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Abstract: - A deterministic continuous dynamical system is considered. This system contains two contours. The 
length of the ith contour equals c_i, i=1,2. There is a moving segment (cluster) on each contour. The length of 
the cluster, located on the ith contour, equals l_i, i=1,2. If a cluster moves without delays, then the velocity of 
the cluster is equal to 1. There is a common point (node) of the contours. Clusters cannot cross the node 
simultaneously, and therefore delays of clusters occur. A set of repeating system states is called a spectral 
cycle. Spectral cycles and values of average velocities of clusters have been found. The system belongs to a 
class of contour networks. This class of dynamical systems has been introduced and studied by A.P. Buslaev. 
 
Key-Words: - Dynamical system, Contour networks, Self-organization, Average velocity of particles   
 
1 Introduction 
In [1] (Nagel, Schreckenberg, 1992), a transport 
model has been introduced. This model is a cellular 
automaton. In the model, particles move on an 
infinite or closed sequence of cells in accordance 
with given rules. In general case, Nagel-
Schreckenberg model and its versions are too 
complicated for analytic research and were studied 
by simulation. 
Analytic results for a simple version of Nagel-
Schreckenberg model have been obtained in [2] 
(Belitzky, Ferrary, 2005) (a preprint of this paper 
has been published in 1999). These results have 
been obtained under assumption that, at any step, 
each particle moves onto a cell forward if the cell 
ahead is vacant and does not move if this cell is 
occupied. It is noted in [2] that the model is 
equivalent to the elementary cellular automaton 184 
(CA 184) in classification of Wolfram, [3]. Results, 
similar to results of [2], have been obtained 
independently in [4] (Blank, 2000). In accordance 
with results of [2], [4], all particles move after some 
moment at every time for any initial state if the 
density of particles (the number of particles divided 
by the number of cells) is not more than 1/2, then 
the average velocity of particles (the average 
number of transitions of a particle per time unit) 
equals (1 − 𝜌𝜌)/𝜌𝜌, where is the density. In [5] (Gray, 
Griffeath, 2001), analytical results have been 
obtained for somewhat more general traffic model. 
In this model, a particle moves from the cell 𝑖𝑖 to a 
vacant cell 𝑖𝑖 + 1 behead of particle with probability 

depending on states of cells 𝑖𝑖 − 1, 𝑖𝑖 + 2 (cells are 
numbered in the direction of movement). In [5], the 
behavior of particles has been studied for some 
particular cases, and, in the general case, the 
formula for velocity has not obtained. In [6] (Kanai, 
2008), a formula has been obtained for a stochastic 
version of the traffic model. In this system, at every 
step, each particle moves onto a cell forward if the 
cell ahead is vacant. Some generalizations of results 
of [3–5] have been obtained in [7] (Blank, 2010). In 
general case, the system state space, studied in [7], 
is continuous. In a particular case, the system is 
equivalent to the discrete system that is considered 
in [7]. 
A two-dimensional traffic model with a toroidal 
supporter (BML traffic model) has been introduced 
in [8] (Biham, Middelton, Levin, 1992). In this 
model, particle move in accordance with a rule, 
similar to the rule CA 184. Conditions of self-
organization (every particle moves after some 
moment) and collapse (no particle moves after some 
moment) tained for BML model have been obtained 
in [9] (D’Souza, 2005), [10] (Angel, Holroyd, 
Martin, [11] (Austin, Benjamini, 2006), 
In paper [12] (Bugaev, Buslaev, Kozlov, Yashina, 
2011), the concept of a cluster traffic model with 
cluster movement has been introduced. In the 
discrete version of the cluster model, each contour 
contains a given number of cells. There are clusters 
of particles on each contour. Particles of each 
cluster occupy neighboring cells. All particles of 
each cluster move simultaneously in accordance 
with the rule of the cellular automaton 240. Clusters 
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of the same contours can merge. Clusters can be 
delayed at nodes. In the continuous version of the 
model a cluster is a segment moving on the contour 
with constant velocity in a given directionr. 
The concept of a contour network has been 
introduced in [13] (Buslaev contour networks). The 
supporter of a contour network is a system of 
contours with a network structure. Particles 
(clusters) move on contours in accordance with 
some rules. Some limitations are imposed on the 
system. These limitations allow us to study the 
system analytically. 
In [14] (Buslaev, Fomina, Tatashev, Yashina, 2018) 
the concept of spectrum of a contour system has 
been introduced for a deterministic dynamical 
system with a infinite set of states. In such system, a 
sequence of states repeated periodically from some 
moment. This sequence of states is called a spectral 
cycle. The system, considered in [14], is a closed 
chain of contours. Particles move on each contour in 
accordance with the rule of the cellular automaton 
240 (CA 240). There is one cluster on each contour. 
The spectrum of the system is a set of spectral 
cycles and corresponding values of clusters 
velocities. 
In [15] (Buslaev, Tatashev, 2017) and [16] 
(Buslaev, Tatashev, 2018), a discrete two-contours 
system was considered. In this system, particles 
move on contours in accordance with the rule of CA 
184 or CA 240. In [15], the following generalization 
was also considered. The supporter of the system 
contains 𝑁𝑁 contours. There is one common point of 
the contours. In [15, 16] theorems have been proved 
for different versions of movement rules. In [15, 
16], mainly, systems with contours of the same 
length were considered. For a system, containing 
contours of different lengths, in [15] conditions of 
self-organization (system resulting in a state of free 
movement from any initial state) have been 
obtained. 
In this paper, a pair of contours is studied such that 
the lengths of the contours are different. We study a 
discrete and a continuous version of the system. 
There is a moving cluster on each contour. There 
exists a common point of contours (node). Delays 
occurs at the node. We have been found spectral 
cycles and obtained formulas for velocities of 
clusters. 
The initial state of the system is given. This state 
should be admissible. 
We study the spectrum of two-contours system with 
contours of different lengths. is equal to 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1,2. 
There is a moving cluster on each contour. The 
length of the cluster, moving on the contour 𝑖𝑖, is 
equal to 𝑙𝑙𝑖𝑖 , 𝑖𝑖 = 1,2. There is a common point of the 

contours. This point is called the node. More than 
one cluster cannot cross the node simultaneously. A 
cluster stops if it comes to the node at time such that 
at this time the other cluster crosses the node. If 
clusters come to the node simultaneously, then only 
the cluster 1, located on the left, moves (left-priority 
rule). A set of states such that these states are 
repeated periodically is called a spectral cycle. We 
say that the system has the property of self-
organization if the system results in the state of free 
movement over a finite time. In this paper, we have 
obtained conditions of self-organization. We have 
proved that, if the condition of self-organization 
does not hold, then, depending on 𝑐𝑐1, 𝑐𝑐2, 𝑙𝑙1, 𝑙𝑙2, there 
are one or two spectral cycles. Formulas for average 
velocities of clusters have been obtained. 
 
