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Abstract: The aim of this article is to discuss the generalized smoothness for the splines onq-covered manifold,
whereq is the natural number. By using mentioned smoothness it is possible to consider the different types of
smoothness, for example, the integral smoothness, the weight smoothness, the derivatives smoothness, etc. We
find the necessary and sufficient conditions for calculation of basic splines with a’priori prescribed smoothness.
The mentioned smoothness may contain no more thanq (locally formulated) linearly independentconditions. If the
number of the conditions is exactlyq, then the discussed spline spaces on the embedded grids are also embedded.
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1 Introduction

Splines are a well-known processing apparatus
forstreams of numerical information (see [1] - [5],
[12], [14], [22] - [24]). Science researches are in-
terested in such qualities as an approximation prop-
erty, interpolation property, property of anaccuracy on
certain linear subspaces, the property ofsmoothness
in one sense or another (see [6] - [11], [13], [15]).
The last property is important in the questions of re-
fining approximation, in theconstruction of the finite
element methods, in the wavelet decomposition, etc.
(see [16] - [22]).

The history of the splines’ development has not
one decade (not later than the forties of the last cen-
tury). Just now it is time to find the approach to the
methods for construction of splines with a’priori pre-
scribed properties (see [6] - [11], [16] - [22]).

A universal source of splines is approximation re-
lations.

Consider the simplest case. On the real axis, con-
sider the grid

X : . . . < x−1 < x0 < x1 < . . . , (1)

α = lim
i→−∞

xi, β = lim
i→+∞

xi.

Discuss the approximation relations

∑

j

ajωj(t) = ϕ(t), (2)

suppωj ⊂ [xj , xj+q], (3)

whereaj areq-component vectors (columns) with the
property

det(aj ,aj+1, . . . ,aj+q−1) 6= 0 ∀j ∈ Z, (4)

ϕ(t) is aq-component vector function.
The approximation relations (2) contain the next

objects: the generating vector functionϕ(t), the com-
plete chain of vectors{aj}j∈Z, the location of the sup-
ports (3), the multiplicityq of the cover by the men-
tioned supports of the desired basic functionsωj(t).

The generating vector functionϕ(t) determines
the structural characteristics of the spline (polynomial,
trigonometric, exponential,mixed, etc.). The chain of
vectors{aj}j∈Z determines the degree and nature of
spline smoothness (the number of available deriva-
tives or integral smoothness,weight smoothness, etc.).
In addition, the vector chain defines the embedding
property for spline spaces. The mentioned chain also
determines interpolation properties of the splines. The
location (3) of the basic spline supports determines
the spline type (splines of the Lagrangian type or the
Hermitian type, splines of a mixed type etc.). Finally,
the multiplicityqdetermines approximation properties
(the order ofapproximation).

The aim of this article is to discuss the general-
ized smoothness for the splines onq-covered mani-
fold, whereq is the natural number. By using the
mentioned smoothness it is possible to consider the
different types of smoothness, for example, the inte-
gral smoothness, the weight smoothness, the deriva-
tives smoothness, etc. We find the necessary and suf-
ficient conditions for calculation of basic splines with
a’priori prescribed smoothness.
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Thementionedsmoothness may contain no more
thanq (locally formulated) linearly independentcondi-
tions. If the number of the conditions is exactlyq, then
the discussed spline spaces on the embedded grids are
also embedded.

As discussed before, the property of the embed-
ding spaces on the subdivisions is very important
for the finite element method, multigrid method, and
wavelet decompositions. However, this property is not
always fulfilled. Let’s give a simple example of the
breaking of this property. Consider the case ofq = 3.

Relations (2) – (4) define the functionsωj(t) on
the set(α, β)\X. By (2) we have

ωj(t) =
det(aj−2,aj−1, ϕ(t))
det(aj−2,aj−1,aj)

(5)

for t ∈ (xj , xj+1),

ωj(t) =
det(aj−1, ϕ(t),aj+1)
det(aj−1,aj ,aj+1)

(6)

for t ∈ (xj+1, xj+2),

ωj(t) =
det(ϕ(t),aj+1,aj+2)
det(aj ,aj+1,aj+2)

(7)

for t ∈ (xj+2, xj+3).

