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Abstract: Equivariant maps, i.e., maps that commute with group actions on the source and target, play an impor-
tant role in the study of manifolds with group actions. It is therefore of interest to classify equivariant maps up to
certain equivalence relations. In this paper we study multivariate holomorphic function germs that are equivariant
with respect to finite cyclic groups. The natural equivalence relation between such germs is provided by the action
of the group of biholomorphic automorphism germs of the source. An orbit of this action is called equivariant
simple if its sufficiently small neighborhood intersects only a finite number of other orbits. We present a sufficient
condition under which there exist no singular equivariant holomorphic function germs; it is also shown that this
condition is not necessary. The condition is formulated in terms of admissible sets of weights; such sets are defined
and classified for all finite cyclic group representations. As an application we describe scalar actions of finite cyclic
groups for which there exist no equivariant simple singular function germs.
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1 Introduction
In the study of manifolds with actions of a fixed group
it is natural to consider maps that commute with group
actions on the source and target.

Definition 1 Given two actions of a group G on sets
M and N , we call a map f : M → N equivariant
if for all σ ∈ G, m ∈ M the equality f(σ · m) =
σ · f(m) holds.

In particular, the notion of equivariance can be
introduced for germs of holomorphic functions
f : (Cn, 0) → (C, 0) and of biholomorphic automor-
phisms Φ: (Cn, 0) → (Cn, 0) whenever actions of G
are defined on Cn and C.

The group DGGn of equivariant biholomorphic
germs Φ: (Cn, 0) → (Cn, 0) acts on the space
OGGn of equivariant holomorphic function germs
f : (Cn, 0) → (C, 0). This infinite-dimensional space
is split into orbits of this action, and so are its finite-
dimensional subspaces jrOGGn consisting of r-jets at
0 of germs from OGGn . We introduce the following
equivalence relation on OGGn : two germs will be
called equivalent if they belong to the same orbit.

Definition 2 Two germs f, g ∈ OGGn are called
equivariant right equivalent if there exists a germ
Φ ∈ DGGn such that g = f ◦ Φ.

It is of interest to study the orbits of the action of
DGGn on OGGn , or, in other terms, to classify equiv-
ariant function germs with respect to equivariant right
equivalence. In the description of the structure of the
orbit space, which is often complicated, the following
notion is used.

Definition 3 An orbit DGGn (jrg) ⊂ jrOGGn is
said to be adjacent to the orbit DGGn (jrf) if any
neighborhood of some point in DGGn (jrf) intersects
DGGn (jrg).

Orbits of equivariant function germs can include
both discrete (finite or countable) and continuous fam-
ilies of orbits. Discrete families make up the “sim-
plest” part of the orbit space: its description up to
equivariant right equivalence does not require the us-
age of continuous parameters. This motivates the fol-
lowing definition.

Definition 4 A germ f ∈ OGGn is called equivariant
simple if for all r ∈ N the orbit DGGn (jrf) ⊂ jrOGGn
has a finite number of adjacent orbits, and this num-
ber is bounded from above by a constant independent
of r.

It should be mentioned that an equivariant non-
singular function germ is always equivariant right
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equivalent to its linear part, and therefore all non-
singular equivariant germs are equivariant simple.
This is why we are only interested in studying equiv-
ariant simple germs with a critical point 0 ∈ Cn.

There exists a general problem to classify equiv-
ariant simple singular function germs up to equivari-
ant right equivalence for a given finite abelian groupG
and a pair of its actions on the source and target. This
problem naturally generalizes a similar one for the
non-equivariant case solved by V. I. Arnold in 1972
(cf. [1]).

Several results are known in the equivariant set-
ting for finite cyclic groups. In [2] simple singulari-
ties of functions on manifolds with boundary are clas-
sified, and the complex analogue of this result is the
classification of simple singularities that are even in
the first coordinate (i.e., equivariant with respect to the
action of Z2 on Cn in the first coordinate and the triv-
ial action on C). A somewhat similar problem arises
in [3] in connection with the classification of simple
functions on space curves. In [4] the classification of
odd (i.e., equivariant with respect to non-trivial scalar
actions of Z2 on Cn and on C) simple germs is given
(it is proved, in particular, that no such germs exist for
n ≥ 3). In [5] and [6] the problem is solved for bivari-
ate functions that are equivariant simple with respect
to certain actions of Z3. Cyclic-equivariant singulari-
ties with finite monodromy groups are studied in [10].

