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Abstract:The main objective of this work is to model spatial observations using linear regression analysis defined
on a compact experimental region. To check the validity of an assumed model, tests based on Kologorov-Smirnov
and Craḿer-von Mises functionals of the partial sums (CUSUM) of the recursive residuals of the observations
are proposed. It is shown that the limit of the sequence of the CUSUM processes of the recursive residuals for
triangular array of design points does not depend on the model. It is given by the set-indexed Brownian sheet
when the model is true. The performance of the tests are also studied by deriving the non trivial limiting power
functions of the tests when the model is not true. Their finite sample size behaviors are compared with those of the
well-known asymptoticF test and are investigated by simulation. It is shown in this study that both Cramér-von
Mises andF tests perform better than the Kolmogorov-Smirnov test. The application of the proposed method in a
real data is also exhibited. The design under which the data has been collected is given by a regular lattice.

Key–Words: Recursive residual, Gaussian white noise, Brownian sheet, linear regression, Kolmogorov-Smirnov
test, Craḿer-von Mises test,F -test.

1 Introduction

Modelling spatial observations using linear regression
has been studied extensively in various disciplines such
as in economics, agriculture, geology, and other earth
sciences. Testing the validity of an assumed model is
important prior to the application of the model in pre-
diction and other quantifications. Intensive researches
have been conducted for developing such preliminary
diagnostic method. The most common approach is
based on the investigation of the residuals of the ob-
servations or variant of them, see [2, 20, 30, 28, 29] for
references.

Motivated by the preceding works, [23] studied
the set-indexed CUSUM of the ordinary least squares
(OLS) residuals defined in [18, 31] for establishing
asymptotic model validity test (model-check) in mod-
elling of spatial observations. By generalizing the ge-
ometric approach proposed in [6, 7] which is different
to that of [18, 31], [23] obtained the limit process as
a complicated functional of the set-indexed Brownian
sheet which depends not only on the design but also on
the regression functions defining the assumed model,
see also [5] for regression on a closed interval. By this
reason the application of the method is restricted since
it suffered from being unable to compute the critical
values analytically.

We notice that the dependency of the limit pro-
cess on the regression model is due to the fact that the
OLS residuals are mutually correlated although the er-
ror terms are mutually independent. If a transformation
can be defined in such a way that the resulting resid-
uals are either uncorrelated or mutually independent,
then the uniform central limit theorem in [1] and [19]
guarantee that the limiting distribution of the CUSUM
of such kind of residuals will not depend on the model,
so that the test can be easily implemented in the prac-
tice. In the case of time series observations, the trans-
formation are defined recursively which leads to the so
called recursive residuals, see [8, 10, 12, 16, 21].

It is the purpose of the present paper to give an
investigation to the application of CUSUM test based
on the recursive residuals obtained from a sequence of
triangular arrays of observations defined on a compact
rectangle. CUSUM as well as MOSUM test based on
the recursive residuals of time series observation have
been well investigated in [8, 10, 12, 16, 21]. How-
ever there is no documentation available for CUSUM
as well as MOSUM test based on the recursive resid-
uals of observations obtained from a sequence of tri-
angular arrays of design points. Due to the absence of
order, more effort is needed for the derivation of the
limit process in such case.
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To see the problem in more detail, let us consider
a spatial process{Y (t) : t := (t1, . . . , td)> ∈ D},
satisfying a regression relationship defined by

Y (t) = g(t) + ε(t), t ∈ D, (1)

whereg is the true, but unknown regression function
defined onD := Πd

i=1[ai, bi] ⊂ Rd, ε(t) is the ran-
dom error withE(ε(t)) = 0 andV ar(ε(t)) = σ2, 0 <
σ2 < ∞. In practice,d is mostly2 or 3. Let f1, . . . , fp

be linearly independent as functions inL2(P0), where
P0 is the Lebesque measure onD. Model check in re-
gression analysis concerns with the problem of testing
whether or not an assumed model

H0 : Y (t) =
p∑

i=1

βifi(t) + ε(t), t ∈ D, (2)

holds true, for some unknown constantsβ1, . . . , βp.
When the observations are normally distributed, it is
well known that likelihood ratio test which coincides
with F -test is usually applied, see [2, 20]. To sim-
plify, we consider in the present work the case where
d = 2. Let {Yj1j2 : 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2}
be a triangular array of the observations of Model
(2) obtained over a triangular array of design points
{tj1j2 : 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2} ⊂ D and let
{εj1j2 : 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2} be the cor-
responding triangular array of independent and identi-
cally distributed random errors withE(εj1,j2) = 0 and
V ar(εj1,j2) = σ2. Then for fixedn1 ≥ 1 andn2 ≥ 1,
the observations underH0 can be written as

Y = Xβ + E , (3)

where

Y := (Y11, . . . , Yn11, . . . , Y1n2 , . . . , Yn1n2)
>

X := (f(t11), . . . , f(tn11), f(t1n2), . . . , f(tn1n2))
>

E := (ε11, . . . , εn11, . . . , ε1n2 , . . . , εn1n2)
>

β = (β1, β2, . . . , βp)>,

therebyf = (f1, . . . , fp)>. The CUSUM process of
the OLS residuals of Model (3) indexed by the family
of convex subsetsA of D is defined by

Vn1n2(Rn1n2)(A) =
n1∑

j1=1

n2∑

j1=1

1A(tj1j2)rj1j2 , A ∈ A

where

Rn1n2 = Y −X(X>X)−1X>Y.

