> ajw;(t) = o), 2) gral smoothness, the weight smoothness, the deriva-
J tives smoothness, etc. We find the necessary and suf-

ficient conditions for calculation of basic splines with
suppw; C [T, Tj4q)s (3) a’'priori prescribed smoothness.
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Thementionedsmoothness may contain no more
thang (locally formulated) linearly independentcondi-
tions. If the number of the conditions is exaajlythen

the discussed spline spaces on the embedded grids are

also embedded.

As discussed before, the property of the embed-
ding spaces on the subdivisions is very important
for the finite element method, multigrid method, and
wavelet decompositions. However, this property is not
always fulfilled. Let’'s give a simple example of the
breaking of this property. Consider the case 6f 3.

Relations (2) — (4) define the functions(t) on
the set(«, 5)\ X. By (2) we have

det(aj_2,a;_1, (1))

wjt) = det(aj_2,a;_1,a;) ®)
for te (zj,xj41),
wj(t) = det(a;—1, p(t), aj+1) (6)
det(a;-1,a;,a;41)
for te (zj41,2j42),
w;(t) = det(p(t), aj41,aj42) 7)

det(aj, aj11,a;42)
for te (.%'j+2,1‘j+3).

Now we discuss the enlarged grid = X\ x4
obtained from (1) by deleting the knoj;, 1,

-~

X: .. <T1<Tog<t1<..., (8)
wherez; = z; with j < k, z;_1 = z; with j >
kE + 1. We define the coordinate functiofig by the
approximation relation
Za]w] )7 Supp&\}j - [fjv{ij-i‘i%]v (9)
wherea; are three-component vectors (columns) with
the property
det(aj,a;11,8;12) #0  Vj€Z,
and(t) is the former three-component vector func-
tion.
Analogously by (9) we obtain

det(aj_2,a;_1, ()

©(t) = PR (10)
J( ) det(aj,g,aj,l,aj)
for e (@.351),
det(a;_ t),a;
5;(t) = S@ZL o0 ) g
det(aj_l,aj,ajH)
for ¢ € (Zj41,%j42),
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det(p(t), aj+1,842)
det(a;,a;11,8;+2)

w;(t) =

(12)

for te (fj.ﬂ,fj.,.g).

Thereare many options for choosing vectos and
a;. We are interested in the cases for which each func-
tion &; can be represented as a finite linear combina-
tion of functionsw;. Such representations are called
calibration relations(see [20]).

Let us proceed to the presentation of the example
when the calibration relations are violated.

Suppose the vector functian(t) satisfy the con-

dition
det(p(to), ¢(t1), ¢(t2)) #0
for any different to,t1,t, € R .

(13)

We introduce the notatiop, = ¢(xs), ¢s = ©(Zs)
Vs € Z.

By definition puta; = ¢, anda; = @;41.
Taking into account formulas (5) — (7) and (10) — (13),
we obtain functionsv; and@;. The last one can be
prolonged on intervala, 5) continuously (see [11]).

In what follows we suppose that such prolongation is
fulfilled.

At first we give a negative example of an algo-
rithm that shows the case for which the mentioned
representation are absent.

As it is said above the functions; and&; are
continuous on the intervdly, ), but it is easy to see
that the first derivative of these functions has discon-
tinuities of the first kind in the nodes. Each of the
systems of function$w; } jcz and{@; } jcz is a linear
independent system.

Let us show that the functiab,_, cannot be rep-
resented by a finite linear combination of functions
Suppose the contrary, i.e. that with some constants
c_9, c_1 true ratio

Qp—2 = C_oWg—2 + C_1WE—1 (14)
(it is easy to see that the use of other functiands
not necessary due to the location of their supports).

Consider the relation (14) far= x;,,. Because
ZTp+1 € (T, Tie11), by (12) forj = k — 2 we have

det(p(z
det(p(Zg

_ det(p(zri1), p(2k), p(ri2))
det(p(zr-1), p(zr), p(Tr12))
Thus@g_o(xk+1) # 0. By (6) forj = k — 1 and by
(7) forj = k — 2 itis clear to see thaby_o(zx11) =
wi—1(zk+1) = 0. This contradiction concludes the
proof. Thus we see the relation (14) is impossible.

kt1)s P(Tk), p(Tr1))

1)’ 30(‘%/6)7 @(?E\k-‘rl))

Op—2(Tp41) =

Volume 18, 2019



WSEAS TRANSACTIONS on MATHEMATICS

Therearemany ways to build sequences of vec-
torsa; anda; for which the resulting functions; can
be expressedas a finite linear combination of functions
w;. Briefly we discuss one such method.