Simple singularities of square and symmetric ma-
trix families are studied in [7]–[9]. Some recent re-
sults on the classification of equivariant maps, vec-
tor fields and differential equations can be found in
[11]–[15]. Certain calculation techniques for the clas-
sification of singularities with special attention to the
equivariant case are presented in [16]–[18].

In this paper we study conditions on finite cyclic
group actions under which there exist no equivariant
simple singularities. A sufficient condition for nonex-
istence of equivariant simple singularities is given,
which is also shown not to be necessary. As an ap-
plication we describe scalar actions of finite cyclic
groups for which there exist no equivariant simple sin-
gular functions.

In Section 2 we describe equivariance conditions
for holomorphic function and automorphism germs.
In Section 3 we introduce the notion of an admissi-
ble set of weights and describe all such sets for any
given pair of finite cyclic group actions on Cn and on
C. In Section 4 a sufficient condition for nonexistence
of equivariant simple singularities in terms of dimen-
sions of certain vector spaces defined by group actions
is given, as well as an example showing that this con-
dition is not necessary. In the same section we also
give a sufficient condition for existence of equivari-
ant singular holomorphic function germs that are not

equivariant simple. In Section 5 we study equivariant
simple singularities for the scalar action of Zm on Cn.
In Section 6 we sum up the results of the paper and
list some open questions.

2 Equivariant function and auto-
morphism germs

It is known that an action of a finite group on a vector
space can be linearized in a suitable system of coordi-
nates due to a particular case of Bochner’s lineariza-
tion theorem (cf. [19]). Throughout this paper we
assume that the generator σ ∈ G = Zm acts on Cn
and on C in the following way:

σ · (z1, . . . , zn; w) = (τp1z1, . . . , τ
pnzn; τ qw) , (1)

where τ = exp
(
2πi
m

)
, (z1, . . . , zn) ∈ Cn, w ∈ C and

the integers p1, . . . , pn, q are considered modulo m.
In fact we will always choose 0 < p1, . . . , pn, q ≤ m.

Remark 5 Without loss of generality we can assume
that gcd(p1, . . . , pn, q) = 1. If gcd(p1, . . . , pn, q) =
d > 1 and d - m, then one can divide all ps and q by
d and obtain a pair of actions that is equivalent to the
original one (these two cases coincide up to the choice
of generator in Zm). If gcd(p1, . . . , pn, q) = d > 1
and d | m, then the given actions of the group Zm
can be considered as actions of its subgroup Zm/d.
Moreover, we can assume that gcd(p1, . . . , pn) = 1.
If gcd(p1, . . . , pn) = d > 1, but gcd(p1, . . . , pn, q) =
1, then d - q,which implies that no holomorphic func-
tion germs are equivariant with respect to actions (1).

Suppose that the actions of G = Zm on Cn and
on C are given by formulae (1). Any holomorphic
function germ f : (Cn, 0)→ (C, 0) in a neighborhood
of 0 can be represented by a power series

f(z) =
∑
J∈Zn

≥0

aJzJ . (2)

Here J = (j1, . . . , jn), z = (z1, . . . , zn), aJ ∈
C, zJ = zj11 . . . zjnn . It is obvious that f ∈ OGGn if and
only if aJ = 0 whenever

∑n
s=1 psjs 6≡ q (mod m).