Now we discuss the enlarged grid̂X = X\xk+1

obtained from (1) by deleting the knotxk+1,

X̂ : . . . < x̂−1 < x̂0 < x̂1 < . . . , (8)

where x̂j = xj with j ≤ k, x̂j−1 = xj with j >
k + 1. We define the coordinate functionsω̂j by the
approximation relation

∑

j

âjω̂j(t) = ϕ(t), suppω̂j ⊂ [x̂j , x̂j+3], (9)

whereâj are three-component vectors (columns) with
the property

det(âj , âj+1, âj+2) 6= 0 ∀j ∈ Z,

andϕ(t) is the former three-component vector func-
tion.

Analogously by (9) we obtain

ω̂j(t) =
det(âj−2, âj−1, ϕ(t))
det(âj−2, âj−1, âj)

(10)

for t ∈ (x̂j , x̂j+1),

ω̂j(t) =
det(âj−1, ϕ(t), âj+1)
det(âj−1, âj , âj+1)

(11)

for t ∈ (x̂j+1, x̂j+2),

ω̂j(t) =
det(ϕ(t), âj+1, âj+2)
det(âj , âj+1, âj+2)

(12)

for t ∈ (x̂j+2, x̂j+3).

Therearemany options for choosing vectorŝai and
aj . We are interested in the cases for which each func-
tion ω̂i can be represented as a finite linear combina-
tion of functionsωj . Such representations are called
calibration relations(see [20]).

Let us proceed to the presentation of the example
when the calibration relations are violated.

Suppose the vector functionϕ(t) satisfy the con-
dition

det(ϕ(t0), ϕ(t1), ϕ(t2)) 6= 0 (13)

for any different t0, t1, t2 ∈ R1.

We introduce the notationϕs = ϕ(xs), ϕ̂s = ϕ(x̂s)
∀s ∈ Z.

By definition putaj = ϕj+1 and âj = ϕ̂j+1.
Taking into account formulas (5) – (7) and (10) – (13),
we obtain functionsωj and ω̂j . The last one can be
prolonged on interval(α, β) continuously (see [11]).
In what follows we suppose that such prolongation is
fulfilled.

At first we give a negative example of an algo-
rithm that shows the case for which the mentioned
representation are absent.

As it is said above the functionsωj and ω̂j are
continuous on the interval(α, β), but it is easy to see
that the first derivative of these functions has discon-
tinuities of the first kind in the nodes. Each of the
systems of functions{ωj}j∈Z and{ω̂j}j∈Z is a linear
independent system.

Let us show that the function̂ωk−2 cannot be rep-
resented by a finite linear combination of functionsωi.
Suppose the contrary, i.e. that with some constants
c−2, c−1 true ratio

ω̂k−2 = c−2ωk−2 + c−1ωk−1 (14)

(it is easy to see that the use of other functionsωs is
not necessary due to the location of their supports).

Consider the relation (14) fort = xk+1. Because
xk+1 ∈ (x̂k, x̂k+1), by (12) forj = k − 2 we have

ω̂k−2(xk+1) =
det(ϕ(xk+1), ϕ(x̂k), ϕ(x̂k+1))
det(ϕ(x̂k−1), ϕ(x̂k), ϕ(x̂k+1))

=

=
det(ϕ(xk+1), ϕ(xk), ϕ(xk+2))
det(ϕ(xk−1), ϕ(xk), ϕ(xk+2))

.

Thusω̂k−2(xk+1) 6= 0. By (6) for j = k − 1 and by
(7) for j = k − 2 it is clear to see thatωk−2(xk+1) =
ωk−1(xk+1) = 0. This contradiction concludes the
proof. Thus we see the relation (14) is impossible.
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Therearemany ways to build sequences of vec-
torsaj andâj for which the resulting functionŝωj can
be expressedas a finite linear combination of functions
ωj . Briefly we discuss one such method.