Next by applying the invariance principle of [1, 19],
[23, 18, 31] showed that

1
σ
√

n1n2
Vn1n2(Rn1n2) ⇒ Z∗P0

,

whereZ∗P0
is a centered Gaussian process indexed by

A, defined by

Z∗P0
= ZP0 −

p∑

i=1

(∫ R

D
fi(t, s)dZP0(t, s)

)
hfi

,

wherehfi
(A) :=

∫
A fi(x, y)P0(dx, dy) andZP0 is the

set-indexed Brownian sheet (Gaussian white noise) de-
fined in [1, 17, 19, 23, 31]. Thereby

∫ R stands for the
Riemann-Stiltjes integral. It can be seen that the limit
processZ∗P0

depends heavily on the regression func-
tion assumed underH0. If the assumed model is zero
model which is not so important in the practice, the
limit is given by the standard set-indexed Brownian
sheetZP0 . Furthermore, if underH0 a constant model
is assumed, we get for largen1 andn2 the standard set-
indexed Gaussian pillow. The computation of the crit-
ical values of the Kolmogorov-Smirnov and Cramér-
von Mises statisticsKS := sup(t,s)∈D

∣∣∣Z∗P0
(t, s)

∣∣∣ and

CvM :=
∫
D(Z∗P0

(t, s))2P0(dt, ds) become compli-
cated task for higher order regression models. To the
knowledge of the authors there are no literatures avail-
able for computing such critical values for the case
other than Brownian sheet. A contrast situation has
been found for the case of the standard Brownian mo-
tion B(t) and Brownian bridgeB◦(t), for t ∈ [0, 1]
in which it is well known that the critical values of
supt∈[0,1] |B(t)| as well assupt∈[0,1] |B◦(t)| can be
computed analytically by formulas (9.14) and (9.40) in
[4], whereas that of

∫
[0,1](B

◦(t))2dt can be computed
by using formulas (12) in [22], p. 147.

The rest of the present paper is organized as fol-
lows. In Section 2 we introduce the notion of recursive
residual for spatial observation. The limit process of
the sequence of set-indexed partial sums processes of
the recursive residuals underH0 as well as underH1

are derived in Section 3. To be able to compare the
performance of the tests we propose in Section 4 simu-
lation study concerning the finite sample size behavior
of the corresponding power function of the tests. The
application of the test method is presented in Section
5. We close the paper with some conclusions and re-
marks for future research, see Section 6. Proofs are
postponed to the appendix.

2 Spatial recursive residuals
We assume throughout the paper that the observations
are collected according to an order defined by

Y11, . . . , Yn11, Y12, . . . , Yn12, . . . , Y1n2 , . . . , Yn1n2 .

Let (j∗1 , j∗2) be a fixed pair of integers such thatYj∗1 j∗2
becomes the firstp-th observed response according to
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theprecedingorder. We define the following notations:

Tn1n2 := {(j1, j2) : 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2}
Tn1n2−p := Tn1n2−p+1 \ {(j∗1 , j∗2)},

where

Tn1n2−p+1 = {(j∗1 , j∗2), (j∗1 + 1, j∗2), · · · , (n1, j
∗
2),

(1, j∗2 + 1), · · · , (n1, j
∗
2 + 1), · · · , (n1, n2)} .

ThusTn1n2 ,Tn1n2−p andTn1n2−p+1 consist respec-
tively of n1n2, n1n2 − p andn1n2 − p + 1 ordered
pairs. For every pair(j1, j2) ∈ Tn1n2−p+1 we define
then1n2 − p + 1 regression models underH0:

Y(n1,n2)
j1j2

:= X(n1,n2)
j1j2

β + E(n1,n2)
j1j2

, (4)

where

Y(n1,n2)
j1j2

:= (Y11, Y21, . . . , Yj1j2)
>,

X(n1,n2)
(j1j2) := (f(t11), f(t21), . . . , f(tj1j2))

>,

E(n1,n2)
j1j2

:= (ε11, ε21, . . . , εj1j2)
>.

Suppose the design{tj1j2 : 1 ≤ j1, j2 ≤ n} is con-

structed in such away thatrank(X(n1,n2)
(j1j2) ) = p, for all

(j1, j2) ∈ Tn1n2−p+1. Then the corresponding least
squares estimator ofβ based on (4) is given by

β̂
(n1,n2)
j1j2

=
(
X(n1,n2)>

j1j2
X(n1,n2)

(j1j2)

)−1
X(n1,n2)>

j1j2
Y(n1,n2)

(j1j2)

for every(j1, j2) ∈ Tn1n2−p+1.