Any germ of a biholomorphic automorphism
Φ: (Cn, 0) → (Cn, 0) in a neighborhood of 0 can be
represented by n power series of the form

zk =
∑
J∈Zn

≥0

ak,J z̃J , (3)

where ak,J ∈ C, z̃ = (z̃1, . . . , z̃n) are new variables,
z̃J = z̃j11 . . . z̃jnn and the matrix of the linear part of
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Φ is non-degenerate. It is obvious that Φ ∈ DGGn
if and only if ak,J = 0 whenever

∑n
s=1 psjs 6≡ pk

(mod m).
The equivariance conditions for function and au-

tomorphism germs given by power series admit a
geometric interpretation. To each monomial zJ =

zj11 . . . zjnn we associate the point J = (j1, . . . , jn) ∈
Zn≥0. All points in Zn≥0 associated to equivariant
monomials lie in hyperplanes with the normal vector
(p1, . . . , pn). For monomials of a germ f defined by
(2) these hyperplanes are defined by equations of the
form

p1j1 + . . .+ pnjn = km+ q (k ∈ Z≥0), (4)

while for monomials of maps zl = zl(z̃) defined by
(3) they are defined by equations of the form

p1j1 + . . .+ pnjn = km+ pl (k ∈ Z≥0). (5)

Note that under the choice of p1, . . . , pn, q made
above these hyperplanes intersect all coordinate axes
at points with positive rational (but not necessarily in-
tegral) coordinates, and thus the intersection of such a
hyperplane with the positive octant Zn≥0 contains only
a finite number of integral points.

For the description and classification of equivari-
ant holomorphic function germs, the following two
notions are convenient.

Definition 6 Given an n-tuple α = (α1, . . . , αn)
of natural numbers (weights), we define the quasi-
degree with weights α of a monomial zJ = zj11 . . . zjnn
to be equal to

degα
(
zJ
)

= 〈α, J〉 = α1j1 + . . .+ αnjn.

The quasi-degree of a polynomial is defined to be the
highest quasi-degree of its monomials.

Definition 7 The r-quasi-jet with weights α of a
germ f given by power series (2) is the sum of all
its monomials that have quasi-degrees with weights α
not exceeding r:

jαr f =
∑

J∈Zn
≥0:

〈α,J〉≤r

aJzJ .

All r-quasi-jets of holomorphic function germs
with given weights α form a finite-dimensional vector
space, which is exactly the space of polynomials of
quasi-degree r with weights α. We denote this space
by jαr On.

3 Admissible sets of weights

For the space OZmZm
n of function germs equivariant

with respect to actions (1) there exists a natural choice
of weights α. Namely, one can take αs = ps for s =
1, . . . , n. Under this choice of weights, a monomial is
equivariant if and only if its quasi-degree with weights
α equals km+ q for some k ∈ Z≥0. This implies that
the corresponding r-quasi-jet spaces can only increase
when r increases by m:

∅ = j
α
1O

ZmZm
n = . . . = j

α
q−1O

ZmZm
n ⊂ jαq OZmZm

n =

= . . . = j
α
m+q−1O

ZmZm
n ⊂ jαm+qOZmZm

n = . . . =

= j
α
2m+q−1O

ZmZm
n ⊂ . . . .

However, this is not the only set of weights with such
a property, as one can see from the following example.

Example 8 Assume that the generator σ ∈ G = Z3

acts on C2 and on C as follows:

σ · (z1, z2; w) = (τz1, τ
2z2; τz).

For weights α = (1, 2) suggested above, a mono-
mial is equivariant if and only if its quasi-degree with
weights α equals 3k + 1 for some k ∈ Z≥0. For
weights β = (2, 1), a monomial is equivariant if and
only if its quasi-degree with weights β equals 3k + 2
for some k ∈ Z≥0). In both cases the corresponding
r–quasi-jet spaces increase when r increases by 3.

This example motivates the following definition.

Definition 9 A set of weights α = (α1, . . . , αn) ∈
Nn is called admissible with respect to actions (1) of
G = Zm on Cn and on C if it satisfies the following
conditions:
1) gcd(α1, . . . , αn) = 1;
2) for all s ∈ [1, n] the inequalities 1 ≤ αs ≤ m hold;
3) a monomial is equivariant with respect to actions
(1) if and only if its quasi-degree (with weights α) has
a certain excess modm.

Remark 10 In the case of actions (1) the choice of
weights αs = ps (s = 1, . . . , n) suggested above
provides an admissible set of weights. The fact
that this set of weights satisfies conditions 1 and 2
of the definition above follows from the assumption
gcd(p1, . . . , pn) = 1 explained in Remark 5 and the
choice of p1, . . . , pn, q made prior to that remark.

