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Abstract: - We introduce a new method for solving differential equations through differentiable 
manifolds. The Gaussian integral is used as an illustrative example, simply because it has been declared 
in many texts as unsolvable through other mathematical procedures. Our argument is that the notion of 
whether an integral could be un-integrable, or a differential equation unsolvable, depends on the space 
one is working in. 
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1 Introduction 
Our approach to the Gaussian is hinged on the 
modification of the method of variation 
parameters. This is achieved through 
differentiable topological manifolds. In its 
current state, as treated in metric spaces, the 
method is rigged with contradictions. For 
example, some quantities that begin as constants 
transform into functions without any logical 
connection offered, and none can be deduced. 

Such inconsistencies clear automatically 
when inspected through differentiable 
topological manifolds. In metric spaces, if there 
is no distance between two points, then the 
points are identical; like when two billiard balls 
overlap. For our method to work, we extend the 
notion of the zero distance to two points that are 
in each other’s immediate neighbourhood; this 
allows for the two balls to step out of each other, 
and simply touch. 

The Gaussian integral, or simply the Gaus- 
sian, 
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is said to be un-integrable because a function 
F(z), called the anti-derivative, cannot be found, 
such that 
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This anti-derivative notion derives from the 
fundamental theorem of calculus, credited to 
Isaac Newton (1642-1727) and Gottfried Leibniz 
(1646-1716). This was before Leonhard Euler 
(1707-1783) appeared on the scene, and 
introduced topology, though today topology is 
credited to the likes of Johann Benedict Listing 
(1808 - 1882), for coining the term topology and 
largely to Felix Hausdorff (1868 - 1942), of 
Hausdorff topology. 

The extension of topology to the study of 
differential equations, is an ongoing process, as 
evident from [1], [2], [3], [4] and [5]. Our 
contribution is to infinitely differentiable 
solutions, in particular those requiring the 
fundamental theorem be presented in the form 
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for some mapping f, with the velocity operator 
𝑉𝑉𝑓𝑓 ,𝑧𝑧  𝜖𝜖 𝑇𝑇𝑇𝑇, where 

 𝑇𝑇𝑇𝑇 = {𝑉𝑉𝑓𝑓 ,𝑧𝑧  |𝑓𝑓:ℝ → 𝑋𝑋}, 

 

(4) 

 

a tangent vector space, with ℝ being the set of 
real numbers. 
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In brief, what we are proposing is that 
integrals that are un-integrable on the metric 
space, may not necessarily be so on 
differentiable topological spaces. Quotient 
spaces arise naturally in higher derivatives. As 
such, we will address 
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after replacing F(z) with ψ(x). 
Section 2 is on our theoretical basis of our 

proposed integration procedure. The theory is 
built from variation of parameters method, 
discussed briefly in subsection 2.1. Some 
integrals may not evaluate in elementary spaces 
because of the exclusion the function f pointed 
out in (3). This is discussed further in subsection 
2.2. A connection to quotient spaces is shown in 
subsection 2.3. 

The theory is tested with an application on 
the Gaussian integral in section 3. 
 
 
2 The theoretical basis 
 
2.1 The variation of parameters method 
Consider the differential equation 
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where a,b and c are constants. 

To solve this equation through the method 
of variation of parameters, one has to first 
determine the fundamental solution {𝑦𝑦1,𝑦𝑦2}, 
which is the solution of the homogeneous case, 
resulting from setting 

𝑓𝑓(𝑥𝑥) = 0 , 

 

(8) 

 

 

The complementary solution is then 

𝑦𝑦𝐶𝐶 = 𝐶𝐶1𝑦𝑦1 + 𝐶𝐶2𝑦𝑦2 , 

 

(9) 

 

where C1 and C2 are constants. To get particular 
solution, the result is expressed as 

𝑦𝑦𝑇𝑇 = 𝑣𝑣1𝑦𝑦1 + 𝑣𝑣2𝑦𝑦2 , 

 

(10) 

 

where the functions 𝑣𝑣1 and 𝑣𝑣2  have taken the 
places of the constants. 

What we take from here to the next 
subsection and beyond, is the two assumptions 
which we have highlighted with the bullets •. 
The zero 𝑓𝑓(𝑥𝑥) = 0  observed here, in our cases 
are multiple zeros, eventually leading to (38) 
and (53). The constants C1, C2 and the 
functions v1,v2 lead to (16) and (17) which 
generate (39) and (47). 
Differentiable Topological Manifolds 

A topological space 𝑀𝑀 = (𝑋𝑋, 𝐽𝐽𝑋𝑋) is a set 𝑋𝑋 with 
a topology 𝐽𝐽𝑋𝑋 . For it to be a differentiable 
topological manifold, or simply a differentiable 
manifold 𝐷𝐷𝑀𝑀 = (𝑋𝑋, 𝐽𝐽𝑋𝑋 ,𝐴𝐴), an atlas 𝐴𝐴 is 
required in addition. 