Let o € C*(a, 3). Consider the vectors; and
a7, defined using vector product

*_

a; = cj(pjt1 X 9j41) X (P2 X ©ia);

a; = ¢j(Pj+1 X Py1) X (P2 X Pya); (15)
herep’s = ¢'(zs) andd’ = ¢'(Z).

Assuminga; = a} anda;, = a; Vs € Z in
approximation relations (2) and (9), respectively, we
obtain the function&; andv; Vi,j € Z. For these
functions the next calibration ratios

wi(t) =wj(t) Vji<k-—3;

DHt) = wia(t) Vi k+1,

(16)

~k ok % x %
Wi = Cjow; + ¢ Wi

for i=k—2k—1k,

are valid. Herecj, andc}, are some numeric con-
stants(see [11]).

The spaces of the aforementioned splines, built on
embedded grids, are emdedded in each other.

In particular, if ¢(t) (1,t,¢2)T, then by
(15) we find

a;f = 2(33]‘-4-1 - xj)(L (xj + wj+1)/27 xjmj‘f'l)T’

al = 2T — 35) (1, (T + j41) /2, 858541) "
In this casewe get the continuously differentiable
guadratic splines (see [1]).

The introduction of generalized smoothness is al-
lowed to diversify types of spline spaces and take into
account the peculiarities of the approximated func-
tions (for example, breaks of the function itself or its
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Enlargement of the cover and use of similar ap-
proximation relations, associated with the new cover,
leads to calibration relations and tothe correspond-
ing embedded space. As a result of the projection
of the original space onto the embedded space we
getspline-wavelet decomposition. Notice that the pro-
posed method is associated with a specific class oflo-
cal enlargements of the manifold covers. There are
a number of other classes oflocal enlargements (see
[12], [14]); they are not considered in this paper.

2 Notation and auxiliary statements.
Manifold cover and its equipment

Consider a smooth-dimensional (generally speak-
ing, non-compact) manifold\ (i.e. a topological
space in which each point possesses a neighborhood
that is diffeomorphic to an opem -dimensional ball
of the Euclidean spad&™).

Let ¢ be a natural integeyy > 1, andJ be an
ordered set of indices, no more than countable. Let
S = {S;} es be afamily of subsets; C M, each
of which is homeomorphic to an opendimensional
ball. Suppose that'l (Ujej Sj) = M, whereCl is
closure.

Let 0S; be the boundarysets 6F. If each pointt
of the setM\ (U s 95)) belongs toexactly subsets
of S;, thenS is calledg-coverofthe manifold M. In
what follows we discuss only-coverS ofthe mani-
fold M. S; is called a covering set of the cousr

For each point € M\U;c;0S; consider
the collection of the sets containing it and dis-
cuss the intersectiof;) of mentioned setsC(;) =
Njeg.s,5¢S;- It is obvious that ift’ € C( then
Cury = C(y)- We suppose that collectiah of differ-
ent set<, for the mentioned, no more than count-
able. Further we denote them By, i € K (hereC
is an ordered set of indices). S0,= {C; | i € K}.
Thus, coverS matches the se&l. The mapping rule

derivatives).In this case, the generalized smoothness described above isdenoted By C = F(S). Aggre-

still leads to embedded spaces and calibration rela-
tions (see [16], [17], [19]).
In the multidimensional case, continuity, and even

gateC is calledsplitting of coverS.
We suppose that each s&t from the splitting
F(S) is homeomorphic to an open ball. In this case

more so, smoothnessis the exception rather than the the setC; is called a cell.

rule. For example, the requirement of continuity of
coordinate functions of the Courant type can lead to
the need to build acurvilinear grid (see [21]), which is
accompanied by conditions that are difficult to imple-
ment on practice.

Wavelet decomposition for information flows,
which emanate from complex-shaped bodies, wasdis-
cussed in [20] —[21]. But the embedding conditions,
formulated there, are not convenient for practical use.

E-ISSN: 2224-2880 131

Example 1  As an illustration, consider the
sphereS (centered athe origin), divided into eight
identical spherical triangles obtained by the coordi-
nate planes which go through the center of the sphere.
We remove the boundary of these triangles, so that we
consider them as open sets. The resulting triangula-
tion contains six vertices. With each vertices we as-
sociate the corresponding barycentric star. The body
of each barycentric star is the corresponding hemi-
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spherewhich is obtained by closing the set of points
of triangles ofthis barycentric stars. By removing the
boundary of each such hemisphere (i.e., removing cor-
responding circumference of large circle), we obtain
the covering seS;, j = 1,2,3,4,5,6. So, the
"open” hemispheres are covering sé@s j € 7,

J = {1,2,3,4,5,6}, and the open triangles are cells
Ci,i € K, K = {1,2,...,8}. The multiplicity of the
resultingcover is equal to three.