Remark 11 It is obvious that the notion of an admis-
sible set of weights only depends on the group ac-
tion on the source and not on its action on the target.
Therefore, one can replace Condition 3 of Definition
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9 by an equivalent one:
3’) a monomial is equivariant with respect to actions
(1) with q = 0 if and only if its quasi-degree (with
weights α) is divisible by m.

Admissible sets of weights play an important role
for the formulation and application of results obtained
in the following sections. Therefore, a natural prob-
lem is to describe all admissible sets of weights for a
given pair of group actions of the form (1). Such a
description is given by the following theorem.

Theorem 12 Suppose that the actions of the group
Zm on Cn and on C are given by (1). A set of weights
α = (α1, . . . , αn) with the property 1 ≤ αs ≤ m
for all s ∈ [1, n] is admissible with respect to these
actions if and only if there exists a primitive element
γ ∈ Zm such that for all s ∈ [1, n] the condition

αs ≡ γps (mod m) (6)

is satisfied.

Proof: It is easy to see that any set of weights de-
scribed in the theorem is admissible with respect to
actions (1). Condition 1 of Definition 9 is satisfied due
to the fact that γ ∈ Zm is a primitive element and the
assumption gcd(p1, . . . , pn) = 1 explained in Remark
5. Condition 2 of Definition 9 is satisfied due to the
assumptions of the theorem. Condition 3 of Definition
9 is satisfied because a monomial zJ = zj11 . . . zjnn is
equivariant with respect to actions (1) if and only if
p1j1 + . . . + pnjn ≡ q (mod m), which is equiva-
lent to saying that degα

(
zJ
)

= α1j1 + . . .+ αnjn ≡
γ(p1j1 + . . . + pnjn) ≡ γq (mod m) (the two con-
ditions are equivalent because γ ∈ Zm is a primitive
element). It remains to check that any set of weights
α = (α1, . . . , αn) that is admissible with respect to
actions (1) satisfies conditions (6) for some primitive
element γ ∈ Zm. First of all, recall that, as explained
in Remark 11, equalities αs = ps, s ∈ [1, n] de-
fine an admissible set of weights, and this set satis-
fies condition (6) for γ = 1. Without loss of gen-
erality one can assume that p1 = α1 = 1 (this can
always be achieved by reordering the coordinates on
Cn and choosing another generator in Zm). Next, as-
sume that β = (β1, . . . , βn) is another set of weights
admissible with respect to actions (1). Then β1 repre-
sents a primitive element in Zm (otherwise some non-
invariant monomials would have quasi-degrees with
weights β divisible by m, which contradicts Condi-
tion 3’ from Remark 11). Consider an invariant mono-
mial zm1 . One has degα(zm1 ) = 1 ·m ≡ 0 (mod m),
degβ(zm1 ) = β1 · m ≡ 0 (mod m). Now, con-

sider another invariant monomial zm−α2
1 z2. One has

degα(zm−α2
1 z2) = 1 · (m − α2) + 1 · α2 = m ≡ 0

(mod m), degβ(zm−α2
1 ) = β1 · (m − α2) + 1 ·

β2 ≡ −β1α2 + β2 (mod m). Because of the require-
ment degβ(zm−α2

1 ) ≡ 0 (mod m) that is necessary
for β to be an admissible set of weights, one gets
−β1α2+β2 ≡ 0 (mod m), and therefore, β2 ≡ β1α2

(mod m). Similarly, one can prove that βs ≡ β1αs
(mod m) for s = 3, . . . , n. Put γ = β1. Then
βs ≡ γαs ≡ γps (mod m) for s = 1, . . . , n, and
thus for the chosen γ conditions (6) are satisfied. This
finishes the proof of Theorem 12. ut

4 Sufficient nonexistence condition
Remark 13 It is worth mentioning that equivariant
simple singularities can be defined in terms of quasi-
jet spaces jαr OGGn in a way similar to the original Defi-
nition 4. It is straightforward to check that equivariant
simplicity in terms of quasi-jets (with any admissible
set of weights) is equivalent to equivariant simplicity
in terms of ordinary jets.