2  System description 
   
We consider a discrete dynamical system containing 
two  contours 1 and 2, figure 1. The length of the 
contour 𝑖𝑖 is equal to 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1,2. There is a moving 
segment ( cluster 𝑖𝑖) on the contour 𝑖𝑖 (𝑖𝑖 = 1,2). The 
contours have a common point ( node). At any time, 
each cluster moves in the direction of movement. 
The cluster 𝑖𝑖 passes the distance 𝑐𝑐𝑖𝑖  per 𝑐𝑐𝑖𝑖  time units 
(the velocity equals 1) if there is no delay, 𝑖𝑖 = 1,2. 
The length of the cluster 𝑖𝑖 is equal to 0 < 𝑙𝑙𝑖𝑖 < 𝑐𝑐𝑖𝑖, 
𝑖𝑖 = 1,2. The coordinate system [0, 𝑐𝑐𝑖𝑖] is introduced 
on the contour 𝑖𝑖, 𝑖𝑖 = 1,2. The direction of the 
coordinate axis is reverse to the direction of 
movement by modulo 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1,2. The coordinate of 
the node is equal to 0 for both contours. The state of 
the system is the vector (𝛼𝛼1(𝑡𝑡), 𝛼𝛼2(𝑡𝑡)), where 𝛼𝛼𝑖𝑖(𝑡𝑡) 
is the coordinate of the leading point of the cluster 𝑖𝑖, 
𝑖𝑖 = 1,2. We say that  the cluster 𝑖𝑖 covers the node at 
time 𝑡𝑡 if 𝑐𝑐𝑖𝑖 − 𝑙𝑙𝑖𝑖 < 𝛼𝛼𝑖𝑖(𝑡𝑡) < 1, 𝑖𝑖 = 1,2. We say that  
the cluster 𝑖𝑖 is at the node at time 𝑡𝑡 if 𝛼𝛼𝑖𝑖(𝑡𝑡) = 0, 
𝑖𝑖 = 1,2.  Admissible states of the system are only the 
states such that no more than cluster covers the 
node. If at time 𝑡𝑡, the cluster 𝑖𝑖, is at the node, and 
the other cluster covers the node, then a delay of the 
cluster 𝑖𝑖 occurs, 𝑖𝑖 = 1,2, figure 2. If both clusters 
are at the node, i.e., the system is in the state (0,0), 
then a  conflict occurs, figure 3. In the case of a 
conflict, only one cluster moves in accordance with 
a  conflict resolution rule. We suppose that the 
conflict resolution rule is the following. If a conflict 
occurs at the initial time 𝑡𝑡 = 0, or a conflict occurs 
at time 𝑡𝑡 = 𝑡𝑡0 and there are no delays at the time 
interval [0, 𝑡𝑡), then, at time 𝑡𝑡 = 𝑡𝑡0, the cluster 1 
moves. Assume that a conflict occurs at the time 
𝑡𝑡 = 𝑡𝑡0, i.e., 𝛼𝛼1(𝑡𝑡0) = 𝛼𝛼2(𝑡𝑡0) = 0. Suppose the latest 
delay in the time interval [0, 𝑡𝑡0) occurs at time 
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𝑡𝑡 = 𝑡𝑡1, and, at time 𝑡𝑡1, the cluster 𝑖𝑖0, 𝑖𝑖0 = 1,2, does 
not move. Then, at time 𝑡𝑡0, the same cluster 𝑖𝑖0 does 
not move and the other cluster moves. The  initial 
state of the system is given. This state should be 
admissible. 

 

Figure  1: Two-contours system 
 

 

Figure  2: Delay of the cluster 2 

 

Figure  3: Conflict 
  
 
3  Concepts of spectral cycle, velocity, 
free movement, and self-organization 
 
 A spectral cycle is a cyclic trajectory in the system 
state space. Suppose 𝑇𝑇 is the  period of the cycle; 𝐻𝐻𝑖𝑖  
is the distance that the cluster 𝑖𝑖 passes on a spectral 
cycle for the period, 𝑖𝑖 = 1,2. The number 𝑣𝑣𝑖𝑖 = 𝐻𝐻𝑖𝑖/𝑇𝑇 
is called the  average velocity of the cluster 𝑖𝑖 on the 
spectral cycle, 𝑖𝑖 = 1,2. The system is  in a state of 
free movement at moment 𝑡𝑡0 if both clusters move at 
any moment 𝑡𝑡 ≥ 𝑡𝑡0. If the system results in a state 
of free movement, then the velocity of clusters is 
equal to 1. 

The property of the system to result in a state of free 
movement over a finite time from any initial state is 
called  self-organization. 
 
4  Information from the theory of 
linear Diophantine equations 
 
Let us consider the equation  
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0,    (1) 
 where 𝑎𝑎 and 𝑏𝑏 are integer numbers not equal to 0, 
and 𝑐𝑐 is an integer number. 
 There exist integer solutions of the system if and 
only if the greatest divisor of numbers 𝑎𝑎 and 𝑏𝑏 
divides the number 𝑐𝑐, [20]. 
Let 𝑥𝑥 = 𝑥𝑥0, 𝑦𝑦 = 𝑦𝑦0 be solutions of (1). Then all 
solutions of (1) are  
𝑥𝑥 = 𝑥𝑥0 − 𝑏𝑏𝑏𝑏, 𝑦𝑦 = 𝑦𝑦0 + 𝑎𝑎𝑎𝑎, 𝑡𝑡 = ±1, ±2. 
 
5  Conditions of self-organization 
 
We shall prove theorems, which give conditions of 
free movement. 
 
Lemma 1  At time 𝑡𝑡0, a delay of the cluster 𝑖𝑖 begins 
or continues, or a conflict occurs, if and only if  
𝛼𝛼𝑖𝑖(𝑡𝑡0) = 0,     (2) 
0 ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡0) < 𝑙𝑙𝑗𝑗 , 𝑗𝑗 ≠ 𝑖𝑖.    (3) 
  Proof: If (2), (3) holds then the cluster 𝑖𝑖 is at the 
node, and the cluster 𝑗𝑗 covers the node or this cluster 
is at the node. Therefore the cluster 𝑖𝑖 does not move 
or a conflict of two clusters occurs. 
On the other hand, if, at time 𝑡𝑡0, the cluster 𝑗𝑗 covers 
the node, then 0 ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡0) < 𝑙𝑙𝑗𝑗 , and, if the cluster 𝑗𝑗 
is at the node, then 𝛼𝛼𝑗𝑗 = 0. In both these cases, (3) 
holds. Besides, if the cluster 𝑖𝑖 is at the node, then (2) 
holds. Lemma 1 has been proved. 
We have proved the following theorems, which give 
conditions of free movement. 
Theorem 2  If 𝑐𝑐2

𝑐𝑐1
 is an irrational number, then the 

system does not result in a state of free movement 
from any initial state.  
  Proof: Since the value of 𝑐𝑐2

𝑐𝑐1
 is irrational, we have 

that for any 𝜀𝜀 > 0 and 𝑡𝑡0 there exists 𝑡𝑡 ≥ 𝑡𝑡0 such 
that for any 𝑡𝑡 ≥ 𝑡𝑡0 the inequality |𝛼𝛼2(𝑡𝑡) − 𝛼𝛼1(𝑡𝑡)| <
𝜀𝜀 holds. From this and Lemma 1, Theorem 2 
follows.  
Theorem 3  Suppose 𝑐𝑐2

