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Abstract:The smoothness of functions is absolutely essential in the case of space of functions in the finit element
method (FEM): incompatible FEM slowly converges and has evaluations in nonstandard metrics. The interest in
smooth approximate spaces is supported by the desire to have a coincidence of smoothness of an exact solution and
an approximate one. The construction of smooth approximating spaces is the main problem of the finit element
method. A lot of papers have been devoted to this problem. The embedding of FEM spaces is another important
problem; the last one is extremely essential in different approaches to approximate problems, speeding up of
convergence and wavelet decomposition. This paper is devoted to coordinate functions obtained with approximate
relations which are a generalization of the Strang-Michlin’s identities. The aim of this paper is to discuss the
pseudo-smoothness of mentioned functions and embedding of relevant FEM spaces. Here we have the necessary
and sufficien conditions for the pseudo-smoothness, definitio of maximal pseudo-smoothness and conditions of
the embedding for FEM spaces define on embedded subdivisions of smooth manifold. The relations mentioned
above concern the cell decomposition of differentiable manifold. The smoothness of coordinate functions inside
the cells coincides with the smoothness of the generating vector function of the right side of approximate relations
so that the main question is the smoothness of the transition through the boundary of the adjacent cells. The
smoothness in this case is the equality of values of functionals with supports in the adjacent cells. The obtained
results give the opportunity to verify the smoothness on the boundary of support of basic functions and after that
to assert that basic functions are smooth on the whole. In conclusion it is possible to say that this paper discusses
the smoothness as the general case of equality of linear functionals with supports in adjacent cells of differentiable
manifold. The results may be applied to different sorts of smoothness, for example, to mean smoothness and to
weight smoothness. They can be used in different investigations of the approximate properties of FEM spaces, in
multigrid methods and in the developing of wavelet decomposition.

Key–Words:finit element method, general smoothness, embedded spaces, minimal splines, approximation on
manifold
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1 Introduction

It is important to know about the smoothness of the
discussed functions. In the particle it is absolutely
essential in the case of the space of the functions in
the finit element method (FEM). For example, in the
simplest variant of FEM a construction of coordinate
functions has to be in the energetic space of suitable
self adjoint operator (see [1] – [8]). The usage of less
smooth functions for the construction of FEM com-
plicates the situation significantl , so that the incom-

patible FEM slowly converges and has evaluations in
nonstandard metrics.

On the other hand it is often needed to calculate
some functionals on the solution (for example, the
value of the solution or its derivatives in a point); for
that sometimes it needs the additional smoothness of
an approximate solution.

Interest in smooth approximate spaces is also sup-
ported by the circumstance. The circumstance that
the exact solution is often so smooth that it appears to
have the desire of coincidence of smoothness of exact
solution and approximate one (see [9] – [27]).

In the paper [9] the cell-wise strain smoothing op-
erations are incorporated into conventional finit el-
ements and the smoothed finit element method for
2D elastic problems is proposed. The paper [10]
examines the theoretical bases for the smoothed fi
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nite element method, which is formulated by incor-
porating the cell-wise strain smoothing operation into
the standard compatible finit element method. The
smoothed finit element method is discussed in [11].
An edge-based smoothed finit element method is im-
plied to improve the accuracy and convergence rate
of the standard finit element method for elastic solid
mechanical problems and extended to more general
cases (see [12]). In [14] the cell-based smoothed fi
nite element method is used for the refinemen of the
accuracy and stability of the standard finit element
method.

Note also that under the condition of high velocity
of convergence in the original space (for example, in
the energetic space) it is possible to get an evaluation
of convergence in the spaces of the highest smooth-
ness (using, for example, an analog of Markov’s in-
equality).

According to what has been said a certain inves-
tigation of smoothness of approximate solutions is re-
quired.

It is very important that the embedding property
of the FEM spaces on the embedding subdivisions ex-
ists. This property is useful in the estimates of approx-
imation for FEM, in the acceleration of convergence,
in the wavelet decomposition and so on.