Definition 1 For (j1, j2) ∈ Tn1n2−p, the n1n2 − p
recursive residuals of the spatial observations under
H0 are defined by

wj1j2 :=

Yj1j2 − f>(tj1j2)β̂
(n1,n2)
j1−1j2√

1 + f>(tj1j2)
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
f(tj1j2)

,

for j1 6= 1, j2 = j∗2 , j∗2 + 1, . . . , n2,

and

w1j2 :=

Y1j2 − f>(t1j2)β̂
(n1,n2)
n1j2−1√

1 + f>(t1j2)
(
X(n1,n2)>

n1j2−1 X(n1,n2)
n1j2−1

)−1
f(t1j2)

,

j1 = 1, j2 = j∗2 + 1, . . . , n2.

Important properties of the recursive residuals un-
der H0 are summarized in the following proposition.
The proof is given in the appendix.

Proposition 2 For every (j1, j2) ∈ Tn1n2−p, there
exists a vectoraj1j2 ∈ Rn1n2 , such thatwj1j2 =
a>j1j2

En1n2 , where forj2 ∈ {j∗2 , j∗2 + 1, . . . , n2}, and
j1 6= 1,

aj1j2

√
dj1j2 :=

(−f>(tj1j2)
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
,

1, 0, . . . , 0)>,

with

dj1j2 = 1 + f>(tj1j2)(X
(n1,n2)>
(j1−1j2) X

(n1,n2)
(j1−1j2))

−1f(tj1j2),

and forj1 = 1 andj2 ∈ {j∗2 + 1, . . . , n2},

a1j2

√
d1j2 :=

(−f>(t1j2)
(
X(n1,n2)>

n1j2−1 X(n1,n2)
n1j2−1

)−1
X(n1,n2)>

n1j2−1 ,

1, 0, . . . , 0)>

with

d1j2 := 1 + f>(t1j2)
(
X(n1,n2)>

n1j2−1 X(n1,n2)
n1j2−1

)−1
f(t1j2).

Furthermore, for any pairs (j1, j2), (j′1, j′2) ∈
Tn1n2−p with j1 6= j′1 or j2 6= j′2, it holds

a>j1j2aj′1j′2 =

{
1 ; j1 = j′1 and j2 = j′2
0 ; j1 6= j′1 or j2 6= j′2

.

Proposition 2 says thatwj1j2 is a linear function of
the vector of random errorsEn1n2 , for every(j1, j2) ∈
Tn1n2−p and they are mutually uncorrelated for at least
j1 6= j2 or j′1 6= j′2, with (j1, j2), (j′1, j′2) ∈ Tn1n2−p.
Hence, if for1 ≤ j1 ≤ n1 and1 ≤ j2 ≤ n2, εj1j2 are
independent and identically distributed (iid)N(0, σ2),
thenwj1j2 are iidN(0, σ2), see also [8, 12, 21].

Let Wn1×n2 := (wj1j2)
n1,n2
j1=1,j2=1, n1 ≥ 1 and

n2 ≥ 1 be the sequence of the matrices of recur-
sive residuals, wherewn(j1,j2) := 0, for (j1, j2) ∈
Tn1n2 \ Tn1n2−p. Let A be the collection of convex
subsets ofD := [a1, b1]×[a2, b2], such thatA is totally
bounded and have convergence integral entropy in the
sense of Alexander and Pyke (1986). The set-indexed
CUSUM process of the recursive residuals with respect
toA is defined by

Sn1n2−p(Wn1×n2)(A) :=
∑

(j1,j2)

1A(tj1j2)wj1j2 ,

where the sum is over all(j1, j2) ∈ Tn1n2−p.
It is noticed thatSn1n2−p(Wn1×n2)(∅) := 0 and
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Sn1n2−p(Wn1×n2)(A) := 0, wheneverA is any ele-
ment ofA for which no design pointtj1j2 with the cor-
responding pair(j1, j2) ∈ Tn1n2−p are catched byA.
To be able to sum the recursive residuals over all pairs
(j1, j2) ∈ Tn1n2 , we set the value ofwj1j2 to zero, for
(j1, j2) ∈ Tn1n2 \ Tn1n2−p. So the CUSUM of the
recursive residuals can be expressed as

Sn1n2−p(Wn1×n2)(A) :=
n1∑

j1=1

n2∑

j2=1

1A(tj1j2)wj1j2 .

In the sequel we use the partial sums operator of this
kind, unless otherwise stated.

The Kolmogorov-Smirnov and Craḿer-von Mises
type statistics reasonable for testingH0 are defined re-
spectively by

KSn1×n2 :=
supA∈A |Sn1n2−p(Wn1×n2)(A)|

σ
√

n1n2 − p

CMn1×n2 :=
∑

A∈A (Sn1n2−p(Wn1×n2)(A))2

(σ(n1n2 − p))2
,

whereH0 will berejected for large values ofKSn1×n2

or CMn1×n2 . The limiting distributions ofKSn1×n2

andCMn1×n2 will be derived in the next section by
generalizing the functional central limit theorem of
Gaensler [13], Pyke [19] and Alexander and Pyke [1].
See also [14] for further reference in this topic.

3 The limit of the CUSUM processes
Theorem 3 below presents the limit process of
Sn1n2−p(Wn1×n2) under H0. By this theorem we
can approximate the finite sample critical values of
KSn1×n2 andCMn1×n2 by using their associated lim-
iting distribution .