Definiton 1  Supposehat: # ¢/, 7,7/ € K, and

a pointt belongs to the boundar§C; of the cellC;.
Let C; be a cell, and let some neighborhood of the
pointt be in the uniorC; |J Cl (C;). Then the celC;

is called adjacent to cell; (i,i" € K) in splitting of
covers.

Obviously, if the cellC; is adjacent t’;, thenC; is

adjacent t&;/; C; andC;: cells are calledhe adjacent
cells (in the splitting of coverS). If C; andC; are

adjacent cells we writé&; = C;:.

Definition 2 If C; = Cy and the differenc¢; | S; D
CiH\{s’ | Sy D Cy} contains exactly elements
(wherep > 1), then the familysS is called ap-step
g-cover for manifoldM.

Example 2  As an illustration of the last def-
inition, consider situation arising in the construction
of the Hermitian type splines (see [19]). L&t be
a grid on the intervala, 5) € R! (seeformula (1))

. We assume thatt = (o,3), J = Z,K = Z.
LetSy;—1 = Sz = (zj,x;42) be cover setsj € J,
and S = {Syj_1,525 | j € J} be the cover ofc, 3).
Then interalsC; = (x;,x;+1) be the cells; € K,
and thesetC = {C;|i € K} be the splitting of the
coveringS. Obviously, in this case = 4, p = 2.

With each sef; of family S we associate a vector
a; from ag-dimensional Euclidean spa¥, j ¢ J.
SetA={a; |j€J, a;cR}iscalledanequip-
ment of the familysS.

Definition 3 It is said that theg-cover S
{S;}jes manifold M is equipped with a complete
vector systemd = {a; | j € J, a; € Ri}if for
pointst € M\ U,c s 0S; vector system

A<t>:{aj |Vj€j,8j9t}

is the basis of spacB?. In this case the vector system
A is called the complete equipment of the fansily

(17)

By (17) it follows that if A is the complete equip-
ment of S, andC = F(S), then for fixedk € I,
C, € C, the ratios

A(t/) = A(t”) for Vt’, t" e Ck (18)
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are correct. Now we can introduce a notidp =
A(t) for t e Ck.
Thus

Ap={a;/ |Vj' €T, 8;:DC}.  (19)

Using (17) — (19), we obtain the equivalences

ajgéAk = §; NC =0. (20)

It is also clear that if the cover ig-step one, and,
andC. are adjacent, then the number vectors in the
setsAy\ Ay equalsp.

Example 3  For an illustration we turn to ex-
amplel, in which the cover of the sphefeis con-
sidered.As equipment of this cover we take a system
of six (nonzero) three-dimensional vectors that are di-
rected along straight lines, outgoing from the center of
the sphere and passing through vertices of the consid-
ered triangulation. As a result theequipment of each
cell (in our case, that is the triangle) consists of three
vectors corresponding to the vertices of the discussed
triangle. Obviously, these vectors form alinearly in-
dependent system R3. In this way, the resulting
equipment is complete.

Exampled. Go back to thesituation arising in
theconstruction of the Hermite type splines of thefirst
height (see Example 2). Just mentioned splines arede-
termined (see [19]) by the continuously differentiated
four-component vector functiop(t), which satisfy-
ing the condition

det((x), 0" (x), 0(y), 0" (y)) # 0

Va,y € (o, B),x # y.

In this case, the vectap’(x;1) is associated to the
covering setS,;_1 and thevectory(x;1) is associ-
atedto the covering sef,;. It is easy to see that the
resulting equipment of the covéris complete.

(21)

3 Minimal spline space

In whatfollows, the previously introduced séjsare
consideredin the topology induced by the original at-
las of the manifoldM.Let U be a linear space which
is the directproduct of spacé§(Cy),

U = (X) X(Cx).

kel

We assume that the restriction of the functione

X (M) on the cellC; belongs toX(Cj),thus the nat-
ural embeddingX(M) in U is defined, X(M) C

U.We agree to consider the recafy € X*(Cy) as
the equivalent of ratio$), € U*, suppFy, C C.
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Let m beanonnegative integer, and= ¢. Con-
sider a vector functiop : M — R with compo-
nents[y];(t) from spaceX(M), i = 0,1,2,...,m.
This fact is further expressed in the recopd €
X(M).

