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Abstract: - Properties are studied in this work of a differential ring R, its ideals and the ideals of iterated 
skew polynomial rings over R defined with respect to a finite set of commuting derivations of R. In 
particular, it is shown that, if P is a prime d-ideal of a commutative ring R for some derivation d of R, then 
the ring d-1(P) is integrally closed in R, while if R is a local ring and its maximal ideal M is not invariant 
under d, then M2+d(M2) = M. Also the concept of the integration of R associated to a given derivation of R 
is introduced, the conditions under which this integration becomes a derivation of R are obtained and some 
consequences are derived in the form of two corollaries. The new concept of integration of R generalizes 
basic features of the indefinite integrals. 
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1 Introduction 
All the rings considered in this paper are with 
identity. A derivation on a ring is a function which 
generalizes certain features of the traditional 
derivative operator. A differential ring is understood 
to be a ring with a non empty set D of derivations 
attached to it (e.g. see [1, 2, 3]). On the other hand 
the term integration is connected to the computation 
of an integral.  
     In the present work properties are studied of the 
differential ideals of a ring R and of the iterated 
skew polynomial rings over R defined with respect 
to a finite set of commuting derivations of R. The 
concept of the integration of R associated to a given 
derivation of R is also introduced and some 
fundamental properties of it are studied. This new 
concept generalizes basic features of the indefinite 
integrals.       
    The rest of the paper is organized as follows: 
Section 2 contains information about derivations 
and the differential simplicity of a ring which is 
necessary for the good understanding of the article’s 
contents. The main results are presented in Section 3 
and the paper closes with the conclusions and some 
hints for future research, which are contained in 
Section 4. 
 
2. Differential Rings 
We start by recalling the following definitions: 
     2.1 Definition: Let R be a ring. Then a map  

d: R→R is called a derivation of R, if and only if, 
d(x+y) = d(x) + d(y) and d(xy) = xd(y) + d(x)y, for 
all x, y in R. 
     The set of all derivations of R is denoted by 
DerR. 
    Given a non commutative ring R and an element s 
in R it is easy to check that the map d: R→R 
defined by d(r) = sr - rs is a derivation of R, called 
the inner derivation of R induced by s. For 
distinguishing between the two cases, a derivation 
of R which is not inner is called an outer derivation.    
    2.2 Definition: Let R be a ring and let d be a 
derivation of R. Then an ideal I of R is said to be a 
d-ideal, if d(I)⊆ I. If the only d-ideals of R are 0 and 
R, then R is called a d-simple ring and d is called a 
simple derivation of R. 
    2.3 Proposition: Let d be a simple derivation of 
a ring R. Then:  
     (i) R2 = R. 
     (ii) F = C(R)∩Ker(d) is a field, where C(R) 
denotes the centre of R and Ker(d) denotes the 
kernel of d. 
   Proof: (i) R2 is a non zero d - ideal of R 
   (ii) Observe that d(1) = d(1.1) = 2d(1). Therefore 
d(1) = 0, i.e. 1 is in F. Also, given s in F is 
d(sR)=sd(R)⊆ sR. Therefore, sR is a non zero d-
ideal of R, which implies that sR = R. Thus, there 
exists r in R such that sr = rs=1. Then d(sr) = sd(r) = 
0 ⇒  rsd(r) = 0 ⇒  d(r) = 0. Assume now that there 
exists t in R such that tr ≠ rt. Then s(tr)s ≠ s(rt)s, or 
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st ≠ ts, which is absurd since s is in C(R). Therefore 
r is in F, i.e. s has an inverse in F. The rest of the 
proof is straightforward.- 
    Due to Proposition 2.3 (i) many authors add the 
condition R2≠ R in Definition 2.2 of a d- simple 
ring. Also, as a consequence of Proposition 2.3(ii), 
every d-simple ring is either of characteristic zero or 
of a prime number p. 
     Non commutative d-simple rings exist in 
abundance; for example every simple ring is d-
simple for any derivation d of R.  
    For the case of a commutative ring of prime 
characteristic we have the following result: 