Let ϕ ∈ C1(α, β). Consider the vectorsa∗j and
â∗j , defined using vector product

a∗j = cj(ϕj+1 × ϕ ′
j+1)× (ϕj+2 × ϕ ′

j+2),

â∗j = ĉj(ϕ̂j+1 × ϕ̂ ′
j+1)× (ϕ̂j+2 × ϕ̂ ′

j+2); (15)

hereϕ ′
s = ϕ ′(xs) andϕ̂ ′

s = ϕ ′(x̂s).
Assumingas = a∗s and âs = â∗s ∀s ∈ Z in

approximation relations (2) and (9), respectively, we
obtain the functionŝω∗i andω∗j ∀i, j ∈ Z. For these
functions the next calibration ratios

ω̂∗j (t) ≡ ω∗j (t) ∀j ≤ k − 3;

ω̂∗j (t) ≡ ω∗j+1(t) ∀j ≥ k + 1,

ω̂∗i = c∗i,0ω
∗
i + c∗i,1ω

∗
i+1 (16)

for i = k − 2, k − 1, k,

are valid. Herec∗i,0 and c∗i,1 are some numeric con-
stants(see [11]).

The spaces of the aforementioned splines, built on
embedded grids, are emdedded in each other.

In particular, if ϕ(t) = (1, t, t2)T , then by
(15) we find

a∗j = 2(xj+1 − xj)(1, (xj + xj+1)/2, xjxj+1)T ,

â∗j = 2(x̂j+1 − x̂j)(1, (x̂j + x̂j+1)/2, x̂j x̂j+1)T .

In this case we get the continuously differentiable
quadratic splines (see [1]).

The introduction of generalized smoothness is al-
lowed to diversify types of spline spaces and take into
account the peculiarities of the approximated func-
tions (for example, breaks of the function itself or its
derivatives).In this case, the generalized smoothness
still leads to embedded spaces and calibration rela-
tions (see [16], [17], [19]).

In the multidimensional case, continuity, and even
more so, smoothnessis the exception rather than the
rule. For example, the requirement of continuity of
coordinate functions of the Courant type can lead to
the need to build acurvilinear grid (see [21]), which is
accompanied by conditions that are difficult to imple-
ment on practice.

Wavelet decomposition for information flows,
which emanate from complex-shaped bodies, wasdis-
cussed in [20] –[21]. But the embedding conditions,
formulated there, are not convenient for practical use.

Enlargement of the cover and use of similar ap-
proximation relations, associated with the new cover,
leads to calibration relations and tothe correspond-
ing embedded space. As a result of the projection
of the original space onto the embedded space we
getspline-wavelet decomposition. Notice that the pro-
posed method is associated with a specific class oflo-
cal enlargements of the manifold covers. There are
a number of other classes of local enlargements (see
[12], [14]); they are not considered in this paper.

2 Notation and auxiliary statements.
Manifold cover and its equipment

Consider a smoothn-dimensional (generally speak-
ing, non-compact) manifoldM (i.e. a topological
space in which each point possesses a neighborhood
that is diffeomorphic to an openn -dimensional ball
of the Euclidean spaceRn).

Let q be a natural integer,q ≥ 1, andJ be an
ordered set of indices, no more than countable. Let
S = {Sj}j∈J be a family of subsetsSj ⊂ M, each
of which is homeomorphic to an openn-dimensional
ball. Suppose thatCl

(⋃
j∈J Sj

)
= M, whereCl is

closure.
Let ∂Sj be the boundarysets ofSj . If each pointt

of the setM\(⋃|∈J ∂S|) belongs toexactlyq subsets
of Sj , thenS is calledq-coverofthe manifoldM. In
what follows we discuss onlyq-coverS ofthe mani-
fold M. Sj is called a covering set of the coverS.

For each pointt ∈ M\⋃
j∈J ∂Sj consider

the collection of the sets containing it and dis-
cuss the intersectionC(t) of mentioned sets,C(t) =⋂

j∈J ,Sj3t Sj . It is obvious that if t ′ ∈ C(t) then
C(t ′) = C(t). We suppose that collectionC of differ-
ent setsC(t) for the mentionedt, no more than count-
able. Further we denote them byCi, i ∈ K (hereK
is an ordered set of indices). So,C = {Ci | i ∈ K}.
Thus, coverS matches the setC. The mapping rule
described above isdenoted byF , C = F(S). Aggre-
gateC is calledsplitting of coverS.

