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Abstract:The smoothness of functions is quite essential in applications. This smoothness can be used in functional
calculations, in the construction of the finite element method, in the approximation of those or other numerical data,
etc. The interest in smooth approximate spaces is supported by the desire to have a coincidence of smoothness of
exact and approximate solutions. A lot of papers have been devoted to this problem. The continuity of the function
at a point means equality of the limits on the right and left; the generalization of this situation is the equality
of values of two linear functionals (at the prescribed function) with supports located on opposite sides of the
mentioned point. Such generalization allows us to introduce the concept of generalized smoothness, which gives
the ability to cover various cases of singular behavior functions at some point. The generalized smoothness is called
pseudo-smoothness, although, of course, we can talk about the different types of pseudo-smoothness depending
on the selected functionals mentioned above. Splines are often used for processing numerical information flows; a
lot of scientific papers are devoted to these investigations. Sometimes spline treatment implies to the filtration of
the mentioned flows or to their wavelet decomposition. A discrete flow often appears as a result of analog signal
sampling, representing the values of a function, and in this case, the splines of the Lagrange type are used. In some
cases, there are two interconnected analog signals, one of which represents the values of some function, and the
second one represents the values of its derivative. In this case, it is convenient to use the splines of the Hermite type
of the first height for processing. In all cases, it is highly desirable that the generalized smoothness of the resulting
spline coincides with the generalized smoothness of the original signal. The concepts, which are introduced in this
paper, and the theorems, which are proved here, allow us to achieve this result. The paper discusses the existence
and uniqueness of spline spaces of the Hermite type of the first height (under condition of fixing the spline grid
and the type of generalized smoothness). The purpose of this paper is to discuss generalized smoothness of the
Hermite type spline space (not necessarily polynomial). In this paper we use the necessary and sufficient criterion
of the generalized smoothness obtained earlier.
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1 Introduction

It is important to know about the smoothness of dis-
cussed functions. For example, in the simplest variant
of in finite element method (FEM) a construction of
coordinate functions has to be in the energetic space
of a suitable self-adjoint operator (see [1]–[8]).

On the other hand, it is often needed to calcu-
late some functionals on the solution (for example, the
value of the solution or its derivatives in a point); for
that sometimes it needs the additional smoothness of
an approximate solution.

We note that the exact solution is often so smooth
that it appears to have the desire to have a coincidence
of smoothness of exact solution and approximate one
(see [9]–[27]).

In paper [9] cell-wise strain smoothing operations

are incorporated into conventional finite elements and
a smoothed finite element method for 2D elastic prob-
lems is proposed. Paper [10] examines the theoret-
ical bases for the smoothed finite element method,
which is formulated by incorporating cell-wise strain
smoothing operation into standard compatible finite
element method. The smoothed finite element method
is discussed in [11]. An edge-based smoothed finite
element method is implied to improve the accuracy
and convergence rate of the standard finite element
method for elastic solid mechanics problems and ex-
tended to more general cases (see [12]). The cell-
based smoothed finite element method [14] is used
for the refinement of the accuracy and stability of the
standard finite element method.

According to what has been said, a certain inves-
tigation of smoothness of approximate solutions is re-
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quired. There are many research papers devoted to
the construction and investigation of spline spaces.
Polynomial and non-polynomial splines for equidis-
tant and irregular grids were discussed.

In paper [28] the necessary and sufficient condi-
tions for the smoothness of coordinate functions were
obtained.

The smoothness of functions is quite essential in
applications. This smoothness can be used in func-
tional calculations, in the construction of the finite el-
ement method, in the approximation of those or other
numerical data, etc. The interest in smooth approxi-
mate spaces is supported by the desire to have a coin-
cidence of smoothness of exact and approximate solu-
tions. A lot of papers have been devoted to this prob-
lem. The continuity of the function at a point means
equality of the limits on the right and left; the gen-
eralization of this situation is the equality of values
of two linear functionals (at the prescribed function)
with supports, located on opposite sides of the men-
tioned point. Such generalization allows us to intro-
duce the concept of generalized smoothness, which
gives the ability to cover various cases of singular be-
havior of functions at a fixed point. The generalized
smoothness is called pseudo-smoothness, although,
of course, we can talk about the different types of
pseudo-smoothness depending on the selected func-
tionals mentioned above.

Splines are often used for processing numerical
information flows; a lot of scientific works are devoted
to these themes. Sometimes the spline treatment im-
plies to the filtration of the mentioned flow or to its
wavelet decomposition. Often a discrete flow appears
as a result of analog signal sampling, representing the
values of a function. In this case, the splines of the La-
grange type are used. In some cases, there are two in-
terconnected analog signals, one of which represents
the values of some function, and the second one rep-
resents the values of its derivative. In this case, for
processing, it is convenient to use splines of the Her-
mite type of the first height. In all cases, it is highly
desirable that the generalized smoothness of the re-
sulting spline coincided with the generalized smooth-
ness of the original signal. The concepts, which are
introduced in this paper, and theorems, which are
proved here, allow us to achieve this result. The paper
discusses the existence and uniqueness of the spline
spaces of the Hermite type (under condition of fixing
the spline grid and the type of generalized smooth-
ness). The purpose of this paper is to discuss the Her-
mite type spline space (not necessarily polynomial).
In this paper we use the necessary and sufficient crite-
rion of the pseudo-smoothness, obtained earlier.