𝑐𝑐1
 is a rational number, and 

𝑑𝑑 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑐𝑐1, 𝑐𝑐2) is the greatest common divisor of 
𝑐𝑐1 and 𝑐𝑐2, i.e., 𝑑𝑑 is the greatest number such that 
there exist natural numbers 𝑘𝑘1, 𝑘𝑘2 satisfying the 
condition 𝑘𝑘1𝑑𝑑 = 𝑐𝑐1, 𝑘𝑘2𝑑𝑑 = 𝑐𝑐2; then the following is 
true. If the condition  
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𝑙𝑙1 + 𝑙𝑙2 ≤ 𝑑𝑑,     (4) 
holds, then the system results in the state of free 
movement over a infinite time from any initial state 
(self-organization). If the condition  
𝑙𝑙1 + 𝑙𝑙2 > 𝑑𝑑,                  (5) 
holds, then the system does not result in the state of 
free movement over a infinite time from any initial 
state.  
  Proof: Denote by 𝑘𝑘𝑖𝑖  and 𝑚𝑚𝑖𝑖  values 𝑐𝑐𝑖𝑖/𝑑𝑑, and 𝑙𝑙𝑖𝑖/𝑑𝑑 
respectively, 𝑖𝑖 = 1,2. Assume that at time 𝑡𝑡0 the 
system is in the state (𝛼𝛼1(𝑡𝑡0), 𝛼𝛼2(𝑡𝑡0)). If non-
negative integer numbers 𝑥𝑥, 𝑦𝑦, and a real number 𝑏𝑏 
satisfying the condition,  
𝑘𝑘1𝑥𝑥 − 𝑘𝑘2𝑦𝑦 = 𝛼𝛼2(𝑡𝑡0)−𝛼𝛼1(𝑡𝑡0)+𝑏𝑏

𝑑𝑑
, −𝑙𝑙1 < 𝑏𝑏 < 𝑙𝑙2,  (6) 

then, either, at time 𝑡𝑡0 + 𝑘𝑘1𝑥𝑥 + 𝛼𝛼1, a delay of the 
cluster 1 begins, or, at time 𝑡𝑡 = 𝑘𝑘2𝑥𝑥 + 𝛼𝛼2, a delay of 
cluster 2 begins. Indeed, if no delays occur in the 
time interval [𝑡𝑡0, 𝑡𝑡0) + 𝑘𝑘1𝑥𝑥 + 𝛼𝛼1(𝑡𝑡0) and 𝑏𝑏 ≥ 0, 
then the cluster 1 is at the node, and 0 ≤ 𝛼𝛼2(𝑡𝑡0) =
𝑐𝑐2 − 𝑏𝑏 < 𝑙𝑙2. Therefore, at time [𝑡𝑡0 + 𝑘𝑘1𝑥𝑥 + 𝛼𝛼1(𝑡𝑡0), 
a delay of the cluster 1 begins or a conflict occurs. If 
no delays occur in the time interval [𝑡𝑡0 + 𝑘𝑘1𝑥𝑥 +
𝛼𝛼1(𝑡𝑡0) + |𝑏𝑏| and 𝑏𝑏 < 0, then the cluster 2 is at the 
node, and 0 ≤ 𝛼𝛼1(𝑡𝑡0) = 𝑐𝑐1 − |𝑏𝑏|. Therefore, at time 
[𝑡𝑡0 + 𝑘𝑘1𝑥𝑥 + 𝛼𝛼1(𝑡𝑡0) + |𝑏𝑏|, a delay of the cluster 2. 
Since 𝑑𝑑 is the greatest common divisor of 𝑙𝑙1 and 𝑙𝑙2, 
then 𝑘𝑘1, 𝑘𝑘2 are co-prime numbers. Therefore, in 
accordance with theory of linear Diophantine 
equations, there exists a solution of equation (6) for 
any natural number in the right side of (6). If (5) 
holds, then there exists a value of 𝑏𝑏 (−𝑙𝑙1 < 𝑏𝑏 < 𝑙𝑙2) 
such that the right side of (6) is integer. Thus the 
inequality (4) is a necessary condition of self-
organization. 
Assume that (4) holds. If at time 𝑡𝑡0, a delay of the 
cluster 1 ends, then, at time 𝑡𝑡0, the system is in the 
state (0, 𝑐𝑐2 − 𝑙𝑙2), and, if, at time 𝑡𝑡1, a new delay 
begins, then  
𝑘𝑘1𝑥𝑥 − 𝑘𝑘2𝑦𝑦 = 𝑐𝑐2−𝑙𝑙2+𝑏𝑏

𝑑𝑑
,     (7) 

 where 𝑏𝑏 is a non-negative integer number such that 
−𝑙𝑙1 < 𝑏𝑏 < 𝑙𝑙2. Since 𝑑𝑑 is a divisor of 𝑐𝑐2, and (4) 
holds, then the right part of (7) cannot be integer for 
−𝑙𝑙1 < 𝑏𝑏 < 𝑙𝑙2. 
If at time 𝑡𝑡0, a delay of the cluster 2 ends. Then, at 
time 𝑡𝑡0, the system is in the state (𝑐𝑐1 − 𝑙𝑙1, 0), and, 
if, at time 𝑡𝑡1, a new delay begins, then  
𝑘𝑘2𝑦𝑦 − 𝑘𝑘1𝑥𝑥 = 𝑐𝑐1−𝑙𝑙1+𝑏𝑏

𝑑𝑑
,    (8) 

 where 𝑏𝑏 is a non-negative integer number such that 
−𝑙𝑙2 < 𝑏𝑏 < 𝑙𝑙1. Since 𝑑𝑑 is a divisor of 𝑐𝑐1, and (4) 
holds, then the right part of (8) cannot be integer for 
−𝑙𝑙2 < 𝑏𝑏 < 𝑙𝑙1. Thus (4) is a sufficient condition of 
self-organization. 
 

6  Optional parameters 
 
Assume the condition of self-organization 
(Theorems 2, 3) does not hold. 
Let us introduce optional parameters 𝑔𝑔1, 𝑔𝑔2, 𝑏𝑏1, 𝑏𝑏2 
and describe a way to calculate these parameters. 
 We shall see that, if the condition of self-
organization does not hold, there is one spectral 
cycle or there are two spectral cycles or there are 
two spectral cycles depending on values 𝑔𝑔1, 𝑔𝑔2, 𝑏𝑏1, 
𝑏𝑏2. The average velocities of clusters depend on 
these parameters. 
Assume that 𝐴𝐴 is the set of system states such that 
one cluster does not move in the state; 𝐴𝐴𝑖𝑖  is the set 
of system states such that the cluster 𝑖𝑖 does not 
move, 𝑖𝑖 = 1,2. In accordance with Lemma 1, the set 
𝐴𝐴1 contains states (0, 𝛼𝛼2), 𝑐𝑐2 − 𝑙𝑙2 < 𝛼𝛼2 < 1. The set 
𝐴𝐴2 contains states 𝛼𝛼1, 0), 𝑐𝑐1 − 𝑙𝑙1 < 𝛼𝛼1 < 1. We 
have 𝐴𝐴 = 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ (0,0). 
 
Lemma 4  If (5) holds, then there exists a moment 
such the system is at the state (0, 𝑐𝑐2 − 𝑙𝑙2) or at the 
state (𝑐𝑐1 − 𝑙𝑙1, 0).  
  