In the following sections we will mostly check
equivariant simplicity in terms of quasi-jets, which
will be especially convenient for admissible sets of
weights. Therefore we are interested in studying
the way in which a biholomorphic equivariant auto-
morphism germ of form (3) acts on quasi-jet spaces
j
α
r OGGn .

The classification of function germs is usually
performed step by step starting from non-trivial jets
of the lowest degree. In the equivariant case the same
is done for quasi-jets. The following lemma describes
the action of automorphism germs from DZmZm

n on
the non-trivial quasi-jet space of lowest quasi-degree.

Lemma 14 Let Φ ∈ DZmZm
n be a biholomorphic au-

tomorphism germ equivariant with respect to action
(1) of the group G = Zm on Cn defined by n power
series of form (3). Let f ∈ OZmZm

n be a holomorphic
function germ equivariant with respect to actions (1)
of G on Cn and on C. Suppose that α = (α1, . . . , αn)
is a set of weights admissible with respect to ac-
tions (1), and jαr−1f = 0 6= j

α
r f. Then the quasi-jet

j
α
r (f ◦ Φ) depends only on those terms of series (3)

whose exponents satisfy one of the following condi-
tions: ∑n

s=1
αsjs = αk. (7)

Lemma 14 follows directly from the multiplication
rule for power series.
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Remark 15 Geometrically, equation (7) for each
k = 1, . . . , n defines a hyperplane in Zn with nor-
mal vector (α1, . . . , αn) passing through the point
(0, . . . , 1k, . . . , 0).

Therefore, under the conditions of Lemma 14
a group of transformations depending on parame-
ters acts on the quasi-jet space jαr OZmZm

n . The num-
ber of these parameters (i.e., the dimension of the
group) equals the number of solutions in Zn≥0 to sys-

tem of equations (7) in the variables
{
j
(k)
s

}
(k =

1, . . . , n), which is also equal to the number of in-
teger points with non-negative coordinates in hyper-
planes (7). We denote this number by Dα

r . We also
put dαr = dim

(
j
α
r OZmZm

n /j
α
r−1OZmZm

n

)
, which is

the dimension of the space of quasi-degree r (with
weights α) equivariant polynomials. It follows from
Lemma 14 that if 0 = d

α
0 = d

α
1 = . . . = d

α
r−1 6=

d
α
r > D

α
r , then the orbits of the action of DZmZm

n on
j
α
r OZmZm

n form at least (d
α
r − D

α
r )-parameter fami-

lies. This implies the following statement.

Theorem 16 Let α = (α1, . . . , αn) be an admissible
set of weights with respect to actions (1) of the group
G = Zm on Cn and on C. If 0 = d

α
0 = d

α
1 = . . . =

d
α
r−1 6= d

α
r > D

α
r (in the notation chosen above), then

there exist no holomorphic function germs in OZmZm
n

that are equivariant simple with respect to actions (1).

Theorem 16 gives a sufficient condition for
nonexistence of equivariant simple singular germs (or,
equivalently, a necessary condition for existence of
equivariant simple singular germs). However, this
sufficient condition is not necessary, which can be
demonstrated by the following example.

Example 17 Assume that the generator σ ∈ G = Z3

acts on C3 and on C as follows:

σ · (z1, z2, z3; w) = (z1, τz2, τz3; τw). (8)

In this case any equivariant germ is of the form
f(z1, z2, z3) = Q1(z2, z3) + z1 · Q2(z2, z3) +
H(z1, z2, z3), where Q1 and Q2 are quadratic forms,
and H(z1, z2, z3) consists of terms of higher order.
Both quadratic forms can be made non-degenerate
by an arbitrarily small perturbation of their coeffi-
cients. The eigenvalues of the pair of quadratic forms
are invariant under equivariant changes of coordinates
(z2, z3), because these forms are only influenced by
the linear parts of the coordinate changes. Therefore,
each orbit of an equivariant germ has an infinite family
of adjacent equivariant germ orbits such that different
orbits are characterized by different eigenvalues of the

pair (Q1, Q2). This implies that in this case there exist
no equivariant simple germs.