2 Auxiliary assertions
Consider a smoothn-dimensional (generally speak-
ing, noncompact) manifoldM (i.e. topological
space where each point has a neighborhood which is
diffeomorphic to the openn-dimensional ball of Eu-
clidean spaceRn).

Let {Uζ}ζ∈Z be a family of opened sets covering
M, and such homeomorphismsψζ , ψζ : Eζ 7→ Uζ

opened ballsEζ of the spaceRn that the maps

ψ−1
ζ ψζ′ : ψ−1

ζ′ (Uζ ∩ Uζ′) 7→ ψ−1
ζ (Uζ ∩ Uζ′)

(for all ζ, ζ ′ ∈ Z, for which the mapUζ∩Uζ′ 6= ∅) are
continuously differential (needed a number of times);
hereZ is a set of indices.

We discuss a mapψζ : Eζ 7→ Uζ and a set{ψζ :
Eζ 7→ Uζ | ζ ∈ Z}; the last one, called atlas, defines
the manifoldM.

We say that functionu is defined onM, if there
is a family of functions{uζ(x)}ζ∈Z,§∈Uζ′ such that

uζ(ψ−1
ζ (ξ)) ≡ uζ(ψ−1

ζ′ (ξ))

∀ξ ∈ Uζ ∩ Uζ′ , ζ, ζ ′ ∈ Z;

andu(ξ) = uζ(ψ−1
ζ (ξ)) for ξ ∈ Uζ .

Linear spaces of functions prescribed onM are
defined by the atlas with usage of the relevant spaces
of functions defined on ballsEζ .

Let X(M) be a linear space of (Lebesgue mea-
surable) functions, defined on manifoldM, where a
symbolX denotesCs or Ls

q; thus, the spaceX(M) is
defined by the equality

X(M) = {u | u ◦ ψζ ∈ X(Eζ) ∀ζ ∈ Z};
note thatCs(Eζ) and Ls

q(Eζ) are the usual spaces
of functions defined onEζ (1 ≤ q ≤ +∞, s =
0, 1, 2, . . .).

Let X∗ be the dual space to spaceX; it consists
of functionalsf , defined by identity

〈f, u〉 ≡ 〈fζ , uζ〉ζ ,
wherefζ ∈ (X(Eζ))∗ ∀ζ ∈ Z, and{fζ}ζ∈Z is a
family of functionals representing the functionalf .

If the value〈f, u〉 of the functionalf ∈ (X(M))∗
is defined by the values of functionu on the setΩ ⊂
M ∀u ∈ X(M), then we writesuppf ⊂ Ω; and
if in this case,Ω is a compact set, then we say that
functionalf has compact support. In what follows,
we discuss functionals with compact support.

Let S = {Sj}j∈J be a covering family for man-
ifold M, where subsetsSj are homeomorphic to
openedn-dimensional ball; thus

⋃

j∈J
Sj = M,
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whereJ is an ordered set of indices. The setsSj are
called the elements of coveringS; the boundary of set
Sj is denoted∂Sj .

Consider set

C(t) =
⋂

j∈J , Sj3t

Sj

for each pointt ∈ M\⋃
j∈J ∂Sj . Identifying co-

incided sets, we see that collection{C(t)} is at most
countable; later on, we denote mentioned sets byCi,
i ∈ K, whereK is an ordered set of indices.

We haveC = {Ci | i ∈ K}, and the next relations
are right:

Ci′ ∩ Ci′′ = ∅ for i′ 6= i′′, i′, i′′ ∈ K,

Cl (Sj) = Cl

( ⋃

Ci⊆Sj

Ci

)
,

Cl

( ⋃

i∈K
Ci

)
= Cl (M); (1)

hereCl is the closure in the topology of manifoldM.
Thus, the aggregatesM andSj are split in setsCi,

so that the coveringS is associated with collectionC;
the rule of association described above is denoted by
F : C = F(S). CollectionC is calledthe subdivision
of the coveringS.

Definition 1. If all setsCi fromF(S) are homeo-
morphic to an opened ball thenS is called a covering
of a simple structure; in this case setCi is named a
cell.

Later on we will discuss the covering of a simple
structure.

Definition 2. Let t ∈M be fixed point; a number
κt(S) of elements of the collection{j | t ∈ Sj} is
called a multiplicity of the covering of pointt by the
familyS.

Definition 3. Suppose natural numberq exists,
such that an identity

κt(S) = q (2)

holds almost everywhere fort ∈M; thenS is called a
q-covering family (forM), and the numberq is named
a multiplicity of covering of manifoldM by the family
S.