We note that such property isn’t always right.
Discuss a simple example of violation of this prop-
erty.

Consider the grid

X : . . . < x−1 < x0 < x1 < . . . ,

and approximate relations
∑

j

ajωj(t) = ϕ(t), suppωj ⊂ [xj , xj+3],

where aj are three-dimensional vectors

det(aj ,aj+1,aj+2) 6= 0 ∀j ∈ Z,

and ϕ(t) is a three-dimensional vector function
ϕ(t) = (1, t, t2)T .

If aj = ϕ(xj+1), then

ωj(t) =
(t− xj)(t− xj−1)

(xj+1 − xj)(xj+1 − xj−1)

for t ∈ (xj , xj+1),

ωj(t) =
(xj+2 − t)(t− xj)

(xj+2 − xj+1)(xj+1 − xj)

for t ∈ (xj+1, xj+2),

ωj(t) =
(xj+3 − t)(xj+2 − t)

(xj+3 − xj+1)(xj+2 − xj+1)

for t ∈ (xj+2, xj+3).

Now discuss an enlarged grid

X̂ : . . . < x̂−1 < x̂0 < x̂1 < . . . ,

where x̂j = xj for j ≤ k, x̂j−1 = xj for j > k +
1. We defin the coordinate functions by approximate
relations

∑

j

âjω̂j(t) = ϕ(t), supp ω̂j ⊂ [x̂j , x̂j+3],

where âj are three-dimensional column vectors with
property

det(âj , âj+1, âj+2) 6= 0 ∀j ∈ Z,

and ϕ(t) is the previous three-dimensional vector
function ϕ(t) = (1, t, t2)T .

If âj = ϕ(x̂j+1) ∀j ∈ Z , then we obtain the func-
tion ω̂j(t) by approximate relations; as a result the
formulas for ωj(t) are similar to formulas for ωj(t)
(in last one it needs to change xs by x̂s).

It is clear to see that the functions ωj and ω̂j

are continuous on the interval (α, β), where α =
limi→−∞ xi, β = limi→+∞ xi.

Each system {ωj}j∈Z and {ω̂j}j∈Z is linear in-
dependent system. Consider functionals gi(u) =
u(xi+1). The system of functionals {gi}i∈Z is
biorthogonal to the system of functions {ωj}j∈Z .

By the definitio of grid X̂ we have

ω̂j(t) = ωj(t) for j ≤ k − 3,

ω̂j(t) = ωj+1(t) for j ≥ k + 2.

Now we demonstrate that the function ω̂k−2 can’t be
represented by linear combination of the functions ωi.

Proof by contradiction. Suppose that constants
c−2, c−1, c0, c1 exist such that the relation

ω̂k−2 = c−2ωk−2 + c−1ωk−1 + c0ωk + c1ωk+1 (1)

is fulfilled It is clear that other functions ωj don’t
need because of the disposal of their supports.

Applying the functionals gi for i = k − 2,
k − 1, k, k + 1, we obtain a false formula:

ω̂k−2(t) = ωk−2(t) + ω̂k−2(xk)ωk(t).

Thus the supposition that the relation (1) is right
isn’t correct. This concludes the proof.

Now we note that if vectors aj are define by the
relations

aj = a∗j = (1, (xj + xj+1)/2, xjxj+1)T ,
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then we obtain splines ω∗j (t) with maximal smooth-
ness (they are continuously differentiable quadratic
splines: for splines of the second degree with support
mentioned above such smoothness is maximal possi-
ble). The spaces of such splines are embedded in each
other on embedded grids.

Here we consider the coordinate functions ob-
tained with the approximate relations which are a gen-
eralization of the Strang-Michlin’s identities. This pa-
per is devoted to the pseudo-smoothness of the men-
tioned functions and the embedding of relevant FEM
spaces. We formulate the necessary and sufficien
conditions for the pseudo-smoothness, introduce max-
imal pseudo-smoothness and prove the embedding of
FEM spaces define on embedded subdivisions of
smooth manifold.