We suppose that each setCi from the splitting
F(S) is homeomorphic to an open ball. In this case
the setCi is called a cell.

Example 1. As an illustration, consider the
sphereS (centered atthe origin), divided into eight
identical spherical triangles obtained by the coordi-
nate planes which go through the center of the sphere.
We remove the boundary of these triangles, so that we
consider them as open sets. The resulting triangula-
tion contains six vertices. With each vertices we as-
sociate the corresponding barycentric star. The body
of each barycentric star is the corresponding hemi-
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sphere,which is obtained by closing the set of points
of triangles ofthis barycentric stars. By removing the
boundary of each such hemisphere (i.e., removing cor-
responding circumference of large circle), we obtain
the covering setŜj , j = 1, 2, 3, 4, 5, 6. So, the
”open” hemispheres are covering setsŜj , j ∈ Ĵ ,
Ĵ = {1, 2, 3, 4, 5, 6}, and the open triangles are cells
Ĉi, i ∈ K̂, K̂ = {1, 2, . . . , 8}. The multiplicity of the
resultingcover is equal to three.

Definition 1 Supposethat i 6= i′, i, i′ ∈ K, and
a point t belongs to the boundary∂Ci of the cellCi.
Let Ci′ be a cell, and let some neighborhood of the
point t be in the unionCi′

⋃
Cl (Ci). Then the cellCi′

is called adjacent to cellCi (i, i′ ∈ K) in splitting of
coverS.

Obviously, if the cellCi′ is adjacent toCi, thenCi is
adjacent toCi′ ; Ci andCi′ cells are calledthe adjacent
cells (in the splitting of coverS). If Ci andCi′ are
adjacent cells we writeCi

∼= Ci′ .

Definition 2 If Ci
∼= Ci′ and the difference{j | Sj ⊃

Ci}\{j′ | Sj′ ⊃ Ci′} contains exactlyp elements
(wherep ≥ 1), then the familyS is called ap-step
q-cover for manifoldM.

Example 2. As an illustration of the last def-
inition, consider situation arising in the construction
of the Hermitian type splines (see [19]). LetX be
a grid on the interval(α, β) ∈ R1 (seeformula (1))
. We assume thatM = (α, β), J = Z, K = Z.
LetS2j−1 = S2j = (xj , xj+2) be cover sets,j ∈ J ,
and S = {S2j−1,S2j | j ∈ J} be the cover of(α, β).
Then intervals Ci = (xi, xi+1) be the cells,i ∈ K,
and thesetC = {Ci | i ∈ K} be the splitting of the
coveringS. Obviously, in this caseq = 4, p = 2.

With each setSj of family S we associate a vector
aj from aq-dimensional Euclidean spaceRq, j ∈ J .
SetA = {aj | j ∈ J , aj ∈ Rq} is called an equip-
ment of the familyS.

Definition 3 It is said that the q-cover S =
{Sj}j∈J manifoldM is equipped with a complete
vector systemA = {aj | j ∈ J , aj ∈ Rq} if for
pointst ∈M\⋃

j∈J ∂Sj vector system

A〈t〉 = {aj | ∀j ∈ J ,Sj 3 t} (17)

is the basis of spaceRq. In this case the vector system
A is called the complete equipment of the familyS.

By (17) it follows that ifA is the complete equip-
ment ofS, andC = F(S), then for fixedk ∈ K,
Ck ∈ C, the ratios

A〈t′〉 = A〈t′′〉 for ∀t′, t′′ ∈ Ck (18)

are correct. Now we can introduce a notionAk =
A〈t〉 for t ∈ Ck.

Thus

Ak = {aj ′ | ∀j ′ ∈ J , Sj ′ ⊃ Ck}. (19)

Using (17) – (19), we obtain the equivalences

aj /∈ Ak ⇐⇒ Sj ∩ Ck = ∅. (20)

It is also clear that if the cover isp-step one, andCk

andCk ′ are adjacent, then the number vectors in the
setsAk\Ak ′ equalsp.

