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Abstract 
 
The study examine boundary layer non-Newtonian fluid, laminar, viscous and incompressible heat absorption 
chemical reactive flow with asymmetry convective cooling in a Darcy-forchheimer porous medium. The electrically 
conducting fluid flow is driven by thermal buoyancy force and axial pressure gradient along a fixed channel. The 
convective exchange heat with the surrounding temperature at the walls surface follows Newtons law of cooling. 
The solutions to the dimensionless nonlinear equations governing the flow are obtained using weighted residual 
method (WRM). The computational assessment of the analytical results in the boundary layer is carried out and the 
graphical results for the momentum and energy distributions are obtained. The coefficient of skin friction and 
Nusselt number are also showed and discussed accordingly for some pertinent parameters entrenched in the flow. 
From the result shows that a rise in Frank-Kamenetskii parameter needs to be guide because it contribute 
significantly to the destruction of the system thermo-fluid also there is an increase in the fluid bonding force that 
makes it to be more viscoelastic as the non-Newtonian parameter increases. 
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1.0 Introduction 
 
A porous medium is characterized by its 
porosity and other properties of the medium like 
tensile strength, tortuosity, electrical 
conductivity, permeability that can be obtained 
from their respective constituents properties 
(fluid and solid matrix), their pores structure and 
media porosity are habitually complex [1-3]. 
Darcy describes the flow past porous media that 
forms the scientific starting point of fluid 
permeability used in earth sciences, particularly 
in hydrogeology. This is a phenomenologically 
resulting from constitutive equation that 
illustrates the fluid flow past permeable media. 
For large velocities in a porous medium, inertial 
special effects can become significant. An 
inertial term is introduced to the Darcy’s 
equation which is referred to as Forchheimer 
term. This term is able to account for the 

nonlinear behavior of the pressure difference 
versus velocity data [4,5]. The idea of porous 
media is used in several practical areas of 
science and engineering such as filtration, 
geomechanics, bio-remediation, petroleum 
geology, material science, biophysics etc. 
 
Studies associated with porous medium and 
flows of an electrically conducting fluid have 
fascinated many researchers because of their 
applications in numerous natural and 
technological processes. A review of 
magnetohydrodynamics (MHD) studies as 
related to technological fields was established by 
[6,7]. The basic influence of convective heat 
transfer in MHD was examined in [8,9]. While, 
[11,12] reported on Joule heating and viscous 
influences on hydromagnetic flow with heat 
transfer. Special weight was given to buoyancy 
forces on magnetohydrodynamics flow past a 
porous medium by [13,14]. The above cited 
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work never takes into account the likely effects 
of heat absorption. However, several processes 
in engineering happen at high temperatures and 
heat absorption along with difference in the fluid 
viscosity in design of some equipment [15]. 
 
Also, Theoretical study of non-Newtonian 
liquids has in present times attracted the 
attention of many researchers due to their 
industrial applications. Non-Newtonian fluids 
cannot be presented with single constitutive 
formulation, therefore the constitutive models 
for non-Newtonian fluid depends on the 
categories of fluids being considered which 
cannot be satisfactorily captured by the linearly 
viscoelastic classical model. Among the several 
constitutive equations include the class of third 
order fluids that cannot be solve analytically 
even for the simple form of the flows and 
therefore a computational technique is 
inevitable. Broad studies concerning the non-
Newtonian fluids have been examined by [16-
18]. In [19], investigation of overall 
thermodynamics, uniqueness and stability of the 
models for various kind of third grade fluid 
being an unusual instance involving heat balance 
was considered. Analysis relating to energy and 
species transfer in viscoelastic third grade fluids 
have been studied in [20]; nonetheless most of 
the research did not examine the 
thermodynamics aspect in relation to combined 
effects of non-Darcy, heat absorption, chemical 
kinetics and hydromagnetic of the flow system 
in a channel with convective cooling on the 
surfaces. However, the study of reactive fluids is 
very significant in understanding the heat 
transfer behavour of hydrodynamic lubricants in 
engineering systems. 
 
The goal of this research study is to examine the 
third grade chemical reactive hydromagnetic 
fluid flow with heat absorption in Darcy-
forchheimer porous media between two fixed 
wall in the presence of a unvarying magnetic 
field and convective cooling. The mathematical 
model is presented in section 2. In section 3, the 
weighted residual technique is established and 
implemented for the solution process. In section 
4, both the computational and graphical results 
are offered and quantitatively explained based 
on some existing fluid parameters entrenched in 

the flow system.  
  