Next we briefl describe the obtained results.
The support of the coordinate functions of FEM is
the union of a certain number of elementary cells
(for example, simplicial cells in the case of using of
Courant’s basis).

The smoothness of coordinate functions inside of
the cells coincides with the smoothness of the gen-
erating vector function for the right side of the ap-
proximate relations so that the main question is the
smoothness of transition through the boundary of ad-
jacent cells.

For example, in the case of a smooth boundary
between two cells it is possible to discuss the limit
of derivatives in the direction which is orthogonal to
the boundary in its fi ed point. The mentioned limit
values could be discussed as results of action of two
functionals: one of them with support in the firs cell,
and another one with support in the second cell. The
smoothness in this case is the equality of values of the
functionals.

This paper discusses the general case of linear
functionals with support in adjacent cells. Therefore it
discusses the essential generalization of smoothness.
The obtained results give the opportunity to verify the
smoothness on the boundary of support of the basic
functions and after that to assert that the basic func-
tions are smooth on the whole.

2 Notion and auxiliary assertions
Consider a smooth n-dimensional (generally speak-
ing, noncomact) manifoldM (i.e. topological space
where each point has a neighborhood which is diffeo-
morphic to the open n-dimensional ball of Euclidean
space Rn).

Let {Uζ}ζ∈Z be a family of opened sets covering
M, and such homeomorphisms ψζ , ψζ : Eζ 7→ Uζ

opened balls Eζ of the space Rn that the maps

ψ−1
ζ ψζ′ : ψ−1

ζ′ (Uζ ∩ Uζ′) 7→ ψ−1
ζ (Uζ ∩ Uζ′)

(for all ζ, ζ ′ ∈ Z , for which the map Uζ∩Uζ′ 6= ∅) are
continuously differential (needed a number of times);
here Z is a set of indices.

We discuss a map ψζ : Eζ 7→ Uζ and a set {ψζ :
Eζ 7→ Uζ | ζ ∈ Z}; the last one, called atlas, define
the manifoldM.

Let S = {Sj}j∈J be a covering family for
manifold M where subsets Sj are homeomorphic to
opened n-dimensional ball; thus

⋃

j∈J
Sj = M,

where J is an ordered set of indices. The sets Sj are
called the elements of cover S; the boundary of the set
Sj is denoted ∂Sj .

Consider set

C(t) =
⋂

j∈J , Sj3t

Sj .

for each point t ∈ M\⋃
j∈J ∂Sj . Collection {C(t)}

at most countable; later on we denote mentioned sets
by Ci, i ∈ K, where K is an ordered set of indices.

We have C = {Ci | i ∈ K}, and the next relations
are right:

Ci′ ∩ Ci′′ = ∅ for i′ 6= i′′, i′, i′′ ∈ K,

Cl (Sj) = Cl

( ⋃

Ci⊆Sj

Ci

)
,

Cl

( ⋃

i∈K
Ci

)
= Cl (M); (2)

here Cl is closure in topology of manifoldM.
Thus, the aggregatesM and Sj are split into sets

Ci, so that the cover S is associated with the collection
C; the rule of association described above is denoted
by F : C = F(S). The collection C is called the sub-
division of the coverS.

Definitio 1. If all setsCi fromF(S) are homeo-
morphic to an open ball thenS is called a cover of a
simple structure; in this case setCi is named a cell.

Later on we discuss the cover of a simple struc-
ture.

Definitio 2. Let t ∈ M be a fixed point; a num-
berκt(S) of elements of the collection{j | t ∈ Sj} is
called a multiplicity of cover of pointt by the family
S.
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Definitio 3. If there exists natural numberq,
such that an identity

κt(S) = q, (3)

is right almost everywhere fort ∈M thenS is called
q-covering family (forM), and the numberq is named
a multiplicity of cover of manifoldM by the familyS.