Example 3. For an illustration we turn to ex-
ample1, in which the cover of the sphereS is con-
sidered.As equipment of this cover we take a system
of six (nonzero) three-dimensional vectors that are di-
rected along straight lines, outgoing from the center of
the sphere and passing through vertices of the consid-
ered triangulation. As a result theequipment of each
cell (in our case, that is the triangle) consists of three
vectors corresponding to the vertices of the discussed
triangle. Obviously, these vectors form alinearly in-
dependent system inR3. In this way, the resulting
equipment is complete.

Example4. Go back to thesituation arising in
theconstruction of the Hermite type splines of thefirst
height (see Example 2). Just mentioned splines arede-
termined (see [19]) by the continuously differentiated
four-component vector functionϕ(t), which satisfy-
ing the condition

det(ϕ(x), ϕ ′(x), ϕ(y), ϕ ′(y)) 6= 0 (21)

∀x, y ∈ (α, β), x 6= y.

In this case, the vectorϕ ′(xj+1) is associated to the
covering setS2j−1 and thevectorϕ(xj+1) is associ-
atedto the covering setS2j . It is easy to see that the
resulting equipment of the coverS is complete.

3 Minimal spline space
In what follows, the previously introduced setsCk are
consideredin the topology induced by the original at-
las of the manifoldM.Let U be a linear space which
is the directproduct of spacesX(Ck),

U =
⊗

k∈K
X(Ck).

We assume that the restriction of the functionu ∈
X(M) on the cellCk belongs toX(C‖),thus the nat-
ural embeddingX(M) in U is defined,X(M) ⊂
U.We agree to consider the recordFk ∈ X∗(Ck) as
the equivalent of ratiosFk ∈ U∗, suppFk ⊂ Ck.
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Let m bea nonnegative integer, andq = q. Con-
sider a vector functionϕ : M→ Rq with compo-
nents[ϕ]i(t) from spaceX(M), i = 0, 1, 2, . . . , m.
This fact is further expressed in the recordϕ ∈
X(M).

Hereafter, the notationA is also used for the ma-
trix consisting of column vectorsaj , A = (aj)j∈J .

Theorem 1 Let S be aq-cover family (forM),
and the column vector systemA = {aj}j∈J be the
full equipment of the familyS. Then a single (column)
vector functionω(t) = (ωj(t))j∈J , which satisfies the
ratios

Aω(t) = ϕ(t) ∀t ∈M\
⋃

j∈J
∂Sj , (22)

ωj(t ′) = 0 ∀t ′ /∈ Sj

exists.
Proof: According to the definition of a setAi (see

also formulas (18) - (20) and (22)) we have
∑

aj∈Ai

ajωj(t) = ϕ(t) ∀t ∈ Ci ∀i ∈ K. (23)

Since, by the definition of the full equipment, the set
of {aj | aj ∈ Ai} is a basis inRq, the matrix of the
system (23) is non-singular, so the unknownsωj(t),
considered for each fixedt ∈ Ci and for eachi ∈ K,
are determined uniquely. This completes the proof.

Example 5. Again, we go back to examples 1
and 3, inwhich the sphereS with the center at the
origin is discussed. The cellŝCi of the considered
coverŜ are spherical triangles. Let beT = Ĉi oneof
them. Supposethat this triangle is the intersection
of the covering setŝSj (bodies ofbarycentricstars),
j ∈ {1, 2, 3}.Its equipment is a linearly independent
systemofthree vectorŝa1, â2, â3, whichare outgoing
from the origin to the vertex directions of this triangle.
It is clear that the vectorŝaj , j = 1, 2, 3, are linearly
independent.By definition putAi = {â1, â2, â3}.
The ratio(23) takes the form

â1ω̂1(t) + â2ω̂2(t) + â3ω̂3(t) = ϕ(t) ∀t ∈ T.

By thelast ratio we derive identities

ω̂1(t) =
det(ϕ(t), â2, â3)
det(â1, â2, â3)

, ω̂2(t) =
det(â1, ϕ(t), â3)
det(â1, â2, â3)

,

ω̂3(t) =
det(â1, â2, ϕ̂(t))
det(â1, â2, â3)

,

or in brief

ω̂j(t) =
det

(
{âs | âs ∈ Âi, s 6= j} ||′j ϕ(t)

)

det
(
{âs | âs ∈ Âi}

)

for ∀t ∈ T = Ĉi ⊂ Ŝj , j = 1, 2, 3.