Theorem 3 Let
{
Wn1×n2 = (wj1j2)

n1,n2
j1=1,j2=1

}
,

n1 ≥ 1 and n2 ≥ 1 be the sequence of the matrices
of recursive residuals of Model 2 under normally
distributed error terms and let the design is given by
an equidistance design, defined by

tj1j2 =
(

a1 + (b1 − a1)
j1

n1
, a2 + (b2 − a2)

j2

n2

)
,

for 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2. Thenfor n1, n2 →∞,
it holds,

1
σ
√

n1n2 − p
Sn1n2−p(Wn1×n2) ⇒ ZP0 .

The asymptoticrejection region of the test using
KSn1×n2 andCMn1×n2 are exhibited in the following
corollary. The result is obtained by applying the well
known continuous mapping theorem, see Theorem 27
in Billingsley [4].

Corollary 4 Let
{
Wn1×n2 = (wj1,j2)

n1,n2
j1=1,j2=1

}
be

the sequence of matrices of recursive residuals of
Model 2, for1 ≤ j1 ≤ n1 and 1 ≤ j2 ≤ n2. An
asymptotic Kolmogorov-Smirnov test of sizeα will re-
ject H0, if and only ifKSn1×n2 ≥ k̃1−α, wherek̃1−α

is a constant that satisfies

P

{
sup
A∈A

|ZP0(A)| ≥ k̃1−α

}
= α.

Likewise, an asymptotic Craḿer-von Mises test of size
α will reject H0, if and only if CMn1×n2 ≥ t̃1−α,
wheret̃1−α is a constant that satisfies

P
{∫

D
Z2

P0
(A)dA ≥ t̃1−α

}
= α.

Remark 5 If the family of half-open rectangles
{(a1, t1]× (a2, t2] : a1 ≤ t1 ≤ b1, a2 ≤ t2 ≤ b2} is
considered as the index set, then the critical re-
gions of the test can be constructed based on the
statistic KS := sup(t,s)∈D |B2(t, s)| and CvM :=∫
D B2

2(t, s)dtds, where B2 is the Brownian sheet
which is frequently called two parameters Brownian
motion. The critical values ofKS have been already
computed by simulation, whereas those ofCvM can
be computed by applying the approach in [31]. The
sufficient conditions of Theorem 3 and Corollary 4 are
fulfilled by our data which consists of the measure-
ment of the rate of growth of corn plants observed over
21× 16 lattice points, see Section 5. In the application
σ can be estimated by any consistent estimator.

As suggested by the0− 1 decision rule in the sta-
tistical decision theory (cf. [9], p. 468), an optimal test
is a test that maximizes the power under the alterna-
tive. Two or more asymptotic tests of sizeα can be
compared by investigating their power functions. The
best test is the one that has the greatest power when the
alternative is true. For our test problem, we consider
general localized model

Y (t) =
1√

n1n2 − p
g(t) + ε(t), t ∈ D (5)

in order to get the limiting power function. WhenH0

is true, Theorem 3 guarantees that the limiting power
function coincides with the size of the test.

Theorem 6 Let g : D → R be of bounded varia-
tion and let the localized model (5) be observed over
the array of the equidistance design. LetW1

n1×n2
:=

(w1
j1j2

)n1,n2
j1=1,j2=1 be the triangular array of the recur-

sive residuals associated with Model (5). Then, as
n1, n2 →∞, it holds

1
σ
√

n1n2 − p
Sn1n2−p(W1

n1×n2
) ⇒ 1

σ
hg + ZP0 ,
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where

hg(A) :=
∫

A
g(u, v)P0(du, dv)

−
∫

A
f>(u, v)G−1(u, v)(fg)(u, v)P0(du, dv),

with

G(u, v) :=
∫

Bu,v

f(x, y)f>(x, y)P0(dx, dy)

(fg)(u, v) :=
∫

Bu,v

(fi(x, y)g(x, y))p
i=1P0(dx, dy).

The setBu,v is determined by the variable(u, v) ∈ A.

By applying the continuous mapping theorem,
the asymptotic power function of theKSn1×n2 and
CMn1×n2 tests can be expressed as follows.

Corollary 7 Suppose that for testing the hypothesis

H0 : g ∈ V against H1 : g 6∈ V,

the localized model (5) is observed under the equidis-
tance design, whereV := [f1, . . . , fp] ⊂ L2(P0).
Asymptotic power function of the sizeα Kolmogorov-
Smirnov test is given by

lim
n1,n2→∞

ΥKSn1×n2
(g)

= P

{
sup
A∈A

∣∣∣∣
1
σ

hg(A) + ZP0(A)
∣∣∣∣ ≥ k̃1−α

}
.

Similarly, the asymptotic power function of the
Cramér-von Mises test of sizeα is given by

lim
n1,n2→∞

ΥCMn1×n2
(g)

= P

{∫

D

(
1
σ

hg(A) + ZP0(A)
)2

≥ t̃1−α

}
.

The finite sample size behavior of the tests will
be investigated by simulation in the next section. The
power of theKSn1×n2 andCMn1×n2 tests are com-
pared with that of theF test studied in Arnold [2].
When H0 is true, the trend term1

σhg vanishesuni-
formly, so that the power attains the size of the test, that
is ΥKSn1×n2

(g) = α = ΥCMn1×n2
(g), for g varies in

V. To this end underH0 we observe the parametric
modelY (t) = f>(t)β + ε(t), t ∈ D, for some un-
known vector of parametersβ. Hence, we get

(fg)(u, v) = (ff>β)(u, v) = G(u, v)β.