  Proof: Since the condition (5) holds, the system 
results in the states set 𝐴𝐴 from any initial state over a 
finite time, and comes out a finite time, and comes 
out of the set 𝐴𝐴 through the state (0, 𝑐𝑐2 − 𝑙𝑙2) or 
(𝑐𝑐1 − 𝑙𝑙1, 0).  
 
Lemma 5  Let non-negative integer numbers 𝑥𝑥, 𝑦𝑦 
satisfy the condition  
𝑐𝑐2 − 𝑙𝑙2 < 𝑐𝑐1𝑥𝑥 − 𝑐𝑐2𝑦𝑦 < 𝑐𝑐2.                (9) 
 Suppose the system is in the state (0, 𝑐𝑐2 − 𝑙𝑙2) at 
time 𝑡𝑡0, and no delays occur in the time interval 
[𝑡𝑡0, 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥); then, at the time 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥, a delay of 
the cluster 1 begins.  
  Proof If the condition of Lemma 5 holds, then, at 
time 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥, the system is in the state (0, 𝑐𝑐2 − 𝑏𝑏1), 
where 0 < 𝑏𝑏1 = 𝑐𝑐1𝑥𝑥 − 𝑐𝑐2𝑦𝑦 − 𝑐𝑐2 + 𝑙𝑙2 < 𝑙𝑙2. From 
this, Lemma 5 follows.             
 
Lemma 6  Assume that non-negative integer 
numbers 𝑥𝑥, 𝑦𝑦 satisfy the condition  
𝑐𝑐2 − 𝑙𝑙2 − 𝑙𝑙1 < 𝑐𝑐1𝑥𝑥 − 𝑐𝑐2𝑦𝑦 < 𝑐𝑐2 − 𝑙𝑙2.             (10) 
 Suppose the system is at the state (0, 𝑐𝑐2 − 𝑙𝑙2) at 
time 𝑡𝑡0, and no delays occur in the time interval 
[𝑡𝑡0, 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥 + |𝑏𝑏1|), where −𝑙𝑙1 < 𝑏𝑏1 = 𝑐𝑐1𝑥𝑥 −
𝑐𝑐2𝑦𝑦 − 𝑐𝑐2 + 𝑙𝑙2 < 0, then, at the time 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥 + |𝑏𝑏1|, 
a delay of the cluster 2 begins.  
  Proof If the condition of Lemma 6 holds, then, at 
time 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥 + |𝑏𝑏1|, the system is in the state 
(𝑐𝑐1 − |𝑏𝑏1|,0), 0 < 𝑏𝑏1 < 𝑙𝑙2. Therefore, at time 𝑡𝑡0, the 
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cluster 2 is at the node, and the cluster 1 covers the 
node. From this, Lemma 6 follows.  
Lemma 7  Assume that non-negative integer 
numbers 𝑥𝑥, 𝑦𝑦 satisfy the condition  
𝑐𝑐1𝑥𝑥 − 𝑐𝑐2𝑦𝑦 = 𝑐𝑐2 − 𝑙𝑙2.               (11) 
 Suppose the system is at the state (0, 𝑐𝑐2 − 𝑙𝑙2) at 
time 𝑡𝑡0, and no delays occur in the time interval 
[𝑡𝑡0, 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥); then, at the time 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥1, a conflict 
occurs.  
    Proof If the condition of Lemma 7 holds, then, at 
time 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥, the system is in the state (0,0). 
Therefore, at time 𝑡𝑡0, the system is in the state (0,0). 
Therefore, at time 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥, both clusters are at the 
node. Thus a conflict occurs.  
 
Lemma 8  Assume that the following holds. The 
system is in the state (0, 𝑐𝑐2 − 𝑙𝑙2) at time 𝑡𝑡0. There 
are no delays occur in time interval [𝑡𝑡0, 𝑡𝑡1). 
Suppose, at time 𝑡𝑡1, the cluster 2 moves through the 
node, and a delay of the cluster 1 begins; then 
𝑡𝑡1 = 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥1

+, and, at time 𝑡𝑡0, the system is in the 
state (0, 𝑐𝑐2 − 𝑏𝑏1

+, where 𝑥𝑥1
+ is the minimum non-

negative integer number 𝑥𝑥 such that there exists a 
non-negative integer number 𝑦𝑦 = 𝑦𝑦1

+ satisfying the 
condition  
𝑐𝑐2 − 𝑙𝑙2 < 𝑐𝑐1𝑥𝑥1

+ − 𝑐𝑐2𝑦𝑦 < 𝑐𝑐2,              (12) 
 and  
𝑏𝑏1

+ = 𝑐𝑐1𝑥𝑥1
+ − 𝑐𝑐2𝑦𝑦1

+ − 𝑐𝑐2 + 𝑙𝑙2.              (13) 
  
  Proof. If conditions of the the lemma holds, then 
𝛼𝛼1(𝑡𝑡1) = 0 and 𝑐𝑐2 − 𝑙𝑙2 < 𝛼𝛼2(𝑡𝑡1) < 1. From this, 
taking into account that both clusters move at any 
moment belonging time interval [𝑡𝑡0, 𝑡𝑡1), we get 
Lemma 8.               
Suppose  
𝑔𝑔1

+ = 𝑐𝑐1𝑥𝑥1
+.                            (14) 

 If there exist no non-negative integer numbers 𝑥𝑥, 𝑦𝑦 
satisfying (12), then we assume that 𝑔𝑔1

+ = ∞. 
 
Lemma 9  Let the following hold. The system is in 
the state (0, 𝑐𝑐2 − 𝑙𝑙2) at time 𝑡𝑡0. There are no delays 
occur in time interval [𝑡𝑡0, 𝑡𝑡1). Suppose, at time 𝑡𝑡1, 
the cluster 1 moves through the node, and a delay of 
the cluster 2 begins; then 𝑡𝑡1 = 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥1

− + |𝑏𝑏1
−|, 

and, at time 𝑡𝑡1, the system is in the state (𝑐𝑐1 −
|𝑏𝑏1
−|,0) where 𝑥𝑥1

− is the minimum non-negative 
integer value of 𝑥𝑥 such that there exists a non-
negative integer number 𝑦𝑦 = 𝑦𝑦1

− satisfying the 
condition  
𝑐𝑐2 − 𝑙𝑙2 − 𝑙𝑙1 < 𝑐𝑐1𝑥𝑥1

− − 𝑐𝑐2𝑦𝑦1
− < 𝑐𝑐2 − 𝑙𝑙2,            (15) 

 and  
𝑏𝑏1
− = 𝑐𝑐1𝑥𝑥1

− − 𝑐𝑐2𝑦𝑦1
− − 𝑐𝑐2 + 𝑙𝑙2.             (16) 

  Proof. If conditions of the the lemma holds, then 
𝑐𝑐1 − 𝑙𝑙1 < 𝛼𝛼1(𝑡𝑡1) < 1 and 𝛼𝛼2(𝑡𝑡0) = 1. From this, 

taking into account that both clusters move at any 
moment belonging time interval [𝑡𝑡0, 𝑡𝑡1), we get 
Lemma 9.  
Suppose  
𝑔𝑔1
− = 𝑐𝑐1𝑥𝑥1

− + |𝑏𝑏1
−|.               (17) 

 If there exist no non-negative integer numbers 𝑥𝑥, 𝑦𝑦 
satisfying (15), then we assume that 𝑔𝑔1

− = ∞. 
 