If the family S is r + 1 -step cover (r is non-
negative integer), then we say that(S, A, ϕ) -splines
have heightr. Forr = 0 splines are called the splines
of the Lagrange type, and forr > 0 are called the
splines of the Hermite type). Otherwise case of talk-
ing about the splines of different height.

Example 6. Let us return to Example 4. Suppose
thecondition(21) is fulfilled. In this case approxima-
tion relationstake the form

∑

j

(ϕ ′
j+1ω2j−1(t) + ϕj+1ω2j(t)) = ϕ(t),

where
suppω2j−1 ⊂ [xj , xj+2],

suppω2j ⊂ [xj , xj+2] ∀j ∈ Z.

For ∀q ∈ Z we obtain coordinate splines (see [19])

ω2q−1(t) =
det(ϕ ′

q, ϕq, ϕ(t), ϕq+1)
det(ϕ ′

q, ϕq, ϕ ′
q+1, ϕq+1)

for t ∈ (xq, xq+1),

ω2q−1(t) =
det(ϕ(t), ϕq+1, ϕ

′
q+2, ϕq+2)

det(ϕ ′
q+1, ϕq+1, ϕ ′

q+2, ϕq+2)

for t ∈ (xq+1, xq+2),

ω2q(t) =
det(ϕ ′

q, ϕq, ϕ
′
q+1, ϕ(t))

det(ϕ ′
q, ϕq, ϕ ′

q+1, ϕq+1)

for t ∈ (xq, xq+1),

ω2q(t) =
det(ϕ ′

q+1, ϕ(t), ϕ ′
q+2, ϕq+2)

det(ϕ ′
q+1, ϕq+1, ϕ ′

q+2, ϕq+2)

for t ∈ (xq+1, xq+2).

4 Pseudocontinuityof spline approx-
imations

With each cell ofCk we associate a linear functional
Fk ∈ (X(Ck))∗, k ∈ K. If the cellsCk andCk ′ are
adjacent, then putAk,k ′ = {aj |aj ∈ Ak ∩Ak ′}. We
introduce a condition

(A) a ratio
Fkϕ = Fk ′ϕ (24)

is true.
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It is clear to see that the next assertion is correct.
Lemma 1 Let for fixedk, k ′ ∈ K cellsCk and

Ck ′ are adjacent, and linear functionalsFk, Fk ′ have
supports in cells ofCk and Ck ′ respectively. At last
suppose that the condition(A) is satisfied. If one of
the relations

Fk ωj = 0 for aj ∈ Ak\Ak,k′ , (25)

Fk ′ ωj ′ = 0 for aj ′ ∈ Ak ′\Ak,k′ , (26)

is satisfied then the ratios

Fkωj = Fk ′ ωj ∀j ∈ Ak,k ′ (27)

are right. If in addition the vectors system
(Ak ∪ Ak ′)\Ak,k ′ is linearly independent, and ra-
tios (27) are fulfilled then relations (25) and (26) are
right.

If the condition (24) is satisfied, then we put

F(k,k ′)ϕ = Fkϕ = Fk ′ϕ. (28)

Theorem 2 Let k, k ′ ∈ K be fixed. Suppose the
cellsCk andCk ′ are adjacent, and linear functionals
Fk, Fk ′ have supports in cells ofCk andCk ′ respec-
tively. In addition we assume the conditions (24) are
valid. Then equalities’ family

Fk ωj = Fk ′ ωj ∀j ∈ J (29)

and the relations

F(k,k ′)ϕ ∈ L{as |as ∈ Ak,k ′} (30)

are equivalent.
Proof: If relations (29) are right then formulas

(25) hold by Lemma 1. Applying the functionalFk to
the relation (22) (see also (23)) and using the Cramer
formula, by (25) we get

det
(
{as |;as ∈ Ak, s 6= j} ||′j Fkϕ

)
= 0 (31)

for aj ∈ Ak\Ak,k′ .