                  2.4 Theorem: Let R be a ring of prime 
characteristic p, and let d be a simple derivation of 
R. Then R is a 0-dimensional ring with a unique 
maximal ideal (quasi-local ring).  
     Proof:  Let M be a maximal ideal of R and let I 
be the ideal of R generated by the set {mp: m∈M}. 
Then, since R is of characteristic p, I is a proper D-
ideal of R, therefore the d-simplicity of R implies 
that I = (0). Thus M is contained in the nil radical, 
say N, of R (i.e. the set of all nilpotent elements of 
R) and therefore M=N. Let now P be a prime ideal 
of R contained in M. Then, since N is equal to the 
intersection of all prime ideals of R ([4], Proposition 
1.8) and M=N, we get that M=P. Thus N is the 
unique prime ideal of R and this proves the 
theorem.- 
    As a consequence of the above theorem, if R 
is a domain, then R is a field (since M=N=(0)) 
and therefore the interest is turned mainly to 
commutative rings of characteristic zero.                                                                                                                                                                                                                                                                                                                                                                                  
     In this case there is not known any general 
criterion under which one can decide whether or not 
a commutative ring possesses simple derivations, 
unless if R is a 1-dimensional algebra (Krull 
dimension) over a field k. Then, if R = k[y1, y2,…., 
yn] and d is a derivation of R such that d(c) = 0 of all 
c in k (k-derivation of R), R is d-simple if, and only 
if, R = (d(y1), d(y2),…., d(yn) ([5], Theorem 2.4).    
    Typical examples of d-simple rings of 
characteristic zero are the polynomial rings in 
finitely many variables over a field [6] and the 
regular local rings of finitely generated type over a 
field [7]. More examples of d-simple rings of 
characteristic zero can be found in [6], while in [8] 
geometric examples are presented of smooth 
varieties (algebraic sets) over a field with coordinate 
rings possessing simple derivations.     
   In case of characteristic zero it is well known that 
if a commutative ring R is d-simple then R is an 
integral domain and also that if R has no non zero 

prime d-ideals, then R is a d-simple ring ([9], 
Corollary 1.5)  
    Definition 2.2 can be generalized for a finite set D 
of derivations of R as follows: 
    2.5 Definition: Let D be a finite set of 
derivations of R. Then an ideal I of R is called a D-
ideal if d(I)⊆ I for all d in D and R is called a D-
simple ring, if it has no proper non zero D-ideals. 
   Obviously, if R is a d-simple ring for some d in D, 
then R is also a D-simple ring, but the converse is 
not true. For example, let S = R[x, y, z] be a 
polynomial ring over the field R of the real numbers 
and let d1 and d2 be the R-derivations of S defined 
by d1: (x, y, z)→  (y+z, z-x, -x-y) and d2: (x, y, 
z)→ (y+2z, xyz-x, -xy2-2x) respectively. Then, 
since di(x2+y2+z2)=0 for i=1, 2, di induces an R-

derivation of the coordinate ring S =
[ ]

2 2 2(x +y
x, y, z

+z )
R

 

of the real unit-sphere. Then S is a {d1, d2}-simple 
ring ([10], Lemma 3.1). However, it is well known 
that S admits no simple derivations ([7], Section 3, 
Remark 3) 
   Proposition 2.3 holds also for D-simple rings, 
where D is a non singleton set. In this case the field 
F = C(R)

d D∈
∩ Ker (d). The proof is the same. 

    Next we study skew polynomial rings of 
derivation type in finitely many variables over a ring 
R We start with the following definition:  
   2.6 Definition: Let R be a ring and let d be a 
derivation of R. Define on the set S of all 
polynomials in one variable x over R addition in the 
usual way and multiplication by the rule: 
xr=rx+d(r), for all r in R, and the distributive law. It 
is well known then that S becomes a non 
commutative ring denoted by R[x, d] and called a 
skew polynomial ring (of derivation type) over R 
(e.g. [11], p.35). 
     Such rings, which are also known as Ore 
extensions, have been firstly introduced by O. Ore 
[12] to be used as counter examples. 
    2.7 Example: Let T[x1] be a polynomial ring 
over a ring T, then the skew polynomial ring  

T[x1][x2, 
1x∂
∂ ] over T[x1] is called the first Weyl 

algebra over T and it is denoted by A1(T). It 
becomes evident that the elements of A1(T) are 
polynomials in two variables x1 and x2 over T, 
while multiplication is defined by x1t = tx1,   
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x2t = tx2+
1

t
x
∂
∂

= tx2 for all t in T, x2x1=x1x2 

+
1

1

x
x
∂
∂

 = x1x2+1 and by the distributive law. 

