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Abstract: - InterCriteria analysis (ICrA) has been applied here to examine the influence of three main artificial 
bee colony (ABC) algorithm’s control parameters, namely number of population, maximum cycle number and 
limit, during the model parameter identification of Saccharomyces cerevisiae fed-batch fermentation process. 
The relations and dependences between ABC parameters, on the one hand, and convergence time, model 
accuracy and model parameters on the other hand, have been outlined. Some valuable conclusions, about 
derived interactions are reported, expected to be very useful especially in the case of fermentation process 
modelling. 
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1 Introduction 
Fermentation processes (FP), as a part of 
biotechnological ones, have been widely applied in 
pharmaceutical, food and beverages industries. But 
FP combine the dynamics of biological and non-
biological processes, thus their modeling and future 
high-quality control become rather difficult to be 
solved task. In the most cases, conventional 
optimization techniques, applied to parameter 
identification of FP complex models could not find 
the satisfied solution. Thus, different metaheuristic 
methods have been developed and tested for the 
considered problem. Recently, the effectiveness and 
efficiency of nature-inspired methods, such as 
genetic algorithms (GA), ant colony optimization 
(ACO), firefly algorithm (FA), cuckoo search (CS), 
etc. receive more and more attention [1-4]. These 
stochastic approaches have been used for solving 
wide range of optimization problems, among them 
FP modelling and control [5-9]. Although many 
different global optimization methods have been 
developed, their efficiency is always determined by 
the problem specifics. So, the challenge for finding 
new or improving the existing modelling approaches 
strongly guides the researchers work. 

The artificial bee colony (ABC) algorithm, 
proposed by Karaboga [10] in 2005 is another 
promising contemporary population-based 
approach. Up to now, the efficiency of ABC 
algorithm has been demonstrated for many 
optimization problems [11-14], among them 

parameter identification of S. cerevisiae fed-batch 
fermentation process model [9]. Typically, 
metaheuristic methods require fine-tuning of large 
number of parameters, depending on the specifics 
problem solving. While, ABC algorithm requires a 
few control parameters to be tuned, among them 
number of population, maximum cycle number and 
limit.   

Recently developed InterCriteria analysis (ICrA) 
[15] that gives the possibility some criteria 
reflecting the behavior of considered objects to be 
compared is applied here in the field of ABC control 
parameters influence investigation. First promising 
application of ICrA for genetic algorithms 
parameters impact examination is presented in [16], 
where the domination of two of the main GA 
parameters, namely crossover and mutation rates 
during the model parameter identification of  
S. cerevisiae and E. coli fermentation processes 
have been examined.  
Here, the apparatuses of index matrices (IM) and 
intuitionistic fuzzy sets (IFS), which are the core of 
ICrA have been used to establish the relations and 
dependences between number of population, 
maximum cycle number and limit from one hand 
and model parameters, optimization function value 
and convergence time, from the other hand, when 
ABC algorithm have been applied to parameter 
identification of S. cerevisiae fed-batch fermentation 
process model.  
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2 Problem Formulation 
The dynamics of biomass, substrate and ethanol 
concentrations in S. cerevisiae fed-batch 
fermentation process model are presented by 
following system of non-linear differential 
equations [7]:  
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where: X, S and E are respectively the 
concentrations of biomass, [g/l], substrate (glucose), 
[g/l], and  ethanol, [g/l]; F – feeding rate, [l/h]; V – 
volume of bioreactor, [l]; Sin – initial substrate 
concentration in the feeding solution, [g/l]; µ2S,  
µ2E – maximum growth rates of substrate and 
ethanol, [1/h]; kS, kE – saturation constants of 
substrate and ethanol, [g/l]; YSX, YEX – yield 
coefficients, [g/g]. All model parameters fulfil the 
non-zero division requirement. Also, all model 
functions in the Eqs. (1)-(4) are continuous and 
differentiable. Detailed description of the process 
conditions and experimental data could be found in 
[7]. 

Altogether six model parameters have been 
identified for the considered model Eqs. (1)-(4). The 
vector of parameters is presented as follows: 
p = [µ2S, µ2E, kS, kE, YSX, YEX].  

Aiming the best fit to a data set, mean square 
deviation between model output and experimental 
data for biomass, substrate and ethanol has been 
used as an optimization criterion: 

 

 ( )2*J Y Y min= − →∑  ,   (5) 
 
where Y are the experimental data and Y* are model 
predicted data, Y = [X; S; E]. 
 
 
3 Artificial Bee Colony Optimization 
Algorithm 
In 2005 Karaboga developed the artificial bee 
colony algorithm for numerical optimization 
problems [10], inspired by the intelligent foraging 
honey bees behavior. 