By relation (28) and formula (31) we see that the
vector F(k,k ′)ϕ belongs to the linear hullLj =
L{as |as ∈ Ak, s 6= j}, wherej is such thataj ∈
Ak\Ak,k′ . So the vectorF(k,k ′)ϕ pertains to the inter-
section of the mentioned linear hulls, and this is equiv-
alent to the formula (30).

Otherwise, if (30) is fulfilled, then (31) holds,
and we have relations (25) – (26) and also (27) (see
Lemma 1).

Thus, the relations (25) and (30) are equivalent.
This concludes the proof.

5 Maximum pseudo-smooth coordi-
nate functions

Consider some linear subspaceU0 spacesU, contain-
ing spaceX(M). Let Fk be the set of linear func-
tionals fromU∗ with supports inCk ∀k ∈ K. Among
them, we single out the (possibly empty) setF0

k those
functionalsFk,i, for each of which there is a functional
Fk ′, l s the support in the next cellCk ′ , k ′ = k ′(k, i),
l = l(k, i) such that

Fk,iu = Fk ′(k,i), l(k,i)u ∀u ∈ U0. (32)

By definition, putF =
⋃

k∈K F0
k. If the property

(32) holds for allFk,i ∈ F0
k and all consideredk ∈ K

(thosek for which F0
k = ∅ are excluded), then the

function u is calledF-smooth. The set ofF-smooth
functionsu, u ∈ U , is denoted byUF. It’s clear that
UF is a linear space andU0 ⊂ UF. Next, we assume
thatF0

k are non-empty sets.
Suppose now that the condition is satisfied
(B) The vector functionϕ(t) isF-smooth (i.e.,

its components areF -smooth functions).
The condition(B) means that

Fk,iϕ = Fk ′(k,i), l(k,i)ϕ ∀Fk,i ∈ F0
k ∀k ∈ K.

Thus, for a pair of neighboring cells(Ck, Ck ′)
and pairs of functionalsFk = Fk,i and Fk ′ =
Fk ′(k,i), l(k,i) the condition(A) is satisfied.

Theorem 3. Let condition(B) be fulfilled. For
F-smoothness of coordinate functionsωj , j ∈ J , it
is necessary and sufficient that for eachk ∈ K the
vectorsFk,iϕ lay in a linear hull L{as |as ∈ Ak,k ′}
∀Fk,i ∈ F0

k , wherek ′ = k ′(k, i).
Proof: The formulated assertion follows from

Theorem 2 (see also formulas (28) – (30)).
LetL{F0

k} be the linear hull of the setF0
k .

Definition 4 If the ratiosdimL{F0
k} = q ∀k ∈

K are correct, then theF-smoothness is called maxi-
mal pseudo-smoothness.

Note, that maximal pseudo-smoothness is not
unique.

Theorem 4. If ϕ ∈ UF, andF-smoothness is
maximal pseudo-smoothness, then functionsωj(t) are
determined by the restriction of vector functionsϕ(t)
on the setsuppωj .

Proof: Let Ck be a subset ofsuppωj . Under the
condition(B), all the vectorsas from setAk can be
represented as linear combinations of vectorsFϕ with
functionalsF from the setF0

k . Since the functionals
of the setF0

k have a support in the cellCk, then by for-
mula (23) it follows that the functionωj on the cellCk
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is determinedby the values of vector functionsϕ(t)
on this cell. A view of all cells in this setSj allows us
to conclude that the theorem have been proved.

6 Conclusion

The use of approximation relations does not guarantee
the embedding of the resulting spaces. However, if the
coordinate functions are smooth, then the spaces are
embedded on embedded grids. In the one-dimensional
casethis is true for spline spaces consisting of smooth
(generally speaking, non-polynomial) splines of both
the Lagrangian and Hermitian types.

In this paper the embedded spaces are built for
functions defined on a differentiable manifold. The
source objects are theq-cover manifold and associated
approximation relations.

In the widened version of this work it will be
represented the simple verifiable conditions for the
spline-wavelet decomposition in the multidimensional
case.
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