Lemma 10  Assume that the following holds. The 
system is in the state (0, 𝑐𝑐2 − 𝑙𝑙2) at time 𝑡𝑡0. There 
are no delays occur in time interval [𝑡𝑡0, 𝑡𝑡1). 
Suppose, at time 𝑡𝑡1, the system is in the state (0,0); 
then 𝑡𝑡1 = 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥1

0, where 𝑥𝑥1
0 is the minimum non-

negative integer number 𝑥𝑥 such that there exists a 
non-negative integer number 𝑦𝑦 = 𝑦𝑦1

0 satisfying the 
condition  
𝑐𝑐1𝑥𝑥1

0 − 𝑐𝑐2𝑦𝑦1
0 = 𝑐𝑐2 − 𝑙𝑙2.               (18) 

    Proof. Taking into account that, at time 𝑡𝑡1, the 
system is in the state (0,0) and both clusters move 
at any moment belonging time interval [𝑡𝑡0, 𝑡𝑡1), we 
get Lemma 8.     Assume that  
𝑔𝑔1

0 = 𝑐𝑐1𝑥𝑥1
0.                (19) 

 If there exist no non-negative integer numbers 𝑥𝑥, 𝑦𝑦 
satisfying (18), then we assume that 𝑔𝑔1

0 = ∞. 
 
Lemma 11  Let non-negative integer numbers 𝑥𝑥, 𝑦𝑦 
satisfy the condition  
𝑐𝑐1 − 𝑙𝑙1 < 𝑐𝑐2𝑦𝑦 − 𝑐𝑐1𝑥𝑥 < 𝑐𝑐1.              (20) 
 Suppose the system is at the state (𝑐𝑐1 − 𝑙𝑙1, 0) at 
time 𝑡𝑡0, and no delays occur in the time interval 
[𝑡𝑡0, 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦); then, at time 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦, a delay of the 
cluster 2 occurs.  
  Proof If the condition of the lemma holds, then, at 
time 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦, the system is in the state (0, 𝑐𝑐1 − 𝑏𝑏2), 
where 0 < 𝑏𝑏2 = 𝑐𝑐2𝑦𝑦 − 𝑐𝑐1𝑥𝑥 − 𝑐𝑐1 + 𝑙𝑙1 < 𝑙𝑙1. From 
this, Lemma 11 follows.    
 
Lemma 12  Assume that non-negative integer 
numbers 𝑥𝑥, 𝑦𝑦 satisfy the condition  
𝑐𝑐1 − 𝑙𝑙1 − 𝑙𝑙2 < 𝑐𝑐2𝑦𝑦 − 𝑐𝑐1𝑥𝑥 < 𝑐𝑐1 − 𝑙𝑙1.             (21) 
 Suppose the system is at the state (𝑐𝑐1 − 𝑙𝑙1, 0) at 
time 𝑡𝑡0, and no delays occur in the time interval 
[𝑡𝑡0, 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦 + |𝑏𝑏2|), where 𝑏𝑏2 = 𝑐𝑐2𝑦𝑦 − 𝑐𝑐1𝑥𝑥 − 𝑐𝑐1 +
𝑙𝑙1; then, at the time 𝑡𝑡0 + 𝑐𝑐1𝑥𝑥 + |𝑏𝑏2|, a delay of the 
cluster 1 begins.  
  Proof If the condition of Lemma 12 holds, then, at 
time 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦 + |𝑏𝑏2|, the system is in the state 
(0, 𝑐𝑐2 − |𝑏𝑏2|), −𝑙𝑙2 < 𝑏𝑏2 < 0. Therefore, at time 𝑡𝑡0, 
the cluster 1 is at the node, and the cluster 2 covers 
the node. From this, Lemma 12 follows.   
 
Lemma 13  Assume that non-negative integer 
numbers 𝑥𝑥, 𝑦𝑦 satisfy the condition  
𝑐𝑐2𝑦𝑦 − 𝑐𝑐1𝑥𝑥 = 𝑐𝑐1 − 𝑙𝑙1.                           (22) 
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 Suppose the system is at the state (𝑐𝑐1 − 𝑙𝑙1, 0) at 
time 𝑡𝑡0, and no delays occur in the time interval 
[𝑡𝑡0, 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦); then, at the time 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦, a conflict 
occurs.  
  Proof If the condition of Lemma 13 holds, then, at 
time 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦, the system is in the state (0,0). 
Therefore, at time 𝑡𝑡0, the system is in the state (0,0). 
Therefore, at time 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦, both clusters are at the 
node. Thus a conflict occurs.            
 
Lemma 14  Assume that the following holds. The 
system is in the state (𝑐𝑐1 − 𝑙𝑙1, 0) at time 𝑡𝑡0. There 
are no delays occur in time interval [𝑡𝑡0, 𝑡𝑡1). 
Suppose, at time 𝑡𝑡1, the cluster 1 moves through the 
node, and a delay of the cluster 2 begins; then 
𝑡𝑡1 = 𝑡𝑡0 + 𝑐𝑐2𝑦𝑦0, and, at time 𝑡𝑡1, the system is in the 
state (𝑐𝑐1 − 𝑏𝑏2

+, 0), where 𝑦𝑦2
+ is the minimum non-

negative integer number 𝑦𝑦+ such that there exists a 
non-negative integer number 𝑥𝑥 = 𝑥𝑥2

+ satisfying the 
condition  
𝑐𝑐1 − 𝑙𝑙1 < 𝑐𝑐2𝑦𝑦2

+ − 𝑐𝑐1𝑥𝑥2
+ < 𝑐𝑐1,              (23) 

 and  
𝑏𝑏2

+ = 𝑐𝑐2𝑦𝑦2
+𝑐𝑐1𝑥𝑥2

+ − 𝑐𝑐1 + 𝑙𝑙1.              (24) 
  Proof. If conditions of the lemma holds, then 
𝑐𝑐1 − 𝑙𝑙1 < 𝛼𝛼1(𝑡𝑡1) < 1 and 𝛼𝛼2(𝑡𝑡1) = 0. From this, 
taking into account that both clusters move at any 
moment belonging time interval [𝑡𝑡0, 𝑡𝑡1), we get 
Lemma 14.               Suppose  
𝑔𝑔2

+ = 𝑐𝑐2𝑦𝑦2
+.                (25) 

 If there exist no non-negative integer numbers 𝑥𝑥, 𝑦𝑦 
satisfying (23), then we assume that 𝑔𝑔2

+ = ∞. 
 