Definitio 4. A cell Ci′ is named a neighboring
cell to the cellCi (i, i′ ∈ K) in subdivision of the cover
S, if i 6= i′ and there exists a pointt, belonging to
the boundary∂Ci of cellCi, a neighborhood of which
belongs toCi′

⋃
Cl (Ci).

It’s clear to see that if cell Ci′ is neighbor to cell Ci

then Ci is neighbor to cell Ci′ ; the cells Ci and Ci′ are
named adjacent cells (in subdivision C of the family
S).

Definitio 5. Let S be a q-covered family, let
Ci andCi′ be arbitrary adjacent cells (in subdivision
C of the familyS). If the difference{j | Sj ⊃
Ci}\{j′ | Sj′ ⊃ Ci′} containsp elements (p is a posi-
tive integer) thenS is calledp-graduatingq-covering
family for manifoldM.

It is evident that p ≤ q.

3 Equipment of cover

Consider a family A = {aj}j∈J of q-dimensional
vectors aj . The family A is called an equipment of
the manifold cover S; thus each set Sj of the cover S
coincides with vector aj of space Rq.

In what follows equipmentA of family S is some-
times denotedA(S), and the vector aj , coinciding with
the set Sj , is denoted A|S| (thus in the discussed case
A|S|= aj).

Definitio 6. Let t be a point of manifoldM, and
let S = {Sj}j∈Z be q-covered family forM. If the
vector system

A〈t〉 = {aj | j ∈ J ,Sj 3 t} (4)

is the basis of spaceRq almost everywhere fort ∈M
then we say thatA(S) is the complete equipment of
manifold cover.

By (2) – (3), (4) it follows that ifA is the complete
equipment of family S , C is equal to F(S) and i is a
fi ed number, i ∈ K then relations

A〈t′〉 = A〈t′′〉 for ∀t′, t′′ ∈ Ci, (5)

are fulfilled
By definition put

Ai = A〈t〉 for t ∈ Ci. (6)

It is easy to see that if S is a p-graduated manifold
cover and Ci, Ci′ are adjacent cells then a number of
vectors in sets Ai\Ai′ is equal to p (for all i, i ′ ∈ K).

4 Finite-element spaces (spaces of
minimal splines)

We say that function u is define onM, if there is a
family of functions {uζ(x)}ζ∈Z,§∈Uζ′ such that

uζ(ψ−1
ζ (ξ)) ≡ uζ(ψ−1

ζ′ (ξ))

∀ξ ∈ Uζ ∩ Uζ′ , ζ, ζ ′ ∈ Z;

and u(ξ) = uζ(ψ−1
ζ (ξ)) for ξ ∈ Uζ .

Linear spaces of functions prescribed on M are
define by the atlas with usage of the relevant spaces
of functions define on balls Eζ .

Let X(M) be a linear space of (Lebesgue mea-
surable) functions define on manifold M, where a
symbol X denotes Cs or Ls

q; thus, the spaces X(M)
defin by qualities

X(M) = {u | u ◦ ψζ ∈ X(Eζ) ∀ζ ∈ Z};
note that Cs(Eζ) and Ls

q(Eζ) are the usual spaces
of functions define on Eζ (1 ≤ q ≤ +∞, s =
0, 1, 2, . . .).

Let X∗ be dual space to space X; it consists of
functionals f , define by identity

〈f, u〉 ≡ 〈fζ , uζ〉ζ ,
where fζ ∈ (X(Eζ))∗ ∀ζ ∈ Z , and {fζ}ζ∈Z is a
family of functionals representing the functional f .

If the value 〈f, u〉 of the functional f ∈ (X(M))∗
is define by the values of function u on the set Ω ⊂
M ∀u ∈ X(M) then we write suppf ⊂ Ω; and if in
this caseΩ is a compact set then we say that functional
f has compact support. In what follows we discuss
functionals with compact support.

Introduce space U as a direct product of spaces
X (Ck):

U =
⊗

k∈K
X (Ck).

By definitio we discuss the trace of function
u ∈ X (M) on the cell Ck as an element of the space
X (Ck); thus we defin natural embedding of the space
X (M) in the space X (M) U : X (M) ⊂ U .