Three groups of artificial bees, namely employed 
bees, onlookers and scouts guide the ABC 
algorithm’s work. A colony of ABC consists of 
employed bees and onlookers. For each food source, 
there is only one employed bee, i.e. the number of 
employed bees is equal to the number of food 
sources. The employed bee becomes a scout, when 
its food source is exhausted and abandoned. While 
employed and onlooker bees carry out the 
exploitation process in the search space, the scouts 
control the exploration process. 

ABC algorithm search consists of three main 
steps [17] repeated until a predetermined number of 
cycles, called maximum cycle number, or a 
termination criterion is satisfied. Firstly, the ABC 
algorithm sends the employed bees onto their food 
sources and evaluates their nectar amounts. On the 
next stage, a selection of food source regions by the 
onlooker bees is proceeded, based on evaluation of 
the food sources nectar amount. Finally, the ABC 
algorithm determines the scout bees and sends them 
randomly onto possible new food sources. In ABC 
algorithm, a food source represents a possible 
solution of the optimization problem, while the 
nectar amount of a food source corresponds to the 
quality of the solution. 

The ABC generates a randomly distributed initial 
population of SN solutions (food sources). In order 
to produce a candidate food position from the old 
one in the memory, the ABC uses the following 
equation [17]:  

 

 ( )i , j i , j i , j i , j k , jx x xυ φ= + −  ,  (6) 
 
where k = 1, 2, …, SN and j = 1, 2, …, D are 
randomly chosen indexes and D is the number of 
parameters of the problem to be optimized. 
Although k is determined randomly, it has to be 
different from i. фi,j is a random number between  
[–1, 1], which controls the production of neighbor 
food sources around xi,j and visually represents the 
comparison of two food positions by a bee.  

The onlooker bee chooses a food source 
depending on the probability value associated with 
that food source, pi, calculated by the following 
expression [17]:  
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=
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where fi is the fitness value of the solution i, which 
is proportional to the nectar amount of the food 
source in the position i, and SN is the number of 
food sources, which is equal to the number of 
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employed bees or onlooker bees, i.e. the SN equals 
to the half of the colony size. 

The food source which nectar is abandoned by 
the bees is replaced with a new food source by the 
scouts. In ABC, this is simulated by producing a 
position randomly and replacing it with the 
abandoned one. Further, if a position cannot be 
improved through a predetermined number of trials, 
then that food source is abandoned. The number of 
trials for releasing a food source is equal to the 
value of “limit”, one of the important ABC 
algorithm control parameters.  
 
 
4 InterCriteria Analysis Approach 
InterCriteria analysis approach, given in details in 
[15] is a contemporary technique for multi-criteria 
decision making. ICrA implements two fundamental 
concepts, namely the apparatuses of index matrices 
and intuitionistic fuzzy sets in order to detect 
possible correlations between pairs of involved 
criteria and provides on this basis an additional 
information for the investigated objects.  

For the purposes of ICrA application, the initial 
IM index set consists of the criteria (for rows) and 
objects (for columns) with the IM elements assumed 
to be real numbers. Further, an IM with index sets 
consisting of the criteria (for rows and for columns) 
with intuitionistic fuzzy pair (IFP) elements 
determining the degrees of correspondence between 
the respective criteria is constructed. The IFP 
elements, denoted as (µ and υ) might be interpreted 
respectively as degrees of “validity” and “non-
validity”; “agreement” and “disagreement”; 
“correctness” and “non-correctness”, etc. For the 
most of the obtained pairs the sum µ + υ = 1, but in 
some cases, there might be pairs for which this sum 
is less than one. The difference is considered as a 
degree of “uncertainty”: π = 1- µ - υ.  
 
 
5 Numerical Results and Discussion 
The purpose of current investigation is the influence 
of three main ABC parameters, namely number of 
population (NP), maximum cycle number (MCN) 
and limit to be examined when ABC algorithm has 
been applied to parameter identification of S. 
cerevisiae fed-batch fermentation process model. 
Seven different values for each ABC parameters 
NP, MCN and limit are applied. According to [9, 
17], the NP values have been chosen: NP = {6; 10; 
20; 40; 60; 80; 100}, the MCN values are:  
MCN = {50; 100; 150; 200; 300; 400; 500}, while 

the limit is tried for: limit = {100; 300; 500; 700; 
900, 1100, 1300}. 

When NP was examined, the MCN and limit 
were set to 100. When MCN was investigated the 
NP was set to 20 and the limit was 100. NP and 
MCN were respectively 20 and 100, when the ABC 
control parameter limit has been studied. The 
number of model parameters were D = 6, while the 
number of food source was SN = NP/2. 