2.0 Mathematical Formulation of 
the Model 

 
Consider a convective cooling exothermic 
chemical reaction, laminar and incompressible 
third grade fluid flow through a non-Darcy 
porous parallel horizontal channel medium as 
presented in Figure 1. The non-Newtonian 
model is employed to produce the viscoelastic 
effects. The flow is induced by bimolecular 
chemical kinetics and assumed to be driven by 
both the axial pressure gradient and buoyancy 
force. The flow is assumed to be along x -axis 
with y -axis normal to the flow. The plate 
surfaces are subjected to exchange of heat with 
the ambient temperature. To simplify the model 
equations, the Maxwell equations of 
electromagnetism is neglected by supposing that 
the fluid has small electrical conductivity and 
therefore that a constant electromagnetic force is 
subsequently produced. In this case, the density 
variation is approximated according to the 
Boussinesq approximation.  
Following [20,21], and ignoring the the fluid 
reactive viscose consumption, time-dependent 
effects and assumed low magnetic Reynolds 
number. The momentum and energy balance 
equations governing the flow are as follows: 

 

  
Figure 1. Geometry of the flow  
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The boundary conditions imposed takes the 
form:  
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 were u , P , T , 0T , *K , b , ν , ρ , l , β , g  
and α  are respectively the fluid axial velocity, 
fluid pressure, fluid temperature, ambient 
temperature, Permeability of the porous 
medium, Forchheimer parameter of the medium, 
kinematic viscosity, density, channel width, 
expansivity coefficient, gravity and material 
coefficients. The terms k , Q , C , A , R , K , l
, m , E , υ , 0Q  and h  are the thermal 
conductivity, heat of reaction, species 
concentration, constant reaction rate, constant 
universal gas, Boltzmann’s constant, Planck’s 
number, numerical exponent, activation energy, 
vibration frequency, heat absorption coefficient 
and heat transfer coefficient respectively. 
Using the dimensionless quantities eqn. (4) on 
eqns. (1)-(3), 
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 Therefore, the governing equations transforms 
to: 
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 With boundary conditions as follows: 
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dy
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θθ

θθ
−

 

                 (7) 

 
where G , Ha , β , aD , sF , Gr , δ , n , γ , λ  
and Bi  parameter represent the pressure 
gradient, Hartmann number, non-Newtonian, 
Darcy, Forchheimer inertia number, thermal 
Grashof number, Frank-kamenetskii parameter, 
activation energy, viscous heating, heat 
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absorption and Biot number respectively. 
  

3.0 Method of solution 
 

The idea of weighted residual method 
see [22] is to look for an approximate result, in 
the polynomial form to the differential equation 
given as  

 
( )[ ]
[ ] .    =   

 ,        =
RonvA

RdomaintheinfyvD
∂µµ γ                  (8) 

where [ ]vD  represents a differential operator 
relating non-linear or linear spatial derivatives of 
the dependent variables v , f  is the function of 
a known position, [ ]vAµ  denotes the 
approximate number of boundary conditions 
with R  been the domain and R∂  the boundary. 
By assuming an approximation to the solution 
( )yv , an expression of the form  
( ) ( )....,,, 321 naaaaywyv ≈                            (9) 

 which depends on a number of parameters 
naaaa ...,, 321  and is such that for arbitrary value 

sai '  the boundary conditions are satisfied and 
the residual in the differential equation become  
( ) ( )( ) ( ).,=, yfaywLayE ii −                     (10) 

The aim is to minimize the residual ( )ayE ,  to 
zero in some average sense over the domain. 
That is  

( ) .1,2,3,...=    ,0=, nidyWayE iY∫  
           (11) 

 where the number of weight functions iW  is 
exactly the same with the number of unknown 
constants ia  in w . Here, the weighted functions 
are chosen to be Dirac delta functions. That is, 

( ) ( )ii yyyW −δ= , such that the error is zero at 
the chosen nodes iy . That is, integration of 
equation (11) with ( ) ( )ii yyyW −δ=  results in 
( ) 0=, iayE . 