Consider vector function ϕ : M → Rm+1

with components [ϕ]i(t) from space X(M) (here
m ≥ 0, i = 0, 1, 2, . . . , m, t ∈M).

In what follows we discuss q-covering families of
sets, where q = m + 1.

Theorem 1. Let S be m + 1-covering family
(for manifoldM), and letA = {aj}j∈J be a system
of column vectors, forming a complete equipment of
the familyS. Then a unique vector function (column)
ω(t) = (ωj(t))j∈J exists, which satisfies relations

Aω(t) = ϕ(t), ωj(t) = 0 ∀t /∈ Sj ; (7)
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here and later on the symbolA is also used for the
notation of matrix consisting of column vectorsaj :
A = (aj)j∈J .

Proof. According to the definitio of set Ai (see
also the formulas (5) – (6) by (7) we have

∑

aj∈Ai

ajωj(t) = ϕ(t) ∀t ∈ Ci ∀i ∈ K. (8)

The matrix of system (8) isn’t singular because
the set of vectors {aj | aj ∈ Ai} is the basis for the
space Rm+1 according to the definitio of complete
equipment; therefore unknown functions ωj(t), which
are discussed for each fi ed t ∈ Ci and for each i ∈ K,
can be determined uniquely. This concludes the proof.

Corollary 1. The next relations are right:

ωj(t) =
det

(
{as | as ∈ Ai, s 6= j} ||′j ϕ(t)

)

det
(
{as | as ∈ Ai}

)

for ∀t ∈ Ci ⊂ Sj , ωj(t) = 0 ∀t /∈ Sj ; (9)

here the columns in the determinants in the numera-
tor and in the denominator have the same order. The
symbol||′j ϕ(t) indicates that column vectorϕ(t) is
needed in place of column vectoraj .

Let Sm = Sm(S, A, ϕ) be a linear space obtained
by closing the linear hull of set {ωj}j∈J in the topol-
ogy of pointwise convergence:

Sm = Sm(S, A, ϕ) = Clp{ũ | ũ(t) =

=
∑

j∈J
cjωj(t) ∀t ∈M ∀cj ∈ R1};

(symbol Clp denotes closure in mentioned topology).
The space Sm is called a space of minimal(S, A, ϕ)-
splinesor a space of finite elements(of order m) on
manifold M, Triple (S, A, ϕ) is named a generator
of spaceSm, and functions ωj are called coordinate
functionsof the space Sm. Correlations 7 are called
approximation relations.

If the family S is r+1-graduating cover (here r is
a positive integer) then we say that (S, A, ϕ)-splines
have height r. If r = 0 then the splines are named
splines of the Lagrange type, if r > 0 then the splines
are called splines of the Hermite type.

Theorem 2. Under the conditions of Theorem 1,
the linear independence of the component of vector
functionϕ(t) on cellCi is equivalent to the linear in-
dependence of the function system{ωj(t) | Ci ⊆ Sj}
on the cell.

Proof follows from the linear system (8), because
the matrix of the mentioned system is nonsingular.

Theorem 3. Suppose the conditions of Theorem 1
are fulfilled. If the components of vector functionϕ(t)

are linear independent on each cellCi, i ∈ K, then the
system of functions{ωj(t)}j∈J is linear independent
on the manifoldM.

Proof. Let t be a point belonging to t ∈ Ci, where
i is a fi ed number, i ∈ K. Considering identity∑

j∈J cjωj(t) ≡ 0 for t ∈ Ci, we see that nonzero
summands have indices j, which belong to the set
{j | Ci ⊆ Sj}.

Taking into account the nonvanishing of the de-
terminant of system (8) and the linear independence
of the component of vector function ϕ(t) on cell Ci,
we see that all coefficien cj with mentioned indices
are equal to zero. Because we can fin index i = i(j)
for each j ∈ J so that Ci ⊆ Sj , therefore all coeffi
cients cj are equal to zero.