   Note that skew polynomial rings can also be 
defined over R with respect to an endomorphism f 
of R and in a more general context with respect to f 
and an f-derivation d of R [11], which is a 
generalization of the concept of the ordinary 
derivation. 
     Skew polynomial rings (of derivation type) in 
finitely many variables over R can be also defined 
[11] as follows: 
     2.8 Definition: Let S1=R[x1, d1] be a skew 
polynomial ring over a ring R, where d1 is a 
derivation of R. Then, if d2 is a derivation of S1, 
the skew polynomial ring S2=S1[x2, d2] is called 
an iterated skew polynomial ring (ISPR) over R 
and it is denoted by S2=R[x1, d1][x2, d2].  
     Applying induction on n one defines the 
ISPR ring Sn=R[x1, d1][x2, d2]…[xn, dn] in n 
variables over R. In order to simplify our 
notation we shall denote this ring by  
Sn = R[x, D], where D = {d1, d2,…, dn}.  
     ISPRs have been defined by Kishimoto [13] and 
by others. 
     2.9 Examples: (i) The first Weyl algebra A1(T) 
over a ring T (Example 2.7) is an ISPR of derivation 
type in two variables over T of the form T[x1, 

d][x2,
1x∂
∂

], where d denotes the zero derivation of 

T.  
(ii) Set R= A1(T). Then the first Weyl algebra A1(R) 
over R is called the second Weyl algebra over T and 
it is denoted by A2(T). Obviously we have that 

A2(T)= A1[A1(T)]=T[x1][x2; 
1x∂
∂

][x3; 
2x∂
∂

]. 

(iii) Consider the set of all polynomials in n+1 
variables, say x1,x2,…, xn,xn+1, over a ring T. Then 
the n-th Weyl algebra An(T) over T is defined by 
induction on n as An(T)=A1[An-1(T)]. Obviously we 
have that  

An(T)= T[x1][x2; 
1x∂
∂

][x3; 
2x∂
∂

]……[xn+1; 
nx∂
∂

]= 

=T[x, D], with D={d, 
1x∂
∂

, 
2x∂
∂

…….,
nx∂
∂

}, where 

d denotes the zero derivation of T. 
     Next, given a finite set D of derivations of R 
commuting to each other, we shall construct an ISPR 