Lemma 15  Let the following hold. The system is in 
the state (𝑐𝑐1 − 𝑙𝑙1, 0) at time 𝑡𝑡0. There are no delays 
occur in time interval [𝑡𝑡0, 𝑡𝑡1). Suppose, at time 𝑡𝑡1, 
the cluster 2 moves through the node, and a delay of 
the cluster 1 begins; then 𝑡𝑡1 = 𝑐𝑐2𝑥𝑥2

− + |𝑏𝑏2
−|, and, at 

time 𝑡𝑡1, the system is in the state (𝑐𝑐1 − |𝑏𝑏2
−|,0) 

where 𝑦𝑦2
− is the minimum non-negative integer 

value of 𝑦𝑦 such that there exists a non-negative 
integer number 𝑥𝑥 = 𝑥𝑥2

− satisfying the condition  
𝑐𝑐1 − 𝑙𝑙1 − 𝑙𝑙2 < 𝑐𝑐2𝑦𝑦2

−𝑐𝑐1𝑥𝑥2
− < 𝑐𝑐1 − 𝑙𝑙1,             (26) 

 and  
𝑏𝑏2
− = 𝑐𝑐2𝑦𝑦2

− − 𝑐𝑐1𝑥𝑥2
−𝑐𝑐1 + 𝑙𝑙1.              (27) 

  Proof. If conditions of the the lemma holds, then 
𝑐𝑐1 − 𝑙𝑙1 < 𝛼𝛼1(𝑡𝑡0) < 1 and 𝛼𝛼2(𝑡𝑡0) = 0. From this, 
taking into account that both clusters move at any 
moment belonging time interval [𝑡𝑡0, 𝑡𝑡1), we get 
Lemma 15.  
Assume that  
𝑔𝑔2
− = 𝑐𝑐2𝑦𝑦0 + |𝑏𝑏2

−|.                           (28) 
 If there exist no non-negative integer numbers 𝑥𝑥, 𝑦𝑦 
satisfying (26), then we assume that 𝑔𝑔2

− = ∞. 
 

Lemma 16  Assume that the following holds. The 
system is in the state (𝑐𝑐1 − 𝑙𝑙1, 0) at time 𝑡𝑡0. There 
are no delays occur in time interval [𝑡𝑡0, 𝑡𝑡1). 
Suppose, at time 𝑡𝑡1, the system is in the state (0,0); 
then 𝑡𝑡0 = 𝑐𝑐1𝑥𝑥0

0, and, at time 𝑡𝑡0, the system is in the 
state (𝑐𝑐1 − 𝑏𝑏2

+, 0) where 𝑥𝑥0
0 is the minimum non-

negative integer number 𝑥𝑥 such that there exists a 
non-negative integer number 𝑦𝑦 = 𝑦𝑦0

0 satisfying the 
condition  
𝑐𝑐2𝑦𝑦2

+ − 𝑐𝑐1𝑥𝑥2
− = 𝑐𝑐1 − 𝑙𝑙1.               (29) 

The proof of Lemma 16 is the same as the proof of 
Lemma 10. Assume that  
𝑔𝑔2

0 = 𝑐𝑐2𝑦𝑦2
0.                (30) 

If there exist no non-negative integer numbers 𝑥𝑥, 𝑦𝑦 
satisfying (29), then we assume that 𝑔𝑔2

0 = ∞.  
Suppose  
𝑔𝑔1 = min𝑔𝑔1

+, 𝑔𝑔1
−, 𝑔𝑔1

0.                           (31) 
𝑔𝑔2 = min𝑔𝑔2

+, 𝑔𝑔2
−, 𝑔𝑔2

0.                (32) 
 Denote by 𝑏𝑏1 the value 𝑏𝑏1

+, 𝑏𝑏1
−, or 𝑏𝑏1

0 if 𝑔𝑔1 = 𝑔𝑔1
+, 

𝑔𝑔2 = 𝑔𝑔2
− or 𝑔𝑔2 = 𝑔𝑔2

0 respectively. Denote by 𝑏𝑏2 the 
value 𝑏𝑏2

+, 𝑏𝑏2
−, or 𝑏𝑏2

0 if 𝑔𝑔2 = 𝑔𝑔2
+, 𝑔𝑔2 = 𝑔𝑔2

− or 
𝑔𝑔2 = 𝑔𝑔2

0 respectively. 
 
7  The behavior of system in the case 
of no self-organization 
 
We shall prove theorems about spectral cycles and 
average velocities of particles. 
 
Theorem 17 Suppose the condition of self-
organization (4) does not hold and inequalities 
𝑏𝑏1 ≥ 0, 𝑏𝑏2 < 0 hold; then there exist a unique 
spectral cycle, and this cycle contains the state 
(0, 𝑐𝑐2 − 𝑙𝑙2). The period of the cycle is equal to 
𝑔𝑔1 + 𝑙𝑙2 − 𝑏𝑏1. Average velocities of clusters are 
equal to  
𝑣𝑣1 = 𝑔𝑔1

𝑔𝑔1+𝑙𝑙2−𝑏𝑏1
, 𝑣𝑣2 = 1.              (33) 

  Proof: Since the condition of self-organization 
does not hold, the system does not result in the state 
of free movement. Hence the system results in a 
state, belonging the set 𝐴𝐴1, over a finite time, and, 
after this, in the state (0, 𝑐𝑐2 − 𝑙𝑙2), or the system 
results in a state, belonging the set 𝐴𝐴2, over a finite 
time, and, after this, in the state (𝑐𝑐1 − 𝑙𝑙1, 0). In 
accordance with Lemmas 5, 7, from the state 
(0, 𝑐𝑐2 − 𝑙𝑙2), the system results again in a state, 
belonging to the set 𝐴𝐴1 ∪ (0,0). In accordance 
Lemma 12, from the state (𝑐𝑐1 − 𝑙𝑙1, 0), the system 
results in a state, belonging to the set 𝐴𝐴1. Therefore 
there is a unique spectral cycle, and this spectral 
cycle contains the state (0, 𝑐𝑐2 − 𝑙𝑙2). On the spectral 
cycle, the system is in the states, not belonging to 
the set 𝐴𝐴 (both clusters move in these states), during 
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𝑔𝑔1 time units and the system is in states, belonging 
to the set 𝐴𝐴1 (only the cluster 2 moves in these 
states), during 𝑙𝑙2 − 𝑏𝑏1 time units. From this, 
Theorem 16 follows.                
Example 1. Assume that 𝑐𝑐1 = 3, 𝑙𝑙1 = 2, 𝑐𝑐2 = 5, 
𝑙𝑙2 = 3. The greatest common divisor of 𝑐𝑐1 and 𝑐𝑐2 is 
equal to 𝑑𝑑 = 1, and therefore the inequality (5) 
holds. Hence the condition of self-organization does 
not hold. 
Let us find the values 𝑔𝑔1

+, 𝑏𝑏1
+. 

Assume that 𝑥𝑥 = 0. Then there exists no non-
negative integer value of 𝑦𝑦 satisfying (9). 
Assume that 𝑥𝑥 = 1. Then the number 𝑦𝑦 = 𝑦𝑦1

+ = 0 
satisfies (9). Therefore, in accordance with (13), 
(14), 𝑥𝑥1

+ = 1, 𝑦𝑦1
+ = 0,  

𝑔𝑔1+= 3, 𝑏𝑏1
+ = 1.              (34) 

Let us find the value 𝑏𝑏1
−, 𝑔𝑔1 −. 