However, in this example the assumptions of
Theorem 16 are not satisfied. Due to Theorem 12,
the only admissible sets of weights for actions (8) are
α = (3, 1, 1) and β = (3, 2, 2). One obviously has
0 = d

α
0 = d

α
1 < d

α
2 = 3, because {0} = j

α
0OZ3Z3

n =
j
α
1OZ3Z3

n ⊂ j
α
2OZ3Z3

n = 〈z22 , z2z3, z23〉, but Dα
2 = 4,

because all nontrivial linear transformations of coor-
dinates (z2, z3) act nontrivially on jα2OZ3Z3

n . For sim-

ilar reasons, 0 = d
β

0 = d
β

1 = d
β

2 = d
β

3 < d
β

4 = 3, but

D
β

4 = 4. This implies that the sufficient nonexistence
condition for equivariant simple function germs given
by Theorem 16 is not necessary.

Similarly to Theorem 16, one can obtain a suffi-
cient condition for existence of non-simple equivari-
ant germs.

Theorem 18 Let α = (α1, . . . , αn) be an admissible
set of weights with respect to actions (1) of the group
G = Zm on Cn and on C. If there exists such a num-
ber r ∈ N that dαr > D

α
r (in the notation chosen

above), then there exist holomorphic function germs
inOZmZm

n that are not equivariant simple with respect
to actions (1).

Proof: If dαr > D
α
r for some r ∈ N, then the classi-

fication of quasi-homogeneous polynomials of quasi-
degree r (with weights α) contains continuous param-
eters, and therefore any germ f ∈ OZmZm

n with the
property jαr−1f = 0 is not equivariant simple. ut

5 Scalar actions of G = Zm, m ≥ 3

In this section we study equivariant simple singular-
ities in OZmZm

n in the case when the action of G =
Zm, m ≥ 3 on Cn is scalar. We will only consider
the case n ≥ 2 (the case n = 1 is trivial). Without
loss of generality we can assume that the actions of
the group on the source and target are given by the
formulae

σ · (z1, . . . , zn; w) = (τz1, . . . , τzn; τ qw) , (9)

where σ ∈ Zm is a generator, τ =
(
2πi
m

)
. The result

essentially depends on the excess q mod m. For the
rest of this section we choose q ∈ [1,m].

Theorem 19 (cf. [5, Theorem 1]) Suppose that the
actions of the group Zm on Cn and C are given by
formulae (9) with q = 1. For m ≥ 3, n ≥ 2 there
exist no equivariant simple singular function germs in
OZmZm
n .
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Proof: Take α = (1, . . . , 1). Then 0 = d
α
0 = d

α
1 =

. . . = d
α
m, while dαm+1 =

(
n+m
n−1

)
. At the same time,

D
α
m+1 = n2, because due to Lemma 14, the (m+ 1)-

jets of singular equivariant germs depend only on the
linear parts of automorphism germs from DZmZm

n . Fi-
nally, it is straightforward to check (e.g. by induction
on m) that whenever m ≥ 3, n ≥ 2, the inequality(
n+m
n−1

)
> n2 holds. Therefore, the statement of the

theorem follows from Theorem 16. ut

Remark 20 For m = 2 equivariant simple singular
germs with respect to actions (9) with q = 1 are clas-
sified in [4].

Theorem 21 Suppose that the actions of G = Zm
on Cn and C are given by formulae (9) with q = 2.
A singular equivariant germ f : (Cn, 0) → (C, 0) is
equivariant simple with respect to the given actions
if and only if it is equivalent to one of the following
germs:

(z1, . . . , zn) 7→ zmk+2
1 + z22 + . . .+ z2n (k ∈ Z≥0).

(10)

Proof: The proof is based on the following two lem-
mas.

Lemma 22 In a neighborhood of the origin there
exists an equivariant change of coordinates x =
x(x̃, ỹ), y = y(x̃, ỹ) that gives the germ f the
form f(x̃, ỹ) = ϕ(x̃) + Q(ỹ), where Q is a non-
degenerate quadratic form, dim{ỹ} = rk(d2f |0) =
ρ, dim{x̃} = n− ρ.