Definition 4. Suppose pointt belongs to the in-
tersectionCl(Ci) ∩ Cl(Ci′), i 6= i′, and a neigh-
borhood U(t) of the point t belongs to the union
Cl(Ci) ∪ Cl(Ci′); in this case the cellsCi andCi′ are
named adjacent cells.

Definition 5. Let S be aq-covered family, letCi

andCi′ be arbitrary adjacent cells (in subdivisionC of
familyS). If difference

{j | Sj ⊃ Ci}\{j′ | Sj′ ⊃ Ci′}

containsp elements (p is a fixed positive integer) then
S is called ap-graduatedq-covering family for mani-
foldM.

Consider familyA = {aj}j∈J of q-dimensional
vectorsaj . Family A is called an equipment of the
manifold coveringS; thus each setSj of the covering
S coincides with vectoraj of spaceRq.

In what follows equipmentA of family S is some-
times denoted byA(S), and the vectoraj , coinciding
with the setSj , is denoted byA|Sj

(thus in the dis-
cussed caseA|Sj

= aj).
Definition 6. Let t be a point of manifoldM, and

let S = {Sj}j∈Z be aq-covered family forM. If the
vector system

A〈t〉 = {aj | j ∈ J ,Sj 3 t} (3)

is the basis of spaceRq almost everywhere fort ∈M
then we say thatA(S) is the complete equipment of
manifold covering.

By (1)–(2), (3) it follows that ifA is the com-
plete equipment of familyS, C is equal toF(S)
and i is a fixed number,i ∈ K, then the relations
A〈t′〉 = A〈t′′〉 for ∀t′, t′′ ∈ Ci,are fulfilled.

By definition, putAi = A〈t〉 for t ∈ Ci.
It is easy to see that ifS is ap-graduated manifold

covering andCi, Ci′ are adjacent cells, then quantities
of vectors in setsAi\Ai′ are equal top (for all i, i ′ ∈
K).

3 Spaces of minimal splines

Consider vector functionϕ : M → Rm+1 with
components from spaceX(M) (herem ≥ 0).

In this section we discussq-covering families of
sets, whereq = m + 1.

The proofs of the theorems in this section and the
applications to splines of the Lagrange type can be
found in paper [28].

Theorem 1. Let S be m + 1-covering family
(for manifoldM), and letA = {aj}j∈J be a system
of column vectors, forming a complete equipment of
the familyS. Then there exists an unique vector func-
tion (column)ω(t) = (ωj(t))j∈J , which satisfies the
relations below

Aω(t) = ϕ(t), ωj(t) = 0 ∀t /∈ Sj ; (4)

here and later on, the symbolA is used also for the
notation of a matrix consisting of column vectorsaj :
A = (aj)j∈J .

Corollary 1. The next relations are right:

ωj(t) =
det

(
{as | as ∈ Ai, s 6= j} ||′j ϕ(t)

)

det
(
{as | as ∈ Ai}

)
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for ∀t ∈ Ci ⊂ Sj , ωj(t) = 0 ∀t /∈ Sj ;
here the columns in the determinants in numerator
and in denominator have the same order, and the
symbol||′j ϕ(t) indicates that column vectorϕ(t) is
needed in place of column vectoraj .

Let Sm(S, A, ϕ) be a linear space obtained by
closing the linear span of set{ωj}j∈J in the topology
of pointwise convergence. The spaceSm(S, A, ϕ) is
calleda space of minimal(S, A, ϕ)-splines(of order
m) on manifoldM,

Sm(S, A, ϕ) = Clp{ũ | ũ(t) =

=
∑

j∈J
cjωj(t) ∀t ∈M ∀cj ∈ R1};

(symbolClp denotes closure in the mentioned topol-
ogy). Triple(S, A, ϕ) is nameda generator of space
Sm(S, A, ϕ), and functionsωj are calledcoordinate
functionsof the spaceSm(X,A, ϕ). Correlations (4)
are calledapproximation relations.

If the familyS is r+1-graduated covering (herer
is a positive integer) then we say that(S, A, ϕ)-splines
have heightr. If r = 0 then the splines are named
splines of the Lagrange type, if r > 0 then the splines
are calledsplines of the Hermite type. It is easy to
see that these definitions correspond to the concepts
introduced in the first section.

Theorem 2. Under the conditions of Theorem 1,
linear independence of the components of vector func-
tion ϕ(t) on cell Ci is equivalent to linear indepen-
dence of the function system{ωj(t) | Ci ⊆ Sj} on the
cell.

Theorem 3. Suppose the conditions of Theorem 1
are fulfilled. If the components of vector functionϕ(t)
are linear independent on each cellCi, i ∈ K, then the
system of functions{ωj(t)}j∈J is linear independent
on manifoldM.

LetFk be a linear functionalFk ∈ (X(M))∗ with
support in cellCk, suppFk ⊂ Ck. If cells Ck andCk ′

are adjacent then by definition putAk,k ′ = {aj |aj ∈
Ak∩Ak ′}. In what follows, we fix an order of column
vectorsaj in the setAk,k ′ . Sometimes we discuss
the setAk,k ′ as a matrix with a mentioned order of
columns.