This leads us to the following result

hg(A) =
∫

A
β>f(u, v)P0(du, dv)

−
∫

A
f>(u, v)G−1(u, v)G(u, v)βP0(du, dv)

=
∫

A
β>f(u, v)P0(du, dv)

−
∫

A
β>f(u, v)P0(du, dv) = 0.

4 Simulation
The purpose of this section is to investigate the finite
sample size behavior of theKSn1×n2 , CMn1×n2 and
F tests by simulating the performance of their corre-
sponding power functions. The computer program for
the simulation is written using R version 3.3.3. Two
scenarios are considered. In the first scenario we test
the hypotheses

H0 : Y (t, s) = β0f0(t, s) + ε(t, s)

against the alternative

H1 : Y (t, s) =
2∑

i=0

βifi(t, s) + ε(t, s),

whereas in the second one we test for

H0 : Y (t, s) =
2∑

i=0

βifi(t, s) + ε(t, s),

against the alternative

H1 : Y (t, s) =
5∑

i=0

βifi(t, s) + ε(t, s),

for (t, s) ∈ [0, 1] × [0, 1], whereβi, i = 0, 1, 2, 3, 4, 5
are unknown constants andf0(t, s) = 1, f1(t, s) =
t, f2(t, s) = s, f3(t, s) = t2, f4(t, s) = s2 and
f5(t, s) = ts are real valued regression functions.
In the simulation the error terms are generated inde-
pendently from centered normally distributed random
numbers. However, in the computation of the test
statistics we assume that the varianceσ2 is unknown
and it is estimated bŷσ2

n defined in [2]. The experi-
mental design is given byn × n regular lattice onI,
defined by

Ξn×n := {(`/n, k/n) : 1 ≤ `, k ≤ n}, n ≥ 1.

For computational reason we restrict the index set
to the familyRI := {[0, t]× [0, s] : 0 ≤ t, s ≤ 1}.
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Hencethetest statistics reduce to

KSn×n =
1

σ
√

n2 − p
max

1≤`,k≤n

∣∣∣∣∣∣
∑̀

j=1

k∑

i=1

wij

∣∣∣∣∣∣

CMn×n =
n∑

`=1

n∑

k=1


 1

σ(n2 − p)

∑̀

j=1

k∑

i=1

wij



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Figure1: The graphs of the empirical power function
of theKSn1×n2 (solid line), CMn1×n2 (dashed) and
the F (dot-dashed) tests for constant model. Sample
size= 75× 75 and the replication number= 1500.

The observations in the first case are generated
based on the localized model

Y`k =
1√

n2 − 1

(
4 + x

l

n
+ x

k

n

)
+ ε`k,

for 1 ≤ `, k ≤ n, n ≥ 1, wherex varies in the closed
interval [−15, 15]. Hence, the observations are clearly
from the model specified underH0, whenx attains0.
The error terms are generated from the standard nor-
mal distribution. The simulation results is exhibited in
Figure 1. They represent the graphs of the approxi-
mated power functions of the tests forα = 0.05 and
α = 0.01, respectively. The curves are drawn by join-
ing the points(x, P (x)) by straight lines for several
selected values ofx and the corresponding values of
P (x), whereP (x) is the probability of rejection ofH0

when the true model isg(`, k) = 4 + x l
n + x k

n . It can
be seen that in the case of constant model,CMn×n test
is as good asF test, since they have the same empiri-
cal power. In contrast toCMn×n andFn×n tests, the
KSn×n test performs slightly lower power. However,
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Figure2: The graphs of the empirical power function
of theKSn1×n2 (solid line), CMn1×n2 (dashed) and
theF (dot-dashed) tests for first-order model. Sample
size= 75× 75 and replication number= 1500, where
ε(`/n, k/n) ∼ N(0, 2).

whenx = 0 the power of all tests achieve the values of
α as they should be. In general the power of the tests
increases as the model moves away fromH0.

Figure 2 represents the empirical power function
for testing the hypotheses defined in the second sce-
nario. The observations for this simulation are gener-
ated based on the localized model

Y`k =
3 + 3l

n − 4k
n + x( l

n)2 + x( k
n)2 + x lk

n2√
n2 − 3

+ ε`k,

for 1 ≤ `, k ≤ n, n ≥ 1, wherex varies in[−100, 100]
for α = 0.05 and in [−150, 150] for α = 0.01. The
model shows that whenx = 0, the observations are
from H0, otherwise they are fromH1. In both situa-
tions we generate the random errors from the distribu-
tion N(0, 2). Based on Figure 2, it can be seen that
bothCMn×n andF test in the second example show
the same performance since they have almost the same
power. As in the first scenario, the power of theKSn×n

test is much lower than those of theCMn×n andFn.
This means thatCMn andFn tests have better abil-
ity in detecting the alternative. When the value of the
parameterx is set to zero, then all tests attain the prob-
ability of rejectionα.
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5 Application
In this section we study the application of the proposed
method in the field of agriculture. We consider a real
data provided by [27] consisting of the measurement of
the rate of growth of corn plants observed over21×16
lattice points running from South to North and from
West to East, see Figure 3. The dimension of the lat-
tice is0.75m×0.75m spreads over the rectangular ex-
perimental region of dimension[0, 12m]×[0, 15.75m].
Our aim is to build a regression model representing the
functional relationship between the coordinate of the
position of the plants on the experimental region and
the rate of growth measured in cm/day. All plants have
been given the same treatment until they grow up. By
this model we can further access the fertility distribu-
tion of the land where the corn are planted. If a con-
stant model is significance, then it can be stated that
the land has a uniform fertility level.