5 Pseudo-continuity of splines (or
finit elements)

Let Fk be a linear functional Fk ∈ (X(M))∗ with
support in the cell Ck, suppFk ∈ Ck.

If cells Ck and Ck ′ are adjacent then by definitio
put Ak,k ′ = {aj |aj ∈ Ak ∩ Ak ′}. In what follows
we fi an order of column vectors aj in the set Ak,k ′ .
Sometimes we discuss the set Ak,k ′ as a matrix with
a mentioned order of columns.

Consider a condition
(A) Relation

Fkϕ = Fk ′ϕ (10)

is right.
Lemma 1. Suppose condition (A) is right and in-

dicesk, k ′ ∈ K are fixed. LetCk andCk ′ be adjacent
cells, and letFk, Fk ′ be corresponding functionals.

Then for the relation

Fk ωj = 0 for aj ∈ Ak\Ak,k′ , Fk ′ ωj ′ = 0

for aj ′ ∈ Ak ′\Ak,k′ , (11)

to be right it is necessary, and if the system of vec-
tors (Ak ∪ Ak ′)\Ak,k ′ is linear independent, then it
is sufficient, to have relations

Fkωj = Fk ′ ωj ∀j ∈ Ak,k ′ . (12)

Proof. We have
∑

aj∈Ak

ajωj(t) = ϕ(t) ∀t ∈ Ck, (13)

∑

aj ′∈Ak ′

aj ′ωj(t) = ϕ(t) ∀t ∈ Ck ′ . (14)
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applying functionals Fk, Fk ′ to relations (13) and (14)
accordingly, we get

∑

aj∈Ak

ajFkωj = Fkϕ, (15)

∑

aj ′∈Ak ′

aj ′Fk ′ωj ′ = Fk ′ϕ. (16)

Comparing (15) and (16) and applying supposi-
tions (10) – (11), we have

∑

aj∈Ak,k ′

ajFkωj =
∑

aj∈Ak,k ′

ajFk ′ωj

Using the linear independence of system Ak,k ′ , we
obtain formula (12). The necessity has been proved.

The proof of sufficien y is trivial: if the vector
system (Ak ∪ Ak ′)\Ak,k ′ is linear independent then
by (10) and (12) it follows relations (11). This com-
pletes the proof.

Theorem 4. Let Ck and Ck ′ be adjacent cells.
Suppose condition(A) is fulfilled. Then for the equal-
ities

Fk ωj = Fk ′ ωj ∀j ∈ J , (17)

to be right it is necessary and sufficient for the rela-
tions (11) to be fulfilled.

Proof. Sufficien y. If relation (11) is true then
(according to Lemma 1) relation (12) is right so that

Fk ωj = Fk ′ ωj for aj ∈ Ak ∩Ak ′ .

If aj /∈ Ak ∩Ak ′ then

suppFk ∩ suppωj = ∅, suppFk ′ ∩ suppωj = ∅,

and therefore

Fk ωj = Fk ′ ωj aj /∈ Ak ∪Ak ′ .

Thus, relation (17) is true. Sufficien y has been
proved.

Necessity. Now we suppose that relation (17) is
right. In particular the equalities

Fk ωj = Fk ′ ωj aj ∈ Ak\Ak,k ′ (18)

and

Fk ωj = Fk ′ ωj aj ∈ Ak ′\Ak,k ′ (19)

are fulfilled Because for aj ∈ Ak\Ak,k ′ we have
suppFk ∩ suppωj = ∅, then the relation (18) can be
written in the form

Fk ωj = 0 aj ∈ Ak\Ak,k ′ .

Thus the firs relation of (11) has been received. Anal-
ogously by (19) we get the second relation of (11).
The necessity has been established. This concludes
the proof.

Under condition (10) we put

F(k,k ′)ϕ = Fkϕ = Fk ′ϕ.