Consider a condition
(A) relation

Fkϕ = Fk ′ϕ (5)

is true.
The next assertions are fulfilled (for the proofs of

the theorems in this section see paper [28]).
Theorem 4. Let Ck and Ck ′ be adjacent cells.

Suppose the condition(A) is fulfilled. Then, the nec-
essary and sufficient conditions for the equalities

Fk ωj = Fk ′ ωj ∀j ∈ J , (6)

to be valid are the relations below hold:

Fk ωj = 0 for aj ∈ Ak\Ak,k′ ,

Fk ′ ωj ′ = 0 for aj ′ ∈ Ak ′\Ak,k′ . (7)

Under condition (5) we put

F(k,k ′)ϕ = Fkϕ = Fk ′ϕ.

Theorem 5. Suppose the conditions of Theorem
4 are fulfilled. Then relation (6) is equivalent to the
relation

F(k,k ′)ϕ ∈ L{as |as ∈ Ak,k ′}.

Corollary 2. The first relation of formula (7)
and the second relation of the mentioned formula are
equivalent.

4 The Hermite type splines

4.1 The Hermite type splines of the first
height

Let M be the interval(α, β) of real axisR1, let S
be a collection of setsSj , j ∈ Z, whereS2s−1 =
(xs, xs+2), S2s = (xs, xs+2). We see that the collec-
tion of open intervalsCi = (xi, xi+1), i ∈ Z, is a cell
subdivision. The last one is generated by the grid

X : . . . x−1 < x0 < x1 < x2 < . . .

Thus,S is a two-step four-times covering of the
interval(α, β).

Suppose that vectoraj ∈ R4 corresponds to the
setSj , j ∈ Z. In the discussed case the systemAi =
{a2i−3,a2i−2,a2i−1,a2i} is the equipment of the cell
Ci = (xi, xi+1), if the system is linear independent;
the last one is equivalent to the condition

(H1)

det(a2i−3,a2i−2,a2i−1,a2i) 6= 0 ∀i ∈ Z.

It is clear that the cellCk ′ k ′ = k + 1: Ck+1 =
(xk+1, xk+2) is adjacent to the cellCk; we have
Ak+1 = {a2k−1,a2k,a2k+1,a2k+2}, and Ak,k ′ =
Ak,k+1 = {a2k−1,a2k}, so that

Ak\Ak,k ′ = {a2k−3,a2k−2},
Ak+1\Ak,k ′ = {a2k+1,a2k+2}.

The Hermite type splines of the first height are
defined by the relations

∑

j∈Z

a2j−1ω2j−1(t) + a2jω2j(t) = ϕ(t), (8)
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suppω2j−1, suppω2j ⊂ [xj , xj+2], (9)

whereϕ : (α, β) 7−→ R4, ϕ ∈ X(α, β).
For t ∈ (xk, xk+1) we definej such that

[xj , xj+2] ∩ (xk, xk+1) 6= ∅,
and we findj = k − 1, k. Now by (8) – (9) we have

a2k−3ω2k−3(t) + a2k−2ω2k−2(t)+

+a2k−1ω2k−1(t) + a2kω2k(t) = ϕ(t) (10)

∀t ∈ (xk, xk+1). (11)

Supposet ∈ (xk, xk+1). According to condition
(H1) from relations (10) – (11) we obtain

ω2k−3(t) =
det(ϕ(t),a2k−2,a2k−1,a2k)
det(a2k−3,a2k−2,a2k−1,a2k)

, (12)

ω2k−2(t) =
det(a2k−3, ϕ(t),a2k−1,a2k)
det(a2k−3,a2k−2,a2k−1,a2k)

, (13)

ω2k−1(t) =
det(a2k−3,a2k−2, ϕ(t),a2k)
det(a2k−3,a2k−2,a2k−1,a2k)

, (14)

ω2k(t) =
det(a2k−3,a2k−2,a2k−1, ϕ(t))
det(a2k−3,a2k−2,a2k−1,a2k)

. (15)

The functionsωj are called coordinate splines
of the Hermite type of the first height. The closure of
their linear span in pointwise topology is namedthe
Hermite type spline space of the first height.

The last space is denoted withH1(X,A, ϕ).

4.2 The Hermite type splines of the second
height

As before we putM = (α, β) ⊂ R1. Let S be a
collection of setsS3s−2 = S3s−1 = S3s = (xs, xs+2)
∀s ∈ Z. We see that the collection of open intervals
Ci = (xi, xi+1), i ∈ Z, is a cell subdivision.

Thus,S is a 3th-step 6th-times covering of the
interval(α, β).