If 𝑥𝑥 = 0 or 𝑥𝑥 = 1, then there exists no non-negative 
integer value 𝑦𝑦 satisfying (10). 
If 𝑥𝑥 = 2, then the number 𝑦𝑦 = 1 satisfies (10). We 
have 𝑥𝑥1

− = 2, 𝑦𝑦1
− = 1, and, in accordance with (16), 

(17), 𝑥𝑥1
− = 2, 𝑦𝑦1

− = 1,  
𝑏𝑏1
− = −1, 𝑔𝑔1

− = 7.               (35) 
Let us find the value 𝑔𝑔1

0. 
If 𝑥𝑥 = 0, 𝑥𝑥 = 1, 𝑥𝑥 = 2, or 𝑥𝑥 = 3, then there exists 
no non-negative integer number 𝑦𝑦 satisfying the 
equation (11). If 𝑥𝑥 = 𝑥𝑥1

0 = 4, then the number 
𝑦𝑦 = 𝑦𝑦1

0 = 2 satisfies (11), and, in accordance with 
(19),  
𝑔𝑔1

0 = 𝑐𝑐1𝑐𝑐1
0 = 12.               (36) 

In accordance with (31),  
𝑔𝑔1 = 𝑔𝑔1

+ = 3, 𝑏𝑏1 = 𝑏𝑏1
+ = 1.             (37) 

 Let us find 𝑔𝑔2
+ and 𝑏𝑏2

+. 
Assume that 𝑦𝑦 = 0. Then there exists no non-
negative integer value of 𝑦𝑦 satisfying (20). 
Assume that 𝑦𝑦 = 1. Then the number 𝑥𝑥 = 𝑥𝑥2

+ = 1 
satisfies (20). Therefore, 𝑥𝑥2

+ = 1, 𝑦𝑦2
+ = 1, and, in 

accordance with (24), (25),  
𝑏𝑏2

+ = 1, 𝑔𝑔2+= 5.               (38) 
Let us find the value 𝑏𝑏2

−, 𝑔𝑔2
−. 

Suppose 𝑦𝑦 = 0; then the number 𝑥𝑥 = 𝑥𝑥2
+ = 0 

satisfies (21). We have 𝑥𝑥2
− = 0, 𝑦𝑦2

− = 0, and, in 
accordance with (27),  (28),  
𝑏𝑏2
− = −1, 𝑔𝑔2

− = 1.               (39) 
Let us find the value 𝑔𝑔2

0, 𝑏𝑏2
0. 

If 𝑦𝑦 = 0 or 𝑦𝑦 = 1, then there exists no non-negative 
integer number 𝑦𝑦 satisfying the equation (29). If 
𝑦𝑦 = 𝑦𝑦2

0 = 2, then the number 𝑥𝑥 = 𝑥𝑥2
0 = 3 satisfies 

(29), and, in accordance with (30),  
𝑔𝑔2

0 = 10.                (40) 
 In accordance with (32), (38)–(40), we have  
𝑔𝑔2 = 1, 𝑏𝑏2 = −1.               (41) 

 In accordance with (37), (41), the conditions of 
Theorem 16 hold. In accordance with (33), (34), 
(37),  

𝑣𝑣1 =
3
5

, 𝑣𝑣2 = 1. 
 
Theorem 18  Suppose the condition of self-
organization (3) does not hold and inequalities 
𝑏𝑏1 < 0, 𝑏𝑏2 ≥ 0; then there exists a unique spectral 
cycle, and this cycle contains the state (𝑐𝑐1 − 𝑙𝑙1, 0). 
The period of this spectral cycle equals 𝑔𝑔2 + 𝑙𝑙1 −
𝑏𝑏2. Velocities of clusters are equal to  
𝑣𝑣1 = 1, 𝑣𝑣2 =

𝑔𝑔2

𝑔𝑔2 + 𝑙𝑙1 − 𝑏𝑏2
. 

We get Theorem 18 from Theorem 17 if we 
renumber the contours. 
 
Theorem 19  Suppose inequalities 𝑏𝑏1 < 0, 𝑏𝑏2 < 0 
hold. Then there a unique spectral cycle. The 
spectral contains the states (0, 𝑐𝑐2 − 𝑙𝑙2) and 
(𝑐𝑐1 − 𝑙𝑙1, 0). The period of the spectral cycle equals 
𝑔𝑔1 + 𝑔𝑔2 + 𝑙𝑙1 + 𝑙𝑙2 − |𝑏𝑏1| − |𝑏𝑏2|. Velocities of 
clusters are equal to 
 
𝑣𝑣1 = 1 − 𝑙𝑙2−|𝑏𝑏2|

𝑔𝑔1+𝑔𝑔2+𝑙𝑙1+𝑙𝑙2−|𝑏𝑏1|−|𝑏𝑏2|
,              (42) 

 
𝑣𝑣2 = 1 − 𝑙𝑙1−|𝑏𝑏1|

𝑔𝑔1+𝑔𝑔2+𝑙𝑙1+𝑙𝑙2−|𝑏𝑏1|−|𝑏𝑏2|
,              (43) 

   Proof. Since the condition of self-organization 
does not hold, the system does not result in the state 
of free movement. Hence the system results in a 
state, belonging the set 𝐴𝐴1, over a finite time, and, 
after this, in the state (0, 𝑐𝑐2 − 𝑙𝑙2), or the system 
results in a state, belonging the set 𝐴𝐴2, over a finite 
time, and, after this, in the state (𝑐𝑐1 − 𝑙𝑙1, 0). In 
accordance Lemma 6, from the state (0, 𝑐𝑐2 − 𝑙𝑙2), 
over a finite time, the system results in a state 
belonging to 𝐴𝐴1. In accordance Lemmas 10, from 
the state (𝑐𝑐1 − 𝑙𝑙1, 0), over a finite time, the system 
results in a state belonging to 𝐴𝐴2. Therefore there is 
a unique spectral cycle, and this spectral cycle 
contains the states (0, 𝑐𝑐2 − 𝑙𝑙2) and (𝑐𝑐1 − 𝑙𝑙1, 0). On 
the spectral cycle, the system is in the states, not 
belonging to the set 𝐴𝐴 (both clusters move in these 
states), during 𝑔𝑔1 + 𝑔𝑔2 time units, the system is in 
states, belonging to the set 𝐴𝐴1 (only the cluster 2 
moves in these states), during 𝑙𝑙2 − |𝑏𝑏2| time units, 
and the system is in states, belonging to the 
belonging to the set 𝐴𝐴2 (only the cluster 1 moves in 
these states), during 𝑙𝑙1 − |𝑏𝑏1| time units. From this, 
Theorem 18 follows.                Example 2. Assume 
that 𝑐𝑐1 = √2, 𝑙𝑙1 = 1, 𝑐𝑐2 = 1, 𝑙𝑙2 = 1

2
. The value 

𝑐𝑐2/𝑐𝑐1 is irrational, and therefore, in accordance with 
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Theorem 2, the condition of self-organization, does 
not hold. 
Let us find the values 𝑔𝑔1

+, 𝑏𝑏1
+. 