of derivation type over R of the form R[x; D]. For 
this, we need the following lemma: 
    2.10 Lemma: Let R be a ring, let d be a 
derivation of R and let S=R[x, d] be the 
corresponding skew polynomial ring over R. Let 
also d* be another derivation of R. Then d* can be 
extended to a derivation of S by d*(x) = 0, if, and 
only if, d* commutes with d. 
   Proof [14]:  Obviously d* extends to a derivation 
of S, if, and only if, d*(x) can be defined in a way 
compatible to multiplication in S. In other words, if 
d*(x)=h, then for all r in R we must have d*(xr)= 
d*(rx)+d*[d(r)]⇔ xd*(r)+hr=rh+d*(r)x+d*[d(r)] 
⇔  d*(r)x+ d[d*(r)]+hr= rh+d*(r)x+d*[d(r)], 
   Therefore d[d*(r)]=d*[d(r)]⇔ hr=rh, which is 
true for h=0.-. 
   Let now D = {d1, d2,…,dn} be a finite set of 
derivations of R commuting to each other; i.e. we 
have that di o dj=dj o di, i, j = 1, 2,…,n. Consider the 
set Sn of all polynomials in n variables x1, x2, …,xn 
and define addition in Sn in the usual way and 
multiplication by the rules xir = rxi+di(r), xixj = xjxi, 
for all r in R and all i, j = 1,2,…,n.  
   Set S1=R[x1, d1] and, using Lemma 2.10, consider 
the skew polynomial rings S2=S1[x2, d2],…., 
Sk+1=Sk[xk, dk],…, Sn=Sn-1[xn, dn].Then, the  ring 
Sn=R[X, D], introduced by Voskoglou [14], is a 
special form of ISPR of derivation type over R.  
   Voskoglou [15] has also introduced ISPRs over R 
with respect to a finite set {f1,f2,…,fn}of 
monomorhisms of R and a corresponding set {d1, d2, 
…, dn} of fi-derivations of R, such that di o dj=dj o 
di, di o fj= fj o di and fi o fj = fj o fi.     
   To distinguish between the two cases, i.e. the 
general case of ISPRs of Definition 2.8 and those 
introduced by Voskoglou, we shall denote the 
ISPRS  of the general case by Sn*. 
   Note that in Sn* the derivations of D need not 
commute to each other. We prove the following 
result about this:    
   2.11 Proposition: Let R be a ring and let D be a 
finite set of derivations of R. Then, if the variables 
of an ISPR over R defined with respect to D 
commute, the derivations of D commute too. 
   Proof: Given r in R and two variables xi and xj of 
the ISPR over R we have that  
xixjr = xi[rxj + dj(r)] = (xir)xj + xidj(r) 
= [rxi  + di(r)]xj + dj(r)xi  + didj(r) 
= rxixj + di(r)xj  + dj(r)xi + (diodj)(r) 
   In the same way one finds that  
xjxir = rxjxi + dj(r)xi + di(r)xj + (djodi)(r). 
   Assuming that xixj = xjxi the result follows by 
equating the right members of the two equations.- 
    The converse of the above proposition is not true. 
For example, in the first Weyl algebra  
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A1(T) = T[x1, d][x2,
1x∂
∂

] (Example 2.9(i)) the zero 

derivation d commutes with 
1x∂
∂

, but x1x2 = x2x1+1 

(Example 2.7) 
   The ISPRs, which had been initially defined on a 
completely theoretical basis, have recently found 
two important applications resulting to the renewal 
of the researchers’ interest about them. The former 
concerns the ascertainment that many Quantum 
Groups (i.e. Hopf algebras having in addition a 
structure analogous to that of a Lee group [16]), 
which are used as a basic tool in Theoretical 
Physics, can be expressed and studied in the form of 
an ISPR. The latter concerns the utilization of ISPRs 
in Cryptography for analyzing the structure of 
certain codes [17]. 
    Voskoglou has also proved the following result 
[14]: 
   2.12 Theorem: Let R be a ring, let D = {d1, , …, 
dn} be a finite set of derivations of R commuting to 
each other and let Sn=R[X, D] be the corresponding 
ISPR over R. Assume further that di is an outer 
derivation of Si-1, where So = R. Then Sn is a simple 
ring, if, and only if, R is a D-simple ring.  
   As an example, consider the polynomial ring 
R=k[y1, y2,…,yn] over a field k and the set D={

1y
∂
∂

, 

2y
∂
∂

,…, 
ny
∂
∂

} of partial derivatives of R. Then it is 

straightforward to check that R is a D-simple ring 
([18]; Example 1), therefore by the previous 
theorem the ISPR R[X, D] is a simple ring.  
   Theorem 2.12 for n=1 is due to D. Jordan [19].  
  The following definition generalizes the notion of 
a prime ideal of a ring:   
   2.13 Definition: Let R be a ring and let D be a 
finite set of derivations of R. Then a D-ideal I of R 
is said to be a D-prime ideal, if given any two D-
ideals A and B of R such that AB⊆ I, it is either 
A⊆ I or B⊆ I. In particular, R is called a D-prime 
ring, if (0) is a D-prime ideal of R. 
   The next result [20] establishes a relationship 
among the prime ideals of Sn and the D-prime ideals 
of R: 
   2.14 Theorem: Let R be a ring, let D be a finite 
set of derivations of R commuting to each other and 
let Sn=R[X, D] be the corresponding ISPR over R. 
Then: 

• If P is a prime ideal of Sn, P∩R is a D-
prime ideal of R. 