Suppose that vectoraj ∈ R6 corresponds to the
setSj , j ∈ Z. In the discussed case the systemAk =
{a3k−5,a3k−4, . . . ,a3k} is the equipment of the cell
Ck = (xk, xk+1) if the system is linear independent;
the last one is equivalent to the condition

(H2)

det(a3i−5,a3i−4, . . . ,a3i) 6= 0 ∀i ∈ Z.

For the cellCk ′ k ′ = k+1: Ck+1 = (xk+1, xk+2)
we haveAk+1 = {a3k−2,a3k−1, . . . ,a3k+3}, and
Ak,k ′ = Ak,k+1 = {a3k−2,a3k−1,a3k}, so that

Ak\Ak,k ′ = {a3k−5,a3k−4,a3k−3},

Ak+1\Ak,k ′ = {a3k+1,a3k+2,a3k+3}.
The Hermite type splines of the second order are

defined by the relations

∑

j∈Z

a3j−2ω3j−2(t) + a3j−1ω3j−1(t)+

+a3jω3j(t) = ϕ(t), (16)

suppω3j−2, suppω3j−1,

suppω3j ⊂ [xj , xj+2], (17)

whereϕ : (α, β) 7−→ R6, ϕ ∈ X(α, β).
Now by (16) – (17) we have

3k∑

j=3k−5

ajωj(t) = ϕ(t), ∀t ∈ (xk, xk+1). (18)

Thus according to condition(H2) and relations
(18) we obtain

ωj(t) =

=
det

(
a3k−5,a3k−4, . . . ,a3k ||′j ϕ(t)

)

det
(
a3k−5,a3k−4, . . . ,a3k

) , (19)

where t ∈ (xk, xk+1) ⊂ [xj , xj+2], ωj(t ′) = 0
∀t ′ /∈ [xj , xj+2].

The closure (in pointwise topology) of linear span
of system{ωj}j∈Z is named the Hermite type
spline space of the second height; it is denoted with
H2(X, A,ϕ).

4.3 The Hermite type splines of the third
height

The Hermite type splines of the third height are con-
structed analogously. In that case we introduce a next
notion: M = (α, β) ⊂ R1, S = {Sj}j∈Z, where
S4s−3 = S4s−2 = S4s−1 = S4s = (xs, xs+2)
∀s ∈ Z. As before we obtain the collection of open
intervalsCi = (xi, xi+1), i ∈ Z, which give subdivi-
sion ofM. Now we have a covering of the interval
(α, β) by he collectionS, whereq = 8 andp = 4.

Discuss vectorsaj ∈ R8 with property
(H3)

det(a4i−7,a4i−6, . . . ,a4i) 6= 0 ∀i ∈ Z.

In the discussed case the systemAk =
{a4k−7,a4k−6, . . . ,a4k} is the equipment of the cell
Ck = (xk, xk+1).

For the adjacent cellCk+1 = (xk+1, xk+2) we
have

Ak+1 = {a4k−3,a4k−2, . . . ,a4k+4},
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andAk,k+1 = {a4k−3,a4k−2,a4k−1,a4k}, so that

Ak\Ak,k ′ = {a4k−7, . . . ,a4k−4}, (20)

Ak+1\Ak,k ′ = {a4k+1, . . . ,a4k+4}.

The Hermite type splines of the third height are
defined by the approximate relations

∑

j∈Z

a4j−3ω4j−3(t)+a4j−2ω4j−2(t)+a4j−1ω4j−1(t)+

+a4jω4j(t) = ϕ(t) ∀t ∈ (α, β), (21)

suppω4j−3, suppω4j−2,

suppω4j−1, suppω4j ⊂ [xj , xj+2], (22)

whereϕ : (α, β) 7−→ R8, ϕ ∈ X(α, β).
Now by (21) – (22) we have

4k∑

j=4k−7

ajωj(t) = ϕ(t) ∀t ∈ (xk, xk+1). (23)

Thus according to condition(H3) and relations
(23) we obtain

ωj(t) =

det
(

a4k−7,a4k−6, . . . ,a4k ||′j ϕ(t)
)

det
(
a4k−7,a4k−6, . . . ,a4k

) , (24)

where t ∈ (xk, xk+1) ⊂ [xj , xj+2], ωj(t ′) = 0
∀t ′ /∈ [xj , xj+2].

The functionsωj are called coordinate splines of
the Hermite type of the third height, and the closure of
their linear span in pointwise topologyH3(X, A,ϕ)
is named the Hermite type spline space of the third
height.

5 Pseudo-smoothness of the Hermite
type splines

5.1 Pseudo-smoothness of the Hermite type
splines of the first height

If t ∈ (xk+1, xk+2) then analogously to formulas
(12)–(15) we have (see subsection 4.1)

ω2k−1(t) =
det(ϕ(t),a2k,a2k+1,a2k+2)
det(a2k−1,a2k,a2k+1,a2k+2)

,

ω2k(t) =
det(a2k−1, ϕ(t),a2k+1,a2k+2)
det(a2k−1,a2k,a2k+1,a2k+2)

,

ω2k+1(t) =
det(a2k−1,a2k, ϕ(t),a2k+2)
det(a2k−1,a2k,a2k+1,a2k+2)

, (25)

ω2k+2(t) =
det(a2k−1,a2k,a2k+1, ϕ(t))
det(a2k−1,a2k,a2k+1,a2k+2)

. (26)

Consider the linear spacesX(xj , xj+1), which
consist of functionsu(t), t ∈ (xj , xj+1). For exam-
ple, we can assume thatX(xj , xj+1) = Cs(xj , xj+1),
or X(xj , xj+1) = W s

p (xj , xj+1), where1 ≤ p, p is
real number,s is nonnegative integer.

