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Abstract: Different gradient descent methods have been introduced in [1] to study a quite general family of varia-
tional problems under affine and isoperimetric constraints. Thus, in [1] gradient descent sequences are created by
using linear, quadratic or cubic approximations to the gradient descent trajectories, and methods are numerically