Thirty independent runs of ABC algorithm have 
been performed for each value of NP, MCN and 
limit. Thus, the reliable averaged results for 
optimization criterion, convergence time and model 
parameters estimations have been obtained. After 
that three initial IMs have been constructed: A1(NP) , 
A2(MCN) and A3(limit), respectively for ABC algorithm 
with different values of NP, MCN and limit. As it 
could be seen from presented below IMs A1(NP) , 
A2(MCN) and A3(limit), the objective function value, 
convergence time and six model parameters are 
given with more digits after the decimal point in 
order to be distinguishable. 

Based on the initial IMs A1(NP), A2(MCN) and 
A3(limit), ICrA algorithm calculates the IFP ‹µ, υ› and 
π – value for every two pairs of the considered 
criteria. The obtained results are grouped in Table 1 
considering dependences between ABC control 
parameters, optimization criterion, convergence 
time and model parameters themselves. 

The consonance or dissonance between 
altogether thirty-six pairs of criteria have been 
outlined, based on the scale, presented in [18]. 

In the beginning, the relations between ABC 
control parameters and J, T and six model 
parameters will be reviewed. As it could be seen 
from Table 1, there is a strong negative consonance 
between J and two of the investigated ABC control 
parameters, namely NP and MCN. The highest  
µ  = 1, e.g. strong positive consonance is observed 
for the pairs NP ↔ T and MCN ↔ T. Outlined 
relations have been expected, since incrementation 
of the NP and MCN led to slightly decrease of J, 
while T significantly increase. When the third ABC 
control parameter is considered, a weak negative 
consonance between T and limit is found, while the 
pair J ↔ limit is in dissonance. That means, ABC 
parameter limit influences the algorithm’s 
convergence time much more than objective 
function value. Going further in details, the 
dependencies between ABC control parameters and 
model parameters estimations is thoroughly 
analyzed. The number of population strongly 
influences evaluation of model parameters µ2E, kE, 
YSX, YEX. The maximum cycle number impacts 
evaluation of µ2S and again kE, YSX, YEX, while the 
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Table 1. ICrA obtained relations. 

Relations NP µ MCN µ limit µ 
NP/MCN/limit ↔ J 0.00 0.00 0.52 
NP/MCN/limit ↔ T 1.00 1.00 0.19 
NP/MCN/limit ↔ µ2S 0.38 0.76 0.33 
NP/MCN/limit ↔ µ2E 0.86 0.67 0.43 
NP/MCN/limit ↔ kS 0.62 0.52 0.38 
NP/MCN/limit ↔ kE 0.81 0.95 0.71 
NP/MCN/limit ↔ YSX 0.14 0.00 0.76 
NP/MCN/limit ↔ YEX 0.90 0.95 0.38 
J ↔ T 0.00 0.00 0.52 
J ↔ µ2S 0.62 0.24 0.71 
J ↔ µ2E 0.14 0.33 0.23 
J ↔ kS 0.38 0.48 0.67 
J ↔ kE 0.19 0.05 0.43 
J ↔ YSX 0.86 1.00 0.57 
J ↔ YEX 0.10 0.05 0.19 
T ↔ µ2S 0.38 0.76 0.62 
T ↔ µ2E 0.86 0.67 0.52 
T ↔ kS 0.62 0.52 0.57 
T ↔ kE 0.81 0.95 0.24 
T ↔ YSX 0.14 0.00 0.29 
T ↔ YEX 0.90 0.95 0.57 
µ2S  ↔ µ2E 0.33 0.43 0.43 
µ2S ↔ kS 0.57 0.48 0.95 
µ2S ↔ kE 0.38 0.81 0.24 
µ2S ↔ YSX 0.57 0.24 0.38 
µ2S ↔ YEX 0.38 0.71 0.38 
µ2E ↔ kS 0.57 0.76 0.48 
µ2E ↔ kE 0.67 0.62 0.43 
µ2E ↔ YSX 0.10 0.33 0.29 
µ2E ↔ YEX 0.95 0.71 0.95 
kS ↔ kE 0.52 0.57 0.29 
kS ↔ YSX 0.43 0.48 0.33 
kS ↔YEX 0.62 0.57 0.43 
kE ↔YSX 0.24 0.05 0.86 
kE ↔ YEX 0.71 0.90 0.48 
YSX ↔YEX 0.14 0.05 0.33 

 
IM A1(NP): 

 
 

ABCNP=6  ABCNP=10 ABCNP=20 ABCNP=40 ABCNP=60 ABCNP=80 ABCNP=100 
 J 0.025173 0.021736 0.021715 0.021707 0.021697 0.021694 0.021689 
 T 61.90104 106.1604 216.6998 439.7299 649.1228 911.2759 1086.414 
 NP 6 10 20 40 60 80 100 
 µ2S  0.948904 0.954823 0.945564 0.938493 0.940957 0.926043 0.957871 
A1(NP)= µ2E 0.113095 0.126293 0.137450 0.135964 0.139329 0.142743 0.139229 
 kS 0.129986 0.134408 0.136143 0.131857 0.131514 0.132636 0.135171 
 kE 0.759914 0.797942 0.799136 0.800000 0.799900 0.799750 0.799971 
 YSX  0.533239 0.497154 0.491245 0.492779 0.481802 0.485644 0.484526 
 YEX 1.620505 1.677231 1.869908 1.840507 1.989484 2.001172 1.993990 
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IM A2(MCN): 