LetX be a direct production of the spaces:

X = . . .×X(x−1, x0)×X(x0, x1)×X(x1, x2)× . . .

Let Fk and Fk+1 be linear functionals inX
with supports in adjacent cellsCk = (xk, xk+1) and
Ck+1 = (xk+1, xk+2).

We introduce a condition
(D1)

Fkϕ = Fk+1ϕ.

Under condition(D1) we define

Φk = Fkϕ = Fk+1ϕ. (27)

According to Theorem 4, conditions (6) and (7)
are equivalent. In the discussed case, the last one can
be written in the form

Fk ωj = 0 for aj ∈ {a2k−3,a2k−2}, (28)

Fk ′ ωj ′ = 0 for aj ′ ∈ {a2k+1,a2k+2}. (29)

By (12) – (13) and (27) – (28) we have

Fkω2k−3 = 0 ⇐⇒ det(a2k−2,a2k−1,a2k, Φk) = 0,

Fkω2k−2 = 0 ⇐⇒ det(a2k−3,a2k−1,a2k, Φk) = 0;

now we deduce

Φk ∈ L{a2k−1,a2k}. (30)

By (25) – (26) and (27) – (29) analogously we
obtain

Fk+1ω2k+1 = 0 ⇐⇒
⇐⇒ det(a2k−1,a2k,a2k+1, Φk) = 0,

Fk+1ω2k+2 = 0 ⇐⇒
⇐⇒ det(a2k−1,a2k,a2k+1, Φk) = 0.

It is clear to see that we obtain the implication
(30) again.

In addition, we assume that functionalsF ′
k and

F ′
k+1 have supports in adjacent cellsCk andCk+1 ac-

cordingly.
Suppose that the next condition is true
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(D ′
1)

F ′
kϕ = F ′

k+1ϕ.

Later we take into account the notation

Φ ′
k = F ′

kϕ = F ′
k+1ϕ. (31)

Using the previous discussion, we obtain

Φ ′
k ∈ L{a2k−1,a2k}.

Suppose the next condition is fulfilled
(E1) the conditions(D1) and(D ′

1) are true, and
vectors defined by relations (27) and (31) are linear
independent (for each fixedk ∈ Z).

Under condition(E1) the next relation is true

L{Φk, Φ ′
k} = L{a2k−1,a2k} ∀k ∈ Z. (32)

Let Φ(1) be a sequence of pairs(Φk,Φ ′
k) so that

Φ(1) = {(Φk, Φ ′
k)}k∈Z.

If the conditions(H1) and(E1) are true, then the
spaceH1(X,A, ϕ) is named a space of the Hermite
type splines with psuedo-smoothnessΦ(1).

The previous discussion proves the next assertion.
Theorem 6. If grid X and vector functionϕ(t)

are fixed, then the space of the Hermite type splines
with psuedo-smoothnessΦ(1) is unique.

Proof. Taking into account condition (32), we
have

a2k−3 = αk−1Φk−1 + α ′
k−1Φ

′
k−1, (33)

a2k−2 = βk−1Φk−1 + β ′
k−1Φ

′
k−1, (34)

a2k−1 = αkΦk + α ′
kΦ

′
k, (35)

a2k−2 = βkΦk + β ′
kΦ

′
k. (36)

Using formulas (33) – (36) in (10) we get the sys-
tem of equations

Φk−1ω̃2k−3 + Φ ′
k−1ω̃2k−2+

+Φkω̃2k−1 + Φ ′
kω̃2k = ϕ(t), (37)

where

ω̃2k−3 = αk−1ω2k−3 + βk−1ω2k−2, (38)

ω̃2k−2 = α ′
k−1ω2k−3 + β ′

k−1ω2k−2, (39)

ω̃2k−1 = αkω2k−1 + βkω2k, (40)

ω̃2k = α ′
kω2k−1 + β ′

kω2k. (41)

According to supposition(E1), vectorsΦk and Φ ′
k

are linear independent. By conditions (32) it follows
that the vectors belong to hyperplaneL{a2k−1,a2k}.
Analogously vectorsΦk−1 andΦ ′

k−1 are linear inde-
pendent, and belong to hyperplaneL{a2k−3,a2k−2}.

Taking into account supposition(H1) for i = k, the
two hyperplanes have trivial intersection. Therefore
vectorsΦk−1, Φ ′

k−1, Φk, Φ ′
k are linear independent.