Figure3: The state of the 3 weeks old corn plants.

Preliminary diagnostic using the Kolmogorov-
Smirnov goodness-of-fit test for testing the normality
of the population results in the following quantities
ks = 0.0439, andp− value = 0.5. A largep− value
indicates that there is a strong evidence that a normal
distribution model is plausible for describing the prob-
ability distribution model for the rate of growth of the
corn plants. Hence our test method is applicable to the
data.

Furthermore, the three dimensional drop-line scat-
ter plot of the rate of growth with respect to the co-
ordinate(x, y) ∈ [0, 12] × [0, 15.75] is exhibited in
Figure 4 showing a conjecture that a first-order model
with positive slopes along bothx andy axis seems to
be reasonable for representing the model.

In the first step we test the hypothesis

H0 : constant model holds true,

based on the CUSUM process of the recursive as

Figure4: The drop line scatter plot of the rate of growth
of corn plants.

well as ordinary residuals. The computation re-
sults of all statistics corresponding with theirp-values
are presented in Table 1. The quantities denoted
by OKS21×16 andOCM21×16 stand respectively for
the Kolmogorov-Smirnov and Craḿer-von Mises type
statistics based on CUSUM process of the ordinary
least squares residuals, defined in [18, 31]. The ex-
tremely smallp-values of all proposed tests lead us to
the conclusion of the rejection ofH0 for all tests. This
means that constant model does not fit well to the sam-
ple independent to which test is used. Next we consider
the hypothesis:

H0 : first− order model is a valid model.

To this conjecture, thep-values of all tests show rel-
atively large values. OnlyF test rejectsH0 for all α
larger than26.60%. However this value is too risky for
rejectingH0 whenH0 is actually true. Therefore we
insist on the conclusion that first-order polynomial is
plausible to the rate of growth model.

Table 1: The critical values and the approximatedp-
values of theKSn1×n2 , CMn1×n2 andF tests for the
rate of growth of corn plants.

Constant First-order
TestStatistic Data p-value Data p-value
KS21×16 6.00 0.00 1.50 0.99
CM21×16 6.05 0.00 0.20 1.00
OKS21×16 3.48 0.00 0.79 0.45
OCM21×16 3.30 0.00 0.08 0.36
F21×16 40.35 0.00 1.32 0.27

The leastsquares estimate for the parameters of
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themodelgives the fitted model as follows:

ŷ(t, s) = 0.24424 + 0.01328t + 0.00504s,

for (t, s) ∈ [0, 12]× [0, 15.75]. The graph of the fitted
model is presented in Figure 5.
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Figure5: The graph of the fitted model of the rate of
growth of corn plants.

There are several interpretations can be given to
this fitted model. First, this model can help the prac-
titioner in predicting the rate of growth of corn plan
in every coordinate point on the experimental region.
Second, by the positive values of the slope, the fertility
level of the land increases as the position moves away
from the origin(0, 0). In other world, the fertility level
is not uniformly distributed over the region.

6 Conclusion
The validity of an assumed linear regression model for
spatial observations can be tested asymptotically based
on the partial sums of the recursive residuals. Tradi-
tionally, recursive residual approach was used for times
series design, in this paper we extend this method for
triangular array design points. In contrast to testing
based on the partial sums of the least squares residu-
als, the most important advantage of testing based on
the partial sums processes of the recursive residuals is
that the limit process does not depend on the assumed
model. It is given by the set-indexed Brownian sheet,
so that the critical value of the test statistics can be
computed analytically. The simulation results show
that among the three types of tests, the Kolmogorv-
Smirnov type has the lowest power. However all tests
perform the similar behaviors whenH0 is true.

In the future, we extend the study to the problem
of model validity check for multivariate observations
based on the moving sums as well as the partial sums

of the recursive residuals when the vector of observa-
tions does not follow normal distribution model and the
design is not really a regular lattice. Survey for the par-
tial sums of multivariate ordinary least squares residu-
als can be found in [25, 24, 26]. To the knowledge
of the authors the test procedure under such a design
strategy has been not yet investigated in the literatures.
It is also interesting to extend the consideration to the
case of spatial regression with second-order stationary
observations.