By applying WRM to equations (5) to 
(7), assuming a polynomial with unknown 
coefficients or parameters to be determined later, 
this polynomial is called the trial function which 
are defined as follow:  
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 By imposing the boundary conditions (7) on the 
trial functions (12) as well as substituting the 
trial functions into equations (5) and (6) to 
obtain the residual:  
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Minimizing the residual error to zero at some set 
of collocation points at a regular interval within 
the domain when 

0.5=0.5,=0.5,=0.1,=2,=1,=
0.2,=0.5,=1,=0.5,=0.2,=
δγλ

β
FsGHa

nBimGr

 and 0.5=Da . That is, 
N

kabyk
)(= −

 where 

11,2,...,= −Nk  and 10=1,=0,= Nba . The 
solution are obtained using MAPLE software. 
Hence, the dimensionless momentum and 
energy equations becomes  
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The procedure for weighted residual method is 
repeated for varying values of the embedded 
parameters. 
The other quantities of engineering interest are 
the skin friction (τ) and the wall heat transfer 
rate (Nu) defined as follows:  
 

 =,=
y

Nu
y
u

∂
∂

−
∂
∂ θτ                                                                               (17) 

Table 1: Comparsim of results when ,01.0=β
1=G ,10,1.0, ==== Binm γ

,0Fs ===== HaGrDa δ  
y [28] 

perturbation 
[28] (ADM) Present 

(WRM) 
-1 0.000000 1.7130E-17 0.000000 

-0.75 0.215486 0.215486 0.215486 
-0.5 0.370497 0.370497 0.370497 
-0.25 0.463957 0.463957 0.463956 

0 0.495188 0.495188 0.495188 
0.25 0.463957 0.463957 0.463961 
0.5 0.370497 0.370497 0.370496 
0.75 0.215486 0.215486 0.215486 

1 0.000000 1.7130E-17 0.000000 
 
4.0 Results and Discussion 
 
To get a clear insight of the physical results, it is 
necessary to carry out computational study of 
the problem for the momentum field, energy 
field, the skin friction, and the thermal gradient 
number. 
 
Table 1 shows the comparism of the present 
study to a special case of existing study. The 
existing analysis on the study under diverse 
method of solutions are in good agreement with 
the present technique of solution as presented in 
the table. The numerical results obtained using 
perturbation technique and Adomian 
decomposition method (ADM) in the previous 

study are compared well with the present 
Weighted residual method (WRM) in the special 
case of the problem.  
 
The reaction of varying in values of the thermal 
Grashof number Gr  on the momentum profile 
is shown in Figure 2. It is noticed that a rise in 
the values of relative effect of the thermal 
buoyancy force to the viscous hydrodynamic 
force in the boundary layer causes an increase in 
the velocity distributions. This is due to the fact 
that the fluid flow get warmer as it moves 
through the channel within the boundary layer 
and thereby decreases the flow resistance forces 
that resulted in an enhancement in the fluid flow 
rate. For low buoyancy effects, the maximum 
flow velocity occurs. The energy profiles for 
variation in the numerical exponent m  is 
presented in Figure 3. The heat rises with respect 
to an increase in the values of m  from 0.2 to 
1.0. The temperature measure the average rate of 
the kinetic energy possessed by the fluid 
particles and the higher the vibration of the 
particle, the more the fluid temperature 
increases. Therefore, heat is transported from the 
center line that increases the fluid average 
kinetic energy which leads to a rise in the 
temperature fields.  

 
 

 
Figure 2. Effects of )(G  on Velocity 
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Figure 3. Effects of )(m  on Temperature 

 
Figure 4 depicts the consequence of Biot number 
Bi  on the temperature fields. It is observed 
from the thermal boundary layer condition (7) 
that the higher the Biot number the greater the 
channel convective cooling that resulted in 
corresponding decrease in the surface 
temperatures and the bulk fluid. The entire 
system temperature diminish with a rise in the 
parameter values Bi  as the liquid temperature 
continually modifies to the same temperature 
throughout the system. The reduction in the 
temperature increases the fluid viscosity that in 
turn retards the fluid momentum as the thermal 
boundary layer gets thinner. Figure 5 shows the 
effect of Hartmann number Ha  on the flow 
profiles. It is seen that the velocity fields reduces 
with a rise in the magnetic field parameter Ha . 
The reduction in the profiles is due to an induced 
in the magnetic field in an electrically 
conducting fluid that stimulate a drag force 
known as Lorentz force which resists the fluid 
motion as shown in the figure. As a result of the 
opposition to the fluid motion due to Lorentz 
force, an additional extra work is done that 
changes the thermal energy. 