It is clear that system (37) has unique solution
ω̃i(t), andsupp ω̃i = suppωi, i = 2k − 3, 2k − 2,
2k − 1, 2k.

Previuous discussion demonstrates that the coor-
dinate splinesωj coincide to coordinate splines̃ωi by
relations (38) – (41) for arbitrary system of vectors
satisfying conditions(H1) and (31).

Thus, coinciding hulls of the mentioned spline
systems be the same. This completes the proof.

It is clear to see that the space mentioned in The-
orem 6 is defined by gridX, vector functionϕ(t)
and by the familyΦ(1); this space we denote by
H1(X, ϕ,Φ(1)).

5.2 Pseudo-smoothness of the Hermite type
splines of the second height

Let Fk, F
′
k, F

′′
k and Fk+1, F ′

k+1, F ′′
k+1 be linear

functionals inX with supports in adjacent cellsCk =
(xk, xk+1) andCk+1 = (xk+1, xk+2) accordingly.

Discussing the situation of subsection 4.2, we in-
troduce a condition

(D2)

Fkϕ = Fk+1ϕ, F ′
kϕ = F ′

k+1ϕ, F ′′
kϕ = F ′′

k+1ϕ.

Under condition(D2) we define

Φk = Fkϕ = Fk+1ϕ, Φ ′
k = F ′

kϕ = F ′
k+1,

Φ ′′
k = F ′′

kϕ = F ′′
k+1ϕ. (42)

We are interested in relations

Fkωj = Fk+1ωj , F ′
kωj = F ′

k+1ωj , (43)

F ′′
kωj = F ′′

k+1ωj ∀j ∈ Z. (44)

If condition (D2) is fulfilled then according to The-
orem 4 and Corollary 2 relation (43) is equivalent to
equalities

Fkωj = 0 ∀aj ∈ Ak\Ak+1. (45)

By formula (19) we see that (45) is equivalent to rela-
tions

Fkω3k−5 = 0 ⇐⇒
⇐⇒ det(Φk,a3k−4,a3k−3, . . . ,a3k) = 0, (46)

Fkω3k−4 = 0 ⇐⇒
⇐⇒ det(a3k−5, Φk,a3k−3, . . . ,a3k) = 0, (47)

Fkω3k−3 = 0 ⇐⇒
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⇐⇒ det(a3k−5,a3k−4,

Φk,a3k−2, . . . ,a3k) = 0. (48)

According to formulas (46) – (48) we have

Φk ∈ L{a3k−2,a3k−1,a3k}. (49)

Analogously by (44) we obtain

Φ ′
k, Φ

′′
k ∈ L{a3k−2,a3k−1,a3k}. (50)

Suppose the next condition is fulfilled
(E2) the conditions(D2) is true, and vectors, de-

fined by relations (42), are linear independent (for
each fixedk ∈ Z).

If condition (E2) is true then by (49) – (50) we
have

L{Φk,Φ ′
k, Φ

′′
k} = L{a3k−2,a3k−1,a3k} ∀k ∈ Z.

Let Φ(2) be a sequence of triple(Φk, Φ ′
k, Φ

′′
k) so

thatΦ(2) = {(Φk, Φ ′
k, Φ

′′
k)}k∈Z.

If the conditions(H2) and(E2) are true, then the
spaceH2(X,A, ϕ) is named a space of the Hermite
type splines with psuedo-smoothnessΦ(2).

Theorem 7. If grid X and vector functionϕ(t)
are fixed, then the space of the Hermite type splines
with psuedo-smoothnessΦ(2) is unique.

Proof of Theorem 7 is similar to proof of Theo-
rem 6.

The space mentioned in Theorem 7 is defined by
grid X, vector functionϕ(t) and by the familyΦ(2);
this space we denote byH2(X, ϕ,Φ(2)).

5.3 On smoothness of the Hermite type
splines of the third height

Here we give a short discussion of the Hermite splines
of the third height (see subsection 4.3).

Let Fk, F ′
k, F ′′

k, F ′′′
k andFk+1, F ′

k+1, F ′′
k+1,

F ′′′
k+1 be linear functionals inX with supports in adja-

cent cellsCk = (xk, xk+1) andCk+1 = (xk+1, xk+2)
accordingly.

Now we discuss a condition
(D3)

Fkϕ = Fk+1ϕ, F ′
kϕ = F ′

k+1ϕ,

F ′′
kϕ = F ′′

k+1ϕ, F ′′′
k ϕ = F ′′′

k+1ϕ,

and define vectors

Φk = Fkϕ = Fk+1ϕ, Φ ′
k = F ′

kϕ = F ′
k+1, (51)

Φ ′′
k = F ′′

kϕ = F ′′
k+1ϕ,

Φ ′′′
k = F ′′′

k ϕ = F ′′′
k+1ϕ. (52)

We are interested in relations

Fkωj = Fk+1ωj , (53)

F ′
kωj = F ′

k+1ωj , F ′′
kωj = F ′′

k+1ωj ,

F ′′′
k ωj = F ′′′

k+1ωj ∀j ∈ Z.