Appendix

Proof of Proposition 2: Without loss of generality we
consider the case ofj1 < j′1 andj2 = j′2. Other cases
can be handled analogously. Then there exists a pos-
itive integerk, such thatj′1 = j1 + k ≤ n1. By the
definition we get

a>j1j2aj′1j′2 =
1√

dj1j2dj′1j′2

(−f>(tj1j2)
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
,

1, 0, . . . , 0, 0, 0, . . . , 0)

×(−f>(tj′1j′2)
(
X(n1,n2)>

j′1−1j′2
X(n1,n2)

j′1−1j′2

)−1
X(n1,n2)>

j′1−1j′2
,

1, 0, . . . , 0, . . . , 0)>

=
1√

dj1j2dj1+kj2

×(f>(tj1j2)
(
X(n1,n2)>

j1+k−1j2
X(n1,n2)

j1+k−1j2

)−1
f(tj1+kj2)

−f>(tj1+kj2)
(
X(n1,n2)>

j1+k−1j2
X(n1,n2)

j1+k−1j2

)−1
f(tj1j2)

+0 + · · ·+ 0) = 0.

In the case wherej1 = j′1 andj2 = j′2, we have

a>j1,j2
aj1,j2

dj1j2

= (f>(tj1j2)
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
,

1, 0, . . . , 0)

×(f>(tj1j2)
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

(j1−1j2) ,

1, 0, . . . , 0)>

= f>(tj1j2)
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
f(tj1j2) + 1

= 1.

The proof of the proposition is established.

WSEAS TRANSACTIONS on MATHEMATICS Wayan Somayasa

E-ISSN: 2224-2880 69 Volume 18, 2019



Proof of Theorem 3: First we show that the finite di-
mensional distribution of the sequence

Vn1n2 :=
1

σ
√

n1n2 − p

m∑

`=1

δ`Sn1n2−p(Wn×n)(A`)

for m ≥ 1, δ1, . . . , δm be arbitrarym constants and
A1, . . . , Am be arbitrary convex subsets ofD, con-
verges to that ofZP0 . Then, we have

V ar (Vn1n2) = E (Vn1n2)
2

=
m∑

`=1

m∑

k=1

δ`δk

n1n2 − p

n1∑

j1=1

n2∑

j2=1

n1∑

j′1=1

n2∑

j′2=1

1A`
(tj1j2)

×a>j1j2aj′1j′21Ak
(tj′1j′2)

=
m∑

`=1

m∑

k=1

δ`δk

n1n2 − p

∑

(j1,j2)∈Tn1n2−p

1A`∩Ak
(tj1j2)

=
m∑

`=1

m∑

k=1

δ`δk

n1n2 − p

n1∑

j1=1

n2∑

j2=1

1A`∩Ak
(tj1j2) + o(1).

Sincep is fixed andp ¿ n1n2, then the term converges
to zero asn1, n2 → ∞. We notice that forn1 ≥ 1
and n2 ≥ 1, the equidistance design corresponds to
a discrete probability measurePn1×n2 on (D,B(D)),
defined by

Pn1×n2(A) :=
1

n1n2

n1∑

j1=1

n2∑

j2=1

1A(tj1j2), A ∈ B(D),

having the propertyPn1×n2 ⇒ P0, for n1, n2 → ∞.
Hence, it holds

lim
n1,n2→∞

V ar

(
m∑

`=1

δ`Sn1n2−p(Wn1×n2)(A`)

)

= lim
n1,n2→∞

m∑

`=1

m∑

k=1

δ`δk
n1n2

n1n2 − p

×
∫

A`∩Ak

Pn1×n2(dx, dy)

=
m∑

`=1

m∑

k=1

δ`δkP0(A` ∩Ak).

The last expression is the variance of
∑m

`=1 δ`ZP0(A`).
Lindeberg condition is fulfilled by the sequence

Vn1n2 . To this end we writeVn1n2 as

Vn1n2 =
∑

(j1,j2)∈Tn1n2−p

1
σ
√

n1n2 − p
γj1j2wj1j2 ,

whereγj1j2 :=
∑m

`=1 δ`1A`
(tj1,j2). For ε ∈ (0, 1), let

Ln1n2(ε) be a sequence of constants defined by

Ln1n2(ε) :=

∑

(j1,j2)

E




(
γj1j2wj1j2

σ
√

n1n2 − p

)2

1{∣∣∣ γj1j2
wj1j2

σ
√

n1n2−p

∣∣∣≥ε

}

 ,

where the sum is taken overTn1n2−p. We show
limn1,n2→∞ Ln1n2(ε) = 0, for everyε ∈ (0, 1). For
that let M := max{δ` : 1 ≤ ` ≤ m}. Then
for every (j1, j2) ∈ Tn1n2−p, γ2

j1j2
≤ m2M2 and

|γj1j2 | ≤ m|M |. Hence, for everyε ∈ (0, 1), it holds

Ln1,n2(ε) ≤
∑

(j1,j2)

(mM)2

σ2(n1n2 − p)

E


w2

j1j21
{
|wj1j2 |≥ εσ

√
n1n2−p

m|M|

}



≤ (mM)2

σ2
E


w2

111{
|w11|≥ εσ

√
n1n2−p

m|M|

}

 .

Hence, by the bounded convergence theorem (cf.
Corollary 2.3.13 in [3]) and by recalling the fact that
the set{wj1j2 : (j1, j2) ∈ Tn1n2−p} are independent
and identically distributed, we get

0 ≤ lim
n1,n2→∞

Ln1,n2(ε) ≤ 0.