• If I is a D-prime ideal of R, ISn is a prime 
ideal of Sn. 

 
 
3. Main results  
Let R be a commutative ring, let d be a derivation 
and let I be an ideal of R, Then it is straightforward 
to check that d-1(I) = {r∈R: d(r)∈I}is a subring of 
R. We shall prove the following result: 
   3.1 Theorem: Let P be a prime d-ideal of R, then 
the ring d-1(P) is integrally closed in R. 
   Proof: It suffices to show that, if r is an element of 
R integral over d-1(P), then r is in d-1(P).  
   In fact, since r is integral over d-1(P), there exists a 
monic polynomial f(x) = xn+an-1xn-1+ … +a1x+ao of 
minimal degree n with coefficients in d-1(P), such 
that f(r) = rn+an-1rn-1+ … +a1r+ao = 0. Differentiating 
this equation with respect to d one gets that   
[nrn-1+(n-1)an-1rn-2+..+a1]d(r)+d(an-1)rn-1+..+d(a1)r = 0 
or rod(r) = -[d(an-1)rn-1+..+d(a1)r], with  
ro=nrn-1+(n-1)an-1rn-2+..+a1                                     (1).      
   But, since an-1, ..,a1 are in d-1(P), we get that  
d(an-1), .., d(a1) are in P. Therefore rod(r) is in P, 
which implies that either ro   is in P or d(r) is in P. 
But, if ro  is in P, d(ro)  is also in P, therefore ro  is in 
d-1(P). Thus equation (1) contradicts to the 
minimality of n in f(x). Consequently d(r) is in P, 
which shows that r is in d-1(P) and this completes 
the proof of the theorem. -   
    Let now s = a + d(b) be an element of I + d(I), 
with a, b in  the ideal I of R. Then 
d(rb)=rd(b)+d(r)b, therefore rs = ra+rd(b) = 
ra+[d(rb)-d(r)b]=[ra-d(r)b]+d(rb) is in I+d(I), for all 
r in R. Consequently I + d(I) is an ideal of R. 
   Further, let R be a local ring, i.e. a Noetherian ring 
with a unique maximal ideal M and let d be a 
derivation of R. Then, if M is not a d-ideal of R, 
M+d(M) is an ideal of R containing properly M, 
therefore M+d(M)=R. On the other hand, it becomes 
clear that the ideal Mk+d(Mk)⊆M, for all integers k, 
k≥ 2. In particular, for k=2 we shall prove the 
following result: 
   3.2 Theorem: Let R be a local ring with 
maximal ideal M and let d be a derivation of R such 
that M is not a d-ideal of M. Then  
M2+d(M2)=M                                                    (2). 
   Proof: Since R is a Noetherian ring, M is a finitely 
generated ideal of R. Therefore, we can write  
M=(m1, m2, …, mk), for some positive integer k.  
   Since M is not a d-ideal of R, there exists at least 
one generator ms of M such that d(ms) is not in M. 
We can write then M=(m1+ms, m2+ms, …, mk+ms). 
Therefore, without loss of generality we may 
assume that d(mi) is not in M, for all i=1, 2, …, k. 
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Consequently d(mi) is a unit of R, because otherwise 
we should have that (d(mi)) is a proper ideal of R, 
which implies that (d(mi))⊆M, or d(mi) ∈M, a 
contradiction. In other words, there exists ri in R 
such that rid(mi)=1.  
   Then d(mi