 
 

ABCMCN=50 ABCMCN=100 ABCMCN=150 ABCMCN=200 ABCMCN=300 ABCMCN=400 ABCMCN=500 
 J 0.021814 0.021715 0.021699 0.021696 0.021687 0.021686 0.021684 
 T 105.7474 216.6998 315.025 437.9018 650.779 862.2869 1089.75 
 NP 50 100 150 200 300 400 500 
 µ2S  0.944137 0.945564 0.942713 0.936686 0.953936 0.956464 0.956471 
A2(MCN)= µ2E 0.119657 0.137450 0.140392 0.144986 0.138193 0.144186 0.138136 
 kS 0.129645 0.136143 0.136617 0.134557 0.132393 0.136950 0.129957 
 kE 0.789433 0.799136 0.799939 0.799293 0.799950 0.799957 0.799986 
 YSX  0.497274 0.491245 0.489966 0.487548 0.485449 0.485311 0.483534 
 YEX 1.575970 1.869908 1.912111 2.007543 1.982385 2.030751 2.034825 

 

IM A3(limit): 

 
 

ABClimit=100 ABClimit=300 ABClimit=500 ABClimit=700 ABClimit=900 ABClimit=1100 ABClimit=1300 
 J 0.021717 0.021717 0.021716 0.021708 0.021707 0.021719 0.021726 
 T 220.0922 219.3375 210.9094 210.45 210.7125 210.4578 210.6969 
 NP 100 300 500 700 900 1100 1300 
 µ2S  0.961676 0.961676 0.936419 0.937877 0.934460 0.958684 0.942150 
A3(limit)= µ2E 0.132248 0.132248 0.129674 0.133797 0.136760 0.124977 0.130645 
 kS 0.138892 0.138892 0.130185 0.133423 0.131680 0.135478 0.133490 
 kE 0.799002 0.799002 0.799839 0.799785 0.799839 0.800000 0.799726 
 YSX  0.492868 0.492868 0.497714 0.493321 0.494236 0.501409 0.496586 
 YEX 1.787458 1.787458 1.762906 1.802549 1.860836 1.668798 1.737299 
 
         

limit controls evaluation of only one model 
parameter, namely YSX. 

When looking at J and T relations, a clear J ↔ T 
connection in strong negative consonance is 
observed, at NP and MCN. The other coincidences 
for NP and MCN parameters are respectively for  
J ↔ µ2E/µ2S, J ↔ kE, J ↔ YEX and T↔ YSX pairs, 
which are in negative consonance, while J ↔ YSX,  
T ↔ µ2E/µ2S, T ↔ kE and T ↔ YEX pairs show 
positive consonance. When ABC parameter limit is 
investigated, a negative consonance has been 
observed for J ↔ µ2E, J ↔ YEX and T ↔ kE. The 
stochastic nature of ABC algorithm is a prerequisite 
for the observed different relations. 

In the last group of examined correlations, 
between model parameters themselves, positive 
consonance is obtained for one (µ2E ↔ YEX), two  
(µ2S ↔ kE, kE ↔ YEX) or three (µ2S ↔ kS, µ2E ↔ YEX, 
kE ↔ YSX) criteria pairs, respectively at NP, MCN 
and limit. While negative consonance appears for 
µ2E ↔ YSX, kE ↔ YSX, YSX ↔ YEX at NP; µ2S ↔ YSX,  
kE ↔ YSX, YSX ↔ YEX at MCN and µ2S ↔ kE at limit. 
For the rest of the criteria pairs the dissonance is 
observed. The established results are caused by the 
physical meaning of FP models parameters, as well 
as by the strong non-linearity of FP model structure. 

As a conclusion, it worth to be noted, that ABC 
control parameters NP and MCN influence more 
than limit the objective function value, convergence 
time and estimations of FP model parameters, when 

ABC algorithm has been applied to parameter 
identification of S. cerevisiae fed-batch FP model. 
 
 
6 Conclusion 
In this paper, powerful ICrA has been used to 
examine the influence of three main ABC control 
parameters, when ABC algorithm has been applied 
to parameter identification of S. cerevisiae fed-batch 
fermentation process model. The relations and 
dependencies between NP, MCN and limit from one 
hand and convergence time, objective function 
value and six model parameters from the other hand, 
have been established. Obtained additional 
knowledge could be used for the improvement of 
the ABC algorithm performance, as well as for 
further identification procedures of FP models. 
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