Theorem 5. Suppose the conditions of Theorem
4 are fulfilled. Then relations (17) is equivalent to
relation

F(k,k ′)ϕ ∈ L{as |as ∈ Ak,k ′}. (20)

Proof. Taking into account Theorem 4 we see that
it is sufficien to prove that relation (20) is equivalent
to formulas (11). Substituting the right part of formula
(9) in the firs formula of relations (11) we obtain

det
(
{as | as ∈ Ak, s 6= j} ||′j F(k,k ′)ϕ

)
= 0

aj ∈ Ak\Ak,k′ . (21)

Relations (21) show that the vectorF(k,k ′)ϕ is situated
in the linear spans Lj = L{as |as ∈ Ak, s 6= j},
where j satisfie condition aj ∈ Ak\Ak,k′ . Hence the
vector F(k,k ′)ϕ is contained in the intersection of the
mentioned spans. The last one is equivalent to formula
(20).

Considering the second formula of relations (11),
analogously we obtain

det
(
{as | as ∈ Ak ′ , s 6= j ′} ||′j ′ Fk ′ϕ

)
= 0

aj ′ ∈ Ak ′\Ak,k′ ,

and again we get formula (20). Using the equivalence
of discussed formulas and taking into account Theo-
rem 4, we see that necessity and sufficien y have been
proved.

Corollary 2. The first relation of formula (11)
and the second relation of the mentioned formula are
equivalent.

6 Maximal pseudo-smoothness. Em-
bedding of spaces

Let Fk be a set of linear functionals F belonging to
U∗ and suppF ∈ Fk. Let U0 be linear subspace of the
space U and X (M) ⊂ U0.

Suppose that for each pair of adjacent cells (Ck

and Ck ′) there are functionals Fk Fk ′ such that rela-
tions

Fku = Fk ′u ∀u ∈ U0. (22)
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are right.
Let F0

k be a set of functionals with property (22)
(∀k ∈ K); thus F0

k is the set of functionals, for each
of which there is a cell Ck ′ (ajecent to Ck) and func-
tional Fk ′ (such that suppFk ′ ⊂ Ck ′) with property
(22). By definitio we put F =

⋃
k∈K F0

k . If property
(22) is fulfille then the function u is called F-smooth
function. The set of F-smooth function is denoted by
UF . It is clear to see that U0 ⊂ UF .

Discuss the next condition
(B) The vector function ϕ(t) is F-smooth

(that is its component are F-smooth functions) so that
the condition (A) is fulfille for all pairs (Ck, Ck ′) of
adjacent cells and relevant functionals.

By previous results it follows the next assertion.
Theorem 6. Suppose the condition(B) is cor-

rect. Then for the coordinate functionsωj to be
F-smoothness it is necessary and sufficient for rele-
vant vectorsF(k,k ′)ϕ defined by relationF(k,k ′)ϕ =
Fkϕ = Fk ′ϕ to be in linear hullL{as |as ∈ Ak,k ′}.

Proof. The assertion formulated above follows
immediately by Theorem 5.

By L{F0
k} denote the linear hull of set of func-

tionsals F0
k . If relations

dimL{F0
k} = m + 1 ∀k ∈ K,

are right then F-smoothness is called maximal
smoothness.

Theorem 7. If ϕ ∈ UF andF-smoothness is
maximal then under condition(B) the functionsωj(t)
are defined by trace of vector functionϕ(t) on the set
suppωj (more precisely by values of components of
the vector functionϕ(t) on the all cells, which belong
to the setSj , and by values of functionalsF ∈ F0

k on
the traces of mentioned components).

Proof. Under condition (B) all vectors belonging
to the setAi can be represented as linear combinations
of vectors Fϕ, where functionals F belong to the set
of functionals F0

i ; the last ones have support in the
cell Ck. By formula (9) we see that the function ωj

on the cell Ci is define with values of vector function
ϕ(t) on mentioned cell. Taking into account this cir-
cumstance for each cell of the set Sj , we see that this
completes the proof.