Proof of Lemma 22: The lemma is proved similarly
to [1, Lemma 4.1]. The only required modification for
the equivariant case is the Morse lemma with parame-
ter: we need to prove that a family of equivariant func-
tions that depends analytically on the parameter and
has a critical point analytically depending on the pa-
rameter with critical value 0 is equivariant right equiv-
alent to a sum of squares. The corresponding coordi-
nate change can be obtained in the same way as in the
proof of the ordinary Morse lemma (cf. [20, Lemma
2.2]); the equivariance of this coordinate change fol-
lows from its explicit form. ut

Lemma 23 In the notation of Lemma 22 the inequal-
ity ρ ≥ n− 1 holds.

Proof of Lemma 23: If ρ < n−1, then ϕ is an equiv-
ariant function germ in two or more variables with a
trivial (m+1)-jet. Therefore its lowest degree nontriv-
ial jet is of degree greater than or equal to m+ 2 ≥ 5.
But the classification of forms of degree 5 and higher

in two or more variables contains moduli (i.e., contin-
uous parameters), and therefore, in this case the germ
f will not be equivariant simple. ut

Now we can finish the proof of Theorem 21. If
ρ = n, then f is a non-degenerate quadratic form in
n variables that is linearly equivalent to the sum of
squares, i.e., has the form (10) with k = 0. If ρ = n−
1, consider the equivariant function ϕ in one variable.
If all of its derivatives vanish at the origin, then f is
not equivariant simple (all orbits x̃3k+2 + Q(ỹ) are
adjacent to the orbit of f .) If ϕ(i)(0) = 0 for 0 ≤ i ≤
3k + 1, but ϕ(3k+2)(0) 6= 0 (k ∈ N), then the germ
f is equivalent to germ (10) with the same k. Each
of germs (10) is equivariant simple: adjacent orbits in
jrOZmZm

n for r ≥ 3k + 2 are z3l+2
1 + z22 + . . . + z2n

with 0 ≤ l ≤ k. Any two germs of form (10) with
different values of k are not equivalent because they
have different multiplicities of zero at the origin. ut

Theorem 24 Suppose that the actions of G = Zm on
Cn and C are given by formulae (9) with q ≥ 3. If
q = 3, n = 2, 3 or q ≥ 4, n ≥ 2, then there exist no
equivariant simple function germs in OZmZm

n .

Proof: The proof is similar to the proof of Theorem
19. Take α = (1, . . . , 1). Then (in the notation of
Theorem 16) 0 = d

α
0 = d

α
1 = . . . = d

α
q−1, while

d
α
q =

(
n+q−1
q−1

)
, and Dα

q = n2. From Theorem 16 it
follows that if the inequality

(
n+q−1
q−1

)
> n2 is satis-

fied, then there exist no equivariant simple function
germs in OZmZm

n . For q = 3 this inequality holds
only for n = 2 and n = 3. For q ≥ 4 and n ≥ 2
this inequality is always true, which can be proved by
induction on q. ut

Remark 25 The assumptions of Theorem 24 depend
on the excess q mod m and not on m itself. In partic-
ular, the statement of the theorem holds for q = m.

6 Conclusion
We obtained a sufficient condition for nonexistence
of equivariant simple singular holomorphic function
germs for finite cyclic group actions (and applied it
in the case of scalar group actions on the source), as
well as a sufficient condition for existence of equiv-
ariant singular holomorphic function germs that are
not equivariant simple. These results can be used as
the first step in classifying equivariant simple singu-
larities for all possible actions of a given finite cyclic
group on the source and target. However, we have
also shown that the first of these conditions is not nec-
essary, while the necessity of the second one is an
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open question. Moreover, the application of these re-
sults can meet some technical difficulties, because for
a non-scalar action of the group on the source the cal-
culation of dimensions that are used in the conditions
amounts to finding the number of non-negative integer
solutions to certain systems of diophantine equations.
In particular, the result of Theorem 20 is incomplete:
the sufficient nonexistence condition does not allow to
study the case q = 3, n ≥ 4 straightforwardly. Fur-
ther development of calculation techniques and pos-
sibly computer algorithms for such calculations that
might help to solve this problem is the aim of our fu-
ture research.
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