If condition (D3) is fulfilled then according to Theo-
rem 4 and Corollary 2, relation (53) is equivalent to
equalities

Fkωj = 0 ∀aj ∈ Ak\Ak+1. (54)

Taking into account formula (24), we see that by (20)
and (54) we have

Φk ∈ L{a4k−3,a4k−2,a4k−1,a4k}. (55)

Analogously by (24) we obtain

Φ ′
k, Φ

′′
k, Φ

′′′
k ∈ L{a4k−3,a4k−2,a4k−1,a4k}. (56)

Suppose the next condition is fulfilled
(E3) the conditions(D3) are true, and vectors de-

fined by relations (51) – (52) are linear independent
(for each fixedk ∈ Z).

If condition (E3) is true then by (55) – (56) we
have

L{Φk, Φ ′
k, Φ

′′
k, Φ

′′
k} = L{a4k−3,a4k−2,a4k−1,a4k}

∀k ∈ Z.

Let Φ(3) be a sequence of quadru-
ple (Φk, Φ ′

k, Φ
′′
k, Φ

′′′
k ) so that Φ(3) =

{(Φk, Φ ′
k, Φ

′′
k, Φ

′′′
k , Φ ′′′

k )}k∈Z.
If the conditions(H3) and(E3) are true, then the

spaceH3(X, A, ϕ) is named a space of the Hermite
type splines with psuedo-smoothnessΦ(3).

The previous discussion proves the next assertion
(see also the proof of Theorem 6).

Theorem 8. If grid X and vector functionϕ(t)
are fixed, then the space of the Hermite type splines
of the third height with psuedo-smoothnessΦ(3) is
unique.

The space mentioned in Theorem 8 is defined by
grid X, vector functionϕ(t) and by the familyΦ(3);
this space we denote byH3(X, ϕ,Φ(3)).

6 Conclusion

Returning to the definition of basic splines, we note
that the approximate relations consist of identities that
include a priori given vector sequenceA = {aj | aj ∈
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Rm+1} andm + 1-dimensional vector-valued func-
tion ϕ(t) (that is named generating vector function)
defined on the interval(α, β):

∑

j

ajωj(t) = ϕ(t);

herem is a nonnegative integer. In addition, location
of coordinate spline supports (relatively to the gridX)
is indicated at the mentioned interval.

The smoothness of coordinate functions inside of
cells are defined by the smoothness of generating vec-
tor function in approximate relations, but the smooth-
ness of coordinate functions on the boundary of adja-
cent cells required additional discussion.

The location of supports determines the type of
splines: for example, if the supports are ”ladder”,
suppωj ⊂ [xj , xj+m+1], then splines of the Lagrange
type are obtained. The case of nested supports leads
to the splines of the Hermite type.

Different variants of choice of vector sequenceA
lead to different sets of coordinate functions with var-
ious types of the grid pseudo-smoothness. In general,
the corresponding linear hulls of these functions form
different linear spaces.

In this paper we considered the splines of the Her-
mite type of the first, second and third height. Here
we took m = 3, 5, 7 and arranged the supports of
the coordinate splines like two, three and four iden-
tical ”stairs”. If we discussk + 1 identical ”stairs”
we’ll obtain the Hermite splines ofk-th heightk ∈ Z.
Moreover, various positions of the supports can lead
to splines of mixed type. For approximation of func-
tions with singularities, the singular splines are re-
quired; the last ones can be obtained by the choice
of the generating vector functionϕ(t) and using the
corresponding sequence of vectorsaj . Questions of
generalized smoothness for some of these splines are
supposed to be discussed in the future.

This paper discusses general smoothness as a co-
incidence of values of two linear functionals on the ap-
propriate functions where mentioned functionals have
their supports in adjacent cells. It gives the opportu-
nity to discuss different sorts of smoothness.

Simplest example for adjacent cellsCk =
(xk, xk+1) andCk ′ = (xk ′ , xk ′+1), k ′ = k + 1, is
the next one

Fku =
1
ak

lim
τ→−0

u(xk+1 + τ)

and

F ′
ku =

1
a ′k

lim
τ→+0

u(xk+1 + τ),

whereaka
′
k 6= 0, ak, a

′
k ∈ R1. The equalityFku =

Fk ′u allow us to discuss discontinuities of the first
kind.

More complicated example is

Fku = lim
τ→−0

∫ 0

τ
ψ(ξ)u(xk+1 + ξ)dξ,

Fk ′u = lim
τ→+0

∫ τ

0
ψ(ξ)u(xk+1 + ξ)dξ,

whereψ(ξ) is a weight function; now the equality
Fku = Fk ′u illustrates ”weighted smoothness” (see
also [28] – [29]).

Here we have only discussed the spaces of the
Hermite type spline with the first, second and third
heights. The obtained result gives the opportunity to
prove the uniqueness of the Hermite spline spaces of
the highest smoothness with arbitrary height.
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