Hereafter, the notatiod is also used for the ma-
trix consisting of column vectors;, A = (a;)jc.s-

Theorem 1 LetS be ag-cover family (formM),
and the column vector systerh = {a;};cs be the
full equipment of the famil§. Then a single (column)
vector functionu(t) = (w;(t));cs, which satisfies the
ratios

Aw(t) = o(t) Vte M\ (] 0S;,
JjeT

wj(t') =0 Vt/ ¢ Sj

(22)

exists.
Proof: According to the definition of a set; (see
also formulas (18) - (20) and (22)) we have

> ajw;(t) = o(t)

a; €A;

VteC; Vie K. (23)

Since, by the definition of the full equipment, the set
of {a; | a; € A;} is a basis irRY, the matrix of the
system (23) is non-singular, so the unknownst),
considered for each fixede C; and for each ¢ K,
are determined uniquely. This completes the proof.

Example 5 Again, we go back to examples 1
and 3, inwhich the spheré& with the center at the
origin is discussed. The cel@ of the cogsidered
coverS are spherical triangles. LetBe= C; oneof
them. Supposehat this triangle is the intersection
of the covering seté:’j (bodies ofbarycentricstars),
j € {1,2,3}.Its equipment is a linearly independent
systemofthree vector&,, as, a3, which are outgoing
from the origin to the vertex directions of this triangle.
It is clear that the vectors;, j = 1,2,3, are linearly
independent. By definition putA; = {a;,as,as}.
The ratio(23) takes the form

31&\21 (t) + 52@2@) + 33@'3 (t) = gD(t) VteT.

By thelast ratio we derive identities

_ det(w(t% 327 a3)

o (t) — _ det(ala (p(t>7a3>
! det(ay, ag,a3) ’

Wo(t) = ~ = =~
W2( ) det(al7a27a3)

det(ay, as, o(t
(:)3(t) _ € (a17a27¢( ))

det(ﬁl, 32, 33) ’
orin brief

oy det((@ae A s 23 117 ()
A det({a, | &, € 4;})
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forvte T=CcS;, j=1,2,3.

If the family S is r» + 1 -step cover « is non-
negative integer), then we say tH&, A, ¢) -splines
have height. Forr = 0 splines are called the splines
of the Lagrange type, and far > 0 are called the
splines of the Hermite type). Otherwise case of talk-
ing about the splines of different height.

Example 6 Letus return to Example 4. Suppose
thecondition(21) is fulfilled. In this case approxima-
tion relationstake the form

Y (pharwaj-1(t) + j1wa;(t)) = p(t),
J
where
suppwaj—1 C [}, Tj+2],
suppwaj C [xj,xj42] Vj € Z.

ForVq € Z we obtain coordinate splines (see [19])

_ det(pg, g, (1), pg+1)
det(@ip@t}a@;ﬂ#’qﬂ)

waq—1(t)
for te (vq,xq41),

_ det(go(t), @q-f—la <p:1+27 (Pq+2)
det(® o115 Pa+1s P gias Pat2)

for te (.%'q+1,$q+2),

waq—1(t)

det(gpip Pq> 90514-17 80(75))
det(()@fp P> 9051-1-1’ (Pq—i-l)

for te (xq,zq41),

waq(t) =

_ det(pgi1, 0(1): 42, Pa+2)
det (¢ o115 Pat1, P gy2s Pa+2)

for te (g1, 2q42).

W2q

4 Pseudocontinuityof spline approx-
imations

With each cell ofC;, we associate a linear functional
F, € (X(Cp))*, k € K. If the cellsCy, andCy are
adjacent, then pull, .- = {a; |a; € A, N Ay }. We
introduce a condition

(A) aratio

Fro=Fyp (24)

is true.
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It is clear to see that the next assertion is correct.

Lemma 1 Let for fixedk, k' € K cellsC, and
C,+ are adjacent, and linear functionals,, F}- have
supports in cells o€, and C; respectively. At last
suppose that the conditiof) is satisfied. If one of
the relations

F}. wj = 0 for a; € Ak\Ang/, (25)
Frrw;jr=0 for a; € Ak’\Ak,klv (26)

is satisfied then the ratios
kaj = Fp Wi Vj e Ak,k/ (27)

are right. If in addition the vectors system
(Ar U Ap)\Ay i is linearly independent, and ra-
tios (27) are fulfilled then relations (25) and (26) are
right.