Assume that 𝑥𝑥 = 0 or 𝑥𝑥 = 0 or 𝑥𝑥 = 1. Then there 
exists no non-negative integer value of 𝑦𝑦 satisfying 
(9). 
Assume that 𝑥𝑥 = 2. Then the number 𝑦𝑦 = 𝑦𝑦1

+ = 1 
satisfies (9). Therefore, 𝑥𝑥1

+ = 2, 𝑦𝑦1
+ = 2 and, in 

accordance with (13), (14),  
𝑔𝑔1

+ = 2√2, 𝑏𝑏1
+ = 2√2 − 5

2
.              (44) 

Let us find the value 𝑏𝑏1
−, 𝑔𝑔1

−. 
If 𝑥𝑥 = 𝑥𝑥1

− = 0, then the number 𝑦𝑦 = 𝑦𝑦1
− = 0 

satisfies (10). Therefore, 𝑥𝑥1
+ = 0, 𝑦𝑦1

+ = 0 and, in 
accordance with (16), (17),  
𝑔𝑔1
− = 1

2
, 𝑏𝑏1

− = − 1
2
.                (45) 

There are no integer numbers 𝑥𝑥, 𝑦𝑦 satisfying (11). 
Therefore, we have  
𝑔𝑔1

0 = ∞.                (46) 
In accordance with (32), (44)–(46), we have  
𝑔𝑔1 = 𝑔𝑔1

− = 1
2

, 𝑏𝑏1 = 𝑏𝑏1
− = −1

2
.              (47) 

Let us find 𝑔𝑔2
+ and 𝑏𝑏2

+. 
Assume that 𝑦𝑦 = 0. Then there exists no non-
negative integer value of 𝑦𝑦 satisfying (20). 
Assume that 𝑦𝑦 = 1. Then the number 𝑥𝑥 = 𝑥𝑥2

+ = 0 
satisfies (20). Therefore, 𝑥𝑥2

+ = 0, 𝑦𝑦2
+ = 1, and, in 

accordance with (24), (25),  
𝑏𝑏2

+ = 2 − √2, 𝑔𝑔2+= 1.                                  (48) 
Let us find the value 𝑏𝑏2

−, 𝑔𝑔2
−. 

The values 𝑥𝑥 = 𝑥𝑥2
+ = 0 and 𝑦𝑦 = 𝑦𝑦2

+ = 0 satisfy 
(21). Therefore, in accordance with (27), (28),  
𝑏𝑏2
− = −√2 + 1, 𝑔𝑔2

− = √2 − 1.  
There are no integer numbers 𝑥𝑥, 𝑦𝑦 satisfying (11). 
Therefore, we have  
𝑔𝑔2

0 = ∞.               (49) 
In accordance with (32), (48)–(50), we have  
𝑔𝑔2 = 𝑔𝑔2

− = 1
2

, 𝑏𝑏2 = 𝑏𝑏2
− = − 1

2
.              (50) 

In accordance with (47), (51), the conditions of 
Theorem 16 hold. In accordance with (39), (47), 
(51),  

𝑣𝑣1 =
2
3

, 𝑣𝑣2 =
2√2

3
. 

Theorem 20  Suppose inequalities 𝑏𝑏1 ≥ 0, 𝑏𝑏2 ≥ 0 
hold. Then there are two spectral cycles. One of 
these cycles contains the state (0, 𝑐𝑐2 − 𝑙𝑙2). The 
period of this cycle equals 𝑔𝑔1 + 𝑙𝑙2 − 𝑏𝑏1. On this 
cycle, velocities of clusters are equal to  
𝑣𝑣1 =

𝑔𝑔1

𝑔𝑔1 + 𝑙𝑙2 − 𝑏𝑏1
, 𝑣𝑣2 = 1. 

The other cycle contains the state (𝑐𝑐1 − 𝑙𝑙1, 0). The 
period of this cycle equals 𝑔𝑔2 + 𝑙𝑙1 − 𝑏𝑏2. On this 
cycle, velocities of clusters are equal to  

𝑣𝑣1 = 1, 𝑣𝑣2 =
𝑔𝑔2

𝑔𝑔2 + 𝑙𝑙1 − 𝑏𝑏2
. 

  Proof. Depending on the initial state, the system 
results in a state of the set 𝐴𝐴1, and after this, the 
system results in the state (0, 𝑐𝑐2 − 𝑙𝑙2), or a state, 
belonging to the set 𝐴𝐴2, over a finite time, and, after 
this, in the state (𝑐𝑐1 − 𝑙𝑙1, 0). If the system is in the 
state of the set 𝐴𝐴2, then, returning to the set 𝐴𝐴, the 
system results in states belonging 𝐴𝐴2 ∪ (0; 0). In 
this case, over a finite time, the system will not be in 
states belonging 𝐴𝐴1, and the system will be only in 
the state belonging to the spectral cycle such that 
this spectral cycle contains the state (0, 𝑐𝑐2 − 𝑙𝑙2). In 
this case, on the spectral cycle, the system is in the 
states, not belonging to the set 𝐴𝐴 (both clusters 
move in these states), during 𝑔𝑔1 time units and the 
system is in states, belonging to the set 𝐴𝐴1 (only the 
cluster 2 moves in these states), during 𝑙𝑙2 − 𝑏𝑏1 time 
units, and therefore,  
𝑣𝑣1 =

𝑔𝑔1

𝑔𝑔1 + 𝑙𝑙2 − 𝑏𝑏1
, 𝑣𝑣2 = 1. 

If the system is in the state of the set 𝐴𝐴1, then, 
returning to the set 𝐴𝐴, the system will only in states 
belonging 𝐴𝐴1 ∪ (0; 0). In this case, over a finite 
time, the system will not be in states belonging 𝐴𝐴2, 
and the system will be only in the states belonging 
to the spectral cycle such that this spectral cycle 
contains the state (𝑐𝑐1 − 𝑙𝑙1, 0). In this case, on the 
spectral cycle, the system is in the states, not 
belonging to the set 𝐴𝐴 (both clusters move in these 
states), during 𝑔𝑔2 time units and the system is in 
states, belonging to the set 𝐴𝐴2 (only the cluster 1 
moves in these states), during 𝑙𝑙1 − 𝑏𝑏2 time units, 
and therefore,  
 𝑣𝑣1 = 1, 𝑣𝑣2 = 𝑔𝑔2

𝑔𝑔2+𝑙𝑙1−𝑏𝑏2
, 𝑣𝑣2 = 1.  

 Example 3. Suppose 𝑐𝑐1 = 4, 𝑙𝑙1 = 2, 𝑐𝑐2 = 6, 
𝑙𝑙2 = 2. 
In this case, we have 
𝑏𝑏1 = 0, 𝑔𝑔1 = 4, 𝑏𝑏2 = 0, 𝑔𝑔2 = 6. 
There exist two spectral cycles. On one of these 
cycles, the clusters movewith velocities 

𝑣𝑣1 =
2
3

, 𝑣𝑣2 = 1. 
The period of these cycles equals 𝑇𝑇 = 6. 
On the other spectral cycle, the clusters move with 
velocities 𝑣𝑣1 = 1, 𝑣𝑣2 = 3

4
. 

The period of these cycles equals 𝑇𝑇 = 8. 
 
8  Conclusion 
 
We has been proved that, if the condition of self-
organization does not hold, then, depending on 𝑐𝑐1, 
𝑐𝑐2, 𝑙𝑙1, 𝑙𝑙2, there are one or two spectral cycles. 
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Formulas for average velocities of clusters have 
been obtained. A necessary and sufficient condition 
for self-organization has been found. 
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