In what follows we suppose that the assumption
of Theorem 7 are fulfilled

Let one more cover Ŝ be introduced on the man-
ifold M, different from the previous one by only a
finit number of covering sets, and so that the multi-
plicity of the cover remains the same, and the corre-
sponding subdivision Ĉ = F(Ŝ) is an enlargement of
the previous one. The equipment of the former cover-
ing sets we save, and the new covering sets we equip
with vectors (one vector from Rm+1 for each set) so

that the resulting equipment is complete. As before,
we construct the family of functions ω̂j from approx-
imation relations of the form

∑

âj∈Âi

âjω̂j(t) = ϕ(t) ∀t ∈ Ĉi ∀i ∈ K̂, (23)

and also the notation appearing here refers to the en-
largement and acquire a clear meaning if we return
to the formula (8). From (23) the functions ω̂j(t) are
uniquely determined. Using (23) and (8), we arrive at
the identity
∑

j∈Ĵ
âjω̂j(t) =

∑

j∈J
ajωj(t) ∀t ∈M ∀ϕ ∈ UF .

(24)
After the reduction of the same components in the
right and left parts of identities (24) we arrive at an
analogous identity, in which the number of terms in
the sums of the left and right sides are finite
∑

j∈Ĵ0

âjω̂j(t) =
∑

j∈J0

ajωj(t) ∀t ∈M ∀ϕ ∈ UF .

(25)
Consider the resulting identity (25) as a system of

linear equations for the unknown ω̂i(t)with a full rank
matrix. Taking into account that {âi} is the complete
equipment, we can fin a principle minor to express
ω̂i(t) as linear combination of the functions ωj(t).

Using the linear independence of the system
{ωj}j∈J , we fin the calibration relations

ω̂i(t) =
∑

j∈J
Gjω̂i · ωj(t), (26)

where {Gj}j∈J is a system of functionals, which are
biorthogonal to the system of functions {ωj}j∈J .

Denoting by Ŝm the linear hull of functions
{ω̂j}j∈Ĵ and taking into account the relations (26),
we obtain the relation Ŝm ⊂ Sm.

7 Conclusion
The smoothness of functions belonging to approxi-
mate spaces in FEM is define by the smoothness of
the coordinate functions used for the construction of
the spaces.

The smoothness of coordinate functions inside
cells are define by the smoothness of the generat-
ing vector function in approximate relations, but the
smoothness of coordinate functions on the boundary
of adjacent cells requires additional discussion.
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Sometimes a number of pairs of adjacent cells in
support of coordinate function are very large; there-
fore the investigation of the smoothness of all men-
tioned pairs is laborious. The result of this paper per-
mits to restrict oneself to such investigation only on
the boundary of support of the coordinate function.

This paper discusses general smoothness as a co-
incidence of values of two linear functionals on the ap-
propriate functions where mentioned functionals have
their supports in adjacent cells. It gives the opportu-
nity to discuss different sorts of smoothness.

For example, for adjacent cells Ck and Ck ′ with
smooth boundary σ between them we put

Fku = lim
τ→+0

∫

σ
u(ξ + τn(ξ))dξ,

Fk ′u = lim
τ→+0

∫

σ
u(ξ − τn(ξ))dξ,

where n(ξ) is a normal vector to the boundary σ in
the point ξ; in that case the equality Fku = Fk ′u is
”mean smoothness”.

Consider another example:

Fku = lim
τ→+0

ψ(τ)
∂u

∂n
(ξ + τn(ξ)),

Fk ′u = lim
τ→+0

ψ(τ)
∂u

∂n
(ξ − τn(ξ)), ξ ∈ σ,

where ∂u
∂n is the derivative with respect to vector

n, and ψ(τ) is a weight function; now the equality
Fku = Fk ′u illustrates ”weight smoothness” (see also
[28] – [29]).

We would like to add that the embedding of FEM
spaces is very important in different investigations of
the approximate properties of FEM spaces, in multi-
grid methods and in the developing of wavelet decom-
position.

In future we suppose to demonstrate the applica-
tion of the obtained results to spline-wavelet treatment
of numerical fl ws.
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