 
 

 
Figure 4. Effects of )(Bi  on Temperature 

 

 
Figure 5. Effects of )(Ha  on Velocity 

 
Figure 6 demostrates the heat profiles for diverse 
values of the heat absorption parameter λ . The 
result portray that an increase in the values of λ  
causes a decrease in the energy distributions as 
expected. This is because heat is able to leave 
the system as the exothermic chemical reaction 
takes place within the channel thereby reduces 
the thermal boundary layer thickness as a result, 
more heat diffused out of the system and causes 
decrease in the temperature profile. Figure 7 
represents the influence of variations in pressure 
gradient G  on fluid momentum. An increase in 
the parameter values G  results in an increase in 
the fluid velocity i.e. a maximum velocity is 
achieved as the pressure gradient rises which 
mean that the greater the pressure apply on the 
fluid in the channel, the faster the viscoelastic 
liquid flow. 
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Figure 6. Effects of )(λ  on Temperature 

 

 
Figure 7. Effects of )(G  on Velocity 

 
Figure 8 portrays the response of viscoelastic 
parameter β  on the velocity distribution. From 
the figure, it seen that an increase in the non-
Newtonian parameter reduces the fluid flow rate. 
This is due to an increase in the fluid particle 
bonding force that makes the fluid to be more 
viscoelastic. Therefore, the fluid momentum 
distribution in the system diminishes. The 
descending trend is due to the imbalance 
between the convective cooling and nonlinear 
heat at the surfaces as the viscoelastic parameter 
increases. 

 
 

 
Figure 8. Effects of )(β  on Velocity 

 
Figsures 9 and 10 illustrate the effects of the 
Darcy and Forchheimer parameters Da  and Fs  
respectively on the velocity profiles. It is noticed 
from the figures that the velocity profiles 
decrease with an increase in the values of Da  or 
Fs  respectively. This is due to the fact that the 
porosity parameters introduces a linear or 
second order quadratic drag into the fluid in the 
channel by causing a reduction in the flow 
velocity rate within the boundary layer which 
then reduces the velocity distribution.  

 
 

 
Figure 9. Effects of )(Da  on Velocity 
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Figure 10. Effects of )(Fs  on Velocity 

 
Figures 11 represents the reaction of the  
temperature to variational increase in the Frank-
Kamenetskii parameter δ . The figures show 
that an increase in the reaction parameter 
enhances energy rate in the channel. That is, the 
internal heat generation rises as the reacting 
reagents is enhances. The exothermic chemical 
reaction increases the heat transfer rate from the 
combustion region to the cooling surface. 
Furthermore, heat is transfer over the fluid to 
melt the fluid viscosity in other to raise the 
collision of particles; similarly, extra heat is 
generated by the interaction of viscous fluid 
particle that in turn increases the profile. 

 

 
Figure 11. Effects of )(δ  on Temperature 

 
The responses of the skin friction to an increase 
in the parameter values Ha  and G  respectively 
are illustrated in the Figures 12 and 13. It is 
observed that the skin friction initially decreases 

as magnetic field parameter values Ha  
increases but increases as it move far away from 
the boundary surface while an opposite effect is 
noticed when the pressure gradient term G  is 
enhanced. The skin friction rises within the 
range 0.50 ≤≤ y  and reduces within the range 

10.5 ≤≤ y  as the value of G  increases. 
 
 

 
Figure 12. Effects of )(Ha  on Skin friction 

 

 
Figure 13. Effects of )(G  on Skin friction 

 
The thermal gradient effect initially increases 
and later decreases as it move distance away 
from the wall as the Frank-Kamenetskii 
parameter δ  rise as displayed in Figure 14 as a 
result of respective increase and reduction in the 
thermal boundary layers. While a converse 
effect is experienced when the values of the heat 
absorption is increases. From the figure, a early 
reduction in the effect is noticed but later 
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increases as it keep distance from the boundary 
wall in the rang 10.5 ≤≤ y  as presented in 
Figure 15 at 1→y .  

 
Fig. 14. Effects of )(δ  on Nusselt number 

 

 
Figure 15. Effects of )(λ  on Nusselt number 

 
5.0  Conclusion 
 
The influences of heat transfer on third grade 
exothermic chemical reactive fluid flow past a 
non-Darcy porous medium with heat absorption 
have been studied. The formulated equations for 
the flow are non-dimensionalised and solved 
using a weighted residual method (WRM) to get 
the velocity and temperature distribution as well 
as the skin friction and Nusselt number. 
Calculated results are represented graphically to 
show the important of some parameters on the 
flow. It is observed that: 
(i) a rise in Frank-Kamenetskii parameter needs 
to be guide because it contribute significantly to 
the destruction of the system thermo-fluid while 

the Darcy and Forchheimer parameters resist the 
free flow of viscoelastic fluid profile.  
(ii) An increase in heat absorption and Biot 
number retards temperature distribution and 
increases the fluid bonding force that result in 
slow movement of the non-Newtonian liquid. 
(iii) An increase in the viscoelastic of the fluid 
has a significant effects on the flow fluid. 
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