To build a differentiable manifold, we start 
with a metrizable topological space 𝑀𝑀 =
(𝑋𝑋, 𝐽𝐽𝑋𝑋). That is, a set 𝑋𝑋 with the topology 𝐽𝐽𝑋𝑋 , 
with the properties that 
• it is Hausdorff, meaning that any two points 
𝑥𝑥𝑝𝑝  and 𝑥𝑥𝑞𝑞  in this space can be isolated in 
their own open set 𝑈𝑈𝑇𝑇 = {𝑥𝑥𝑝𝑝} and 𝑈𝑈𝑞𝑞 = {𝑥𝑥𝑞𝑞}, 
and these sets can never intersect. That is, Up 
∩ Uq = ∅. 

• It is second countable. 

• It has para-compactness. 

These three properties ensures that the space is 
metrizable. We also require a local or simply 
Euclidean space IRN, with the usual topology 
J

IRN. 
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Next is a homeomorphism 𝑓𝑓 from (𝑋𝑋, 𝐽𝐽𝑋𝑋) to 
(ℝ𝑁𝑁 , 𝐽𝐽ℝ𝑁𝑁 ).  That is, the mapping 𝑓𝑓 has an 
inverse 𝑓𝑓−1.  It is bi-continuous, onto, and one 
to one. 

We now consider the topologies (𝑈𝑈𝑝𝑝 , 𝐽𝐽𝑋𝑋|𝑈𝑈𝑝𝑝 ) 
and (𝑈𝑈𝑞𝑞 , 𝐽𝐽𝑋𝑋|𝑈𝑈𝑞𝑞 ). That is, the topology of 𝑋𝑋 
restricted to 𝑈𝑈𝑝𝑝  and 𝑈𝑈𝑞𝑞 . A mapping 𝜓𝜓𝑝𝑝 , if it 
exists, then maps the space  (𝑈𝑈𝑝𝑝 , 𝐽𝐽𝑋𝑋|𝑈𝑈𝑝𝑝 ) into the 
Euclidean space (ℝ𝑁𝑁 , 𝐽𝐽ℝ𝑁𝑁 |𝜓𝜓𝑝𝑝�𝑈𝑈𝑝𝑝�). Similarly, ψq 

maps (𝑈𝑈𝑞𝑞 , 𝐽𝐽𝑋𝑋|𝑈𝑈𝑞𝑞 ) into the Euclidean space  
(ℝ𝑁𝑁 , 𝐽𝐽ℝ𝑁𝑁 |𝜓𝜓𝑞𝑞�𝑈𝑈𝑞𝑞�). 

If this this mappings are homeomorphisms, 
then the set 𝐴𝐴, with 

𝐴𝐴 = {�𝑈𝑈𝑝𝑝 ,𝜓𝜓𝑝𝑝�, �𝑈𝑈𝑞𝑞 ,𝜓𝜓𝑞𝑞�} 

 

(11) 

 

is called an atlas, with 𝜓𝜓𝑝𝑝 ,𝜓𝜓𝑞𝑞  called 
coordinates. 

Our interest is in one of the charts mapping 
equivalence classes. Therefore, 

𝐴𝐴 = {�[𝑈𝑈𝑝𝑝], [𝜓𝜓𝑝𝑝]�, �𝑈𝑈𝑞𝑞 ,𝜓𝜓𝑞𝑞�} 

 

(12) 

 

Similarly, for manifolds in derivatives of ψ, 
we get the atlases 

𝐴𝐴(𝑖𝑖) = ��[𝑈𝑈𝑝𝑝], [𝜓𝜓𝑝𝑝
(𝑖𝑖)]� , �𝑈𝑈𝑞𝑞 ,𝜓𝜓𝑞𝑞

(𝑖𝑖)�� . 

 

(13) 

 

 
2.2 Transmission mappings 
The mapping from (ℝ, 𝐽𝐽ℝ|ℝ𝜓𝜓([𝑈𝑈𝑇𝑇 ])) to 
(ℝ, 𝐽𝐽ℝ|ℝ𝜓𝜓(𝑈𝑈𝑞𝑞 )), having stepped down from ℝ𝑁𝑁  to 
ℝ. It is given by 

 , (14) 

and it is called a transition mapping. Its inverse 

is 

 . (15) 

We are interested in case where [Up] and 
Uq overlap, so that there is a point x in the 
neighbourhood of both p and q such that 

 [ψ[x]] = ψ(x). (16) 

The transmission mappings in derivative 
spaces lead to 

 , (17) 

for n = 1,2,3,···. 

 
2.3 Tangent spaces 
As indicated earlier, tangent spaces assist in 
establishing a function 𝑓𝑓, that allows for results 
to be projected onto the metric space. A tangent 
space is a set 

TP = {Vγ,P |γ : ℝ → X}, 

such that 

(18) 

Vγ,P f = (f ◦ γ−1)[γ(τ0)], (19) 

where f ∈ C∞(X), Vγ,P : C∞(M) → ℝ, γ(τ0) = P. 

The tangent space 𝑇𝑇𝑇𝑇 has the basis vectors 
{∂Xi}. Any vector then can be represented in 
terms of it, so that 

 . (20) 

That is X ∈ TP X = TP M. 