Thus by Lindeberg-Feller central limit theorem ([3],
p. 345), it can be concluded that the finite dimensional
distributions ofVn1,n2 converges to those ofZP0 . The
tightness of the process can be shown by applying the
approach proposed in [1] and [19], finishing the proof.

Proof of Theorem 6: For (j1, j2) ∈ Tn1n2−p, let
w1

j1j2
be the recursive residuals associated to the lo-

calized model (5). Then we get

w1
j1j2 =

(Yj1j2 − f>(tj1j2)β̂
(n1,n2)
j1−1j2

)√
dj1j2

=

g(tj1j2
)√

n1n2−p
+ εj1j2√

dj1j2

− f>(tj1j2)×
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
Y(n1,n2)

j1−1j2√
dj1j2

=
g(tj1j2)√

dj1j2(n1n2 − p)
− f>(tj1j2)×

(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)

j1−1j2
g(n1,n2)

j1−1j2√
dj1j2(n1n2 − p)

+ wj1j2 ,

wherethelast term is the recursive residual underH0.
Hence, by considering the linearity of the partial sums
operator we get for everyA ∈ A,

1
σ
√

n1n2 − p
Sn1n2−p(W1

n1×n2
)(A)
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=
∑

(j1,j2)∈Tn1n2−p

1A(tj1j2)
g(tj1j2)

σ(n1n2 − p)
√

dj1j2

−
∑

(j1,j2)∈Tn1n2−p

1A(tj1j2)f
>(tj1j2)

×
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
g(n−1,n2)

j1−1j2

σ(n1n2 − p)
√

dj1j2

+
1

σ
√

n1n2 − p
Sn1n2−p(Wn1×n2)(A).

Thefirst term on the right-hand side of the last equation
can be re-written as

1
σ

n1n2

(n1n2 − p)


 1

n1n2

∑

(j1,j2)

1A(tj1j2)
g(tj1j2)√

dj1j2


 ,

wherethesum is overTn1n2−p. Furthermore, for every
(j1, j2) ∈ Tn2−p, the constantdj1,j2 can be written by

dj1j2 = 1

+
f>(tj1j2)√

n1n2


X(n1,n2)

(j1−1j2)X
(n1,n2)
j1−1j2

n1n2



−1

f(tj1j2)√
n1n2

,

where for (j1, j2) ∈ Tn2−p the assumption that
rank(Xn

(j1−1,j2)) = p guarantees the existence of the
invers 

X(n1,n2)>
j1−1j2

X(n1,n2)
j1−1j2

n1n2



−1

.

Henceby the well known decomposition theorem (cf.
Harville [15], p. ), there exists a matrixA, such that


X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

n1n2



−1

= AA>.

By applyingCauchy-Schwarz inequality (cf. Conway
[11]) to the absolute value of the Euclidean inner prod-
uct, we get

|dj1j2 − 1| ≤ 1
n1n2

‖f∗(tj1j2)‖2 < ∞

for somevectorf∗(tj1j2) = A>f(tj1j2) ∈ Rp, where
‖ · ‖ is the usual Euclidean norm onRp. Thus, for
every(j1, j2) ∈ Tn1n2−p, dj1,j2 converges to one, as
n1, n2 →∞. Sinceg has bounded variation onD and
Pn1×n2 ⇒ P0, then the fact thatp ¿ n1n2 implies

lim
n1,n2→∞

∑

(j1,j2)∈Tn1n2−p

1A(tj1j2)g(tj1j2)
σ(n1n2 − p)

√
dj1j2

= lim
n1,n2→∞

∫

A

(n1n2)g(x, y)Pn1×n2(dx, dy)
σ(n1n2 − p)

=
1
σ

∫

A
g(x, y)P0(dx, dy).

For the second term we have

∑

(j1,j2)∈Tn1n2−p

1A(tj1j2)f
>(tj1j2)

×
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)

j1−1j2
g(n1,n2)

j1−1j2

σ(n1n2 − p)
√

dj1j2

=
1
n2

∑

(j1,j2)∈Tn1n2−p

(n1n2)1A(tj1j2)f
>(tj1j2)

σ(n1n2 − p)
√

dj1j2

×

X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

n1n2



−1

X(n−1,n2)>
j1−1j2

g(n1,n2)
j1−1j2

n1n2

=
n1n2

σ(n1n2 − p)

∫

A

f>(u, v)√
dj1j2

×
(∫

Bu,v

(fk(x, y)f`(x, y))p,p
k,`=1 dPn1×n2

)−1

×
(∫

Bu,v

fk(x, y)g(x, y)dPn1×n2

)p

k=1

dPn1×n2 .

Hence, by applying the similar argument as in the pre-
ceding result, we get

lim
n1,n2→∞

n1n2

σ(n1n2 − p)

∫

A

f>(u, v)√
dj1j2

×
(∫

Bu,v

(fk(x, y)f`(x, y))p,p
k,`=1 dPn1×n2

)−1

×
(∫

Bu,v

fk(x, y)g(x, y)dPn1×n2

)p

k=1

dPn1×n2

=
∫

A
f>(u, v)G−1(u, v)(fg)(u, v)P0(du, dv),

finishing the proof.
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