2)=2mid(mi)=2mi(ri
-1) is in  M2+d(M2), 

therefore mi =
2
ir [2mi(ri

-1)] is also in M2+d(M2), 

which completes the proof.    
   We now introduce the following concept: 
   3.3 Definition: Let R be a ring and let d be in 
DerR. Then the integration of R associated to d is a 
map i: R→R such that d[i(x)] = x, for all x in R. 
   Next we shall prove: 
   3.4 Theorem: Let d be an injective derivation of 
a ring R and let i be the integration of R associated 
to d. Then i is a derivation of R, if, and only if,  
xy = - [i(x)d(y) + d(x)i(y)], for all x, y in R. 
   Proof:  For all x, y in R we have by definition 2.2 
that d[i(x+y)] = x+y. We also have that  
d[i(x)+i(y)] =d[i(x)]+d[i(y)]=x+y. Therefore, since d 
is an injective map, we obtain that  
i(x+y)=i(x)+i(y)                                                    (3). 
   On the other hand, we have that d[i(xy)]=xy and 
d[xi(y)+i(x)y]=d[xi(y)]+d[i(x)y]= 
x[d[i(y)]+d(x)i(y)+i(x)d(y)+d[i(x)]y 
=2xy+d(x)i(y)+i(x)d(y).  
   On comparing the last two equations we obtain 
that d[i(xy)]=d[xi(y)+i(x)y], if, and only if, 
xy=2xy+d(x)i(y)+i(x)d(y) . 
   This, combined to the fact that d is an injective 
map, it finally shows that i(xy)]=xi(y)+i(x)y, if, and 
only if, xy= - [i(x)d(y)+d(x)i(y)]                          (4). 
Equations (3) and (4) complete the proof of the 
theorem. -  
    Theorem 3.4 has the following two important 
corollaries: 
    3.5 Corollary: Let R be a ring, let d be an 
injective outer derivation R and let i be the 
integration of R associated to d. Assume further that  
xy= - [i(x)d(y)+d(x)i(y)], for all x, y in R. Then: 

1. The skew polynomial ring S=R[x, i] is 
simple, if, and only if, R is an i-simple ring. 

2. If P is a prime ideal of S, P∩R is an i-
prime ideal of R and if I is an i-prime ideal 
of R, IS is a prime ideal of S. 

   Proof: 1) By Theorem 3.4 i is a derivation of R, 
therefore the result follows by applying Theorem 
2.12 for n=1. 
   2) It turns out by combining Theorem 3.4 and 
Theorem 2.14 for n=1.  
    Next we need the following lemma: 
   3.6 Lemma: Let D = {d1, d2,…, dn} be a finite 
set of injective derivations of a ring R commuting to 

each other and let F = {f1, f2,…, fn} be the set of 
integrations of R, such that fi is associated to di, 
i=1,2,..,n. Then the integrations of F commute to 
each other.  
   Proof: Given r in R, we have that didj[fifj(r)] = 
djdi[fifj(r)] = dj[(difi)fj(r)] = dj[fj(r)] = r. In the same 
way it turns out that didj[fjfj(r)] = r, therefore 
didj[fifj(r)]=didj[fjfj(r)].  
   But the map didj is injective, hence fi o fj  = fj o fi 
and the result follows. 
   3.7 Corollary: Let D = {d1, d2,…, dn} be a finite 
set of injective derivations of a ring R commuting to 
each other and let F = {f1, f2,…, fn} be the set of 
integrations of R, such that fi is associated to di, 
i=1,2,..,n. Assume further that for the derivation di 
and the associated to it integration fi  the equation 
(3)  holds for all the elements of Si-1 (where So=R). 
Then one can define the ISPR Sn = R[x, F], where 
we have: 

• If P is a prime ideal of Sn, P∩R is an F-
prime ideal of R. 

• If I is an F-prime ideal of R, ISn is a 
prime ideal of Sn. 

   Proof: By Theorem 3.4 the elements of F are 
derivations of R and by Lemma 3.6 they commute 
to each other. Therefore we can define the ISPR Sn 
= R[x, F] and the result follows by Theorem 2.14  
 
  
4. Conclusion 
In this work we studied properties of the differential 
ideals of a ring R and of the ISPRs of derivation 
type over R. The notion of an integration of R 
associated to a given derivation of R was also 
introduced and some fundamental properties of it 
were studied. This new concept generalizes basic 
features of the indefinite integrals and therefore a 
further research on its properties in connection to 
corresponding properties of the associated 
derivations seems to have its own importance. 
    For example, an open question is if the first case 
of Corollary 3.5 can be extended to ISPRs in finitely 
many variables defined as in Corollary 3.7. This 
could happen if each fi in F in Corollary 3.7 is an 
outer derivation of Si-1, but the conditions under 
which this happens are under investigation.  
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