 
2.4 Cotangent spaces 
A tangent space is a vector space, and where 
there is one there should also be a co-vector 
space, hence the cotangent space. It is the set of 
all maps in the tangent space to ℝ. That is, 

 ω : TpX → ℝ, (21) 

with ω being an element of the cotangent 
space. The symbol (df)p represents a co-vector 
acting on mapping f at P. A cotangent space, 
therefore, is 
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 T P∗ = {(df)p|f ∈ C∞(X)}, (22) 

and it is a vectors space, and is the dual of 𝑇𝑇𝑇𝑇. 

The basis vectors of a cotangent space 
requires that 

 , (23) 

so that the basis of T P∗ is 

 . (24) 

Therefore an element ω of T P∗ can be written 

 ω = ωi(dxi)|p. (25) 

At any point of a differentiable manifold 
(𝑋𝑋, 𝐽𝐽𝑋𝑋 ,𝐴𝐴), with a multiple points 𝑇𝑇,𝑄𝑄,𝑅𝑅, 𝑆𝑆 P,Q 
there exists tangent spaces 𝑇𝑇𝑇𝑇𝑋𝑋,𝑇𝑇𝑄𝑄𝑋𝑋,𝑇𝑇𝑅𝑅𝑋𝑋,𝑇𝑇𝑆𝑆𝑋𝑋, 
which are the tangent bundles. This can be 
extended to cotangent bundles  
𝑇𝑇𝑇𝑇∗𝑋𝑋,𝑇𝑇𝑄𝑄∗𝑋𝑋,𝑇𝑇𝑅𝑅∗𝑋𝑋,𝑇𝑇𝑆𝑆∗𝑋𝑋. 

 
2.5 Quotient spaces 
Consider the general ordinary differential 
equation 

  (26) 

with 

ψ : X → Y. 

A set 

(27) 

S = {x0,x1,x2,···} ⊂ X, 

such that 

(28) 

xi = P(xj) = xj + 2πks (29) 

where ks is an integer, is called an equivalence 
class. This leads to a Quotient space ℝ / ∼. It is 
the set of all equivalent classes in ℝ, and is 
given by 

 ℝ / ∼= {[x0],[x1],[x2],···}. (30) 

It is a differentiable topological space. In our 
study, the image of this set, is also an 
equivalence class 

{[ψ(x0)],[ψ(x1)],[ψ(x2)],···}, (31) as 
such there is a homomorphism, and it extends to 
the derivative spaces 

{[ψ(i)(x0)],[ψ(i)(x1)],[ψ(i)(x2)],···}, (32) for i 

= 1,2,3,···. 

3 Integrating the Gaussian (6) 
We begin with the trivial integration of (5). The 
first integration gives 

 . (33) 

That is, 

 , (34) 

where D1 is a constant of integration. The 
second integration: 

 

where D2 is also a constant of integration. That 

is, 

 

or 

 

We turn to quotient spaces to resolve the 
remaining integral, by generating equivalence 
classes, guided by the theory developed in the 
previous section. 
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3.1 The equivalence classes 
From expression (6), it is clear that ψ is smooth, 
i.e., infinitely differentiable. Note again that ψ 
and  share the same infinite zeroes, and that 
this set of zeroes constitutes an equivalence 
class, in both x and ψ, and its derivatives. 
Hence, 

 , (38) 

which has the solution 

 . (39) 

To evaluate determine a and ω through 
(37) and (54) we note that 

 . (40) 

Hence, 

 

so that 

 

It gives 

  (43) 

so that 

 

with θ = [x] + [φ]. 

Differentiating (41) with respect to [x] gives 

 . (45) 

Substituting 

 , (46) 

transforms it into the differential 

[a]cos(i[ω]θ)d[x] + d([a]cos(i[ω]θ)) 

 −d(D1). (47) 

Hence, 

(48) 

Solving for a and ω leads to 

𝜔𝜔 = �𝑆𝑆1 − 𝑆𝑆2, 

 

(49) 

 

 

Figure 1: A plot of the Gaussian (1) obtained 
through Numerical techniques. 

¬ 
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Figure 2: A plot of the solution in (55). 

with 

 

and 

 , (51) 

where 

, 

so that 

 . (52) 

The easier expression follows from 

 , (53) 

which has the solution 

 , (54) 

with a constant F0. It leads to 

 

where , and is 
plotted in Figure 2, and compares favourably 
with the numerically result in Figure 1. 

4 Discussion and conclusion 
This paper was on a new method for solving 
differential equations through quadrature, and it 
was tested successfully on the Gaussian 
integral, posed as a differential equations. We 
have addressed this integral before, using a 
technique we based on Sophus Lie (1842-
1899)[6]’s symmetry group theoretical methods 
in [7], and later on [8]. The work we did here is 
an improvement, in that in our previous study 
we missed the function f, which displaces 
Figure 2 to Figure 1. 

Similarly infinitely differentiable equation 
like (6 ) arise in a number of our models. For 
example, in fluid mechanics through similarity 
analyses of equations such as the Euler and the 
Navier-Stokes equations, and are still unsolved. 
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