If the condition (24) is satisfied, then we put

Fupny = Frp = Firep. (28)

Theorem 2 Letk, k'’ € K be fixed. Suppose the
cellsC, andCy are adjacent, and linear functionals
Fy., Fy have supports in cells @f;, andCy+ respec-
tively. In addition we assume the conditions (24) are
valid. Then equalities’ family

kaj:Fk/wj Vjied (29)
and the relations
Fupne € L{as|as € Appr} (30)

are equivalent.
Proof: If relations (29) are right then formulas
(25) hold by Lemma 1. Applying the functional, to

the relation (22) (see also (23)) and using the Cramer

formula, by (25) we get
det ({as ;a5 € Ay, 5 # j} || Frp) =0 (31)

for a; € Ap\Ap .

By relation (28) and formula (31) we see that the
vector Fi; ;. belongs to the linear hull; =
L{as|as, € Ag,s # j}, wherej is such that; €
A\ Ay - So the vectof;, ;.o pertains to the inter-
section of the mentioned linear hulls, and this is equiv-
alent to the formula (30).

Otherwise, if (30) is fulfilled, then (31) holds,

and we have relations (25) — (26) and also (27) (see

Lemma 1).
Thus, the relations (25) and (30) are equivalent.
This concludes the proof.
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5 Maximum pseudo-smooth coordi-
nate functions

Consider some linear subspddg spacedJ, contain-
ing spaceX(M). Let Fj, be the set of linear func-
tionals fromU™* with supports irC;, Vk € K. Among
them, we single out the (possibly empty) $&tthose
functionalsFy, ;, for each of which there is a functional
Fy.; s the support in the next cél},, k' = k'(k, 1),

I = 1(k,1) such that

Fyu = Fy, "(k,i), (ki) U Yu € Uy. (32)
By definition, putF = e Fy. If the property
(32) holds for allF, ; € F and all consideredt € K
(thosek for which 7)) = § are excluded), then the
function v is called®-smooth The set ofF--smooth
functionsu, u € U, is denoted byUg. It's clear that
Ur is alinear space arfd, C Ur. Next, we assume
thatF} are non-empty sets.

Suppose now that the condition is satisfied

(B) The vector functiorp(t) is F-smooth (i.e.,
its components arE -smooth functions).

The condition(B) means that

Frie = Foreay e VFii € Fip Yk €K,

Thus, for a pair of neighboring cell§Cy,Cy)
and pairs of functionalsF}, = Fj, and I}, =
Flr(0), 10k, the condition(A) is satisfied.

Theorem 3. Let condition(B) be fulfilled. For
F-smoothness of coordinate functiong j € J, it
is necessary and sufficient that for eakhe K the
vectorsFy ; lay in a linear hull £L{a, |a; € Ay}
VFy; € F2, wherek’ = k'(k,1).

Proof: The formulated assertion follows from
Theorem 2 (see also formulas (28) — (30)).

Let L{F}} be the linear hull of the sek}.

Definition 4 Ifthe ratiosdim £{F}} =q  Vk €
KC are correct, then th&-smoothness is called maxi-
mal pseudo-smoothness.

Note, that maximal pseudo-smoothness is not
unique.

Theorem 4. If ¢ € Up, and F-smoothness is
maximal pseudo-smoothness, then functioyis) are
determined by the restriction of vector function@)
on the sesuppw;.

Proof: LetC; be a subset ofuppw;. Under the
condition(B), all the vectorsa, from setA; can be
represented as linear combinations of vectogswith
functionalsF from the setF.. Since the functionals
of the setF} have a supportin the cell,, then by for-
mula (23) it follows that the functiow; on the cellC;,
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is determinedby the values of vector functions(t)
on this cell. A view of all cells in this sef; allows us
to conclude that the theorem have been proved.

6

The use of approximation relations does not guarantee

the embedding of the resulting spaces. However, if the
coordinate functions are smooth, then the spaces are
embedded on embedded grids. In the one-dimensional
casethis is true for spline spaces consisting of smooth [10]

Conclusion

(generally speaking, non-polynomial) splines of both

the

Lagrangian and Hermitian types.

In this paper the embedded spaces are built for

functions defined on a differentiable manifold. The
source objects are tlgecover manifold and associated
approximation relations.

In the widened version of this work it will be

represented the simple verifiable conditions for the
spline-wavelet decomposition in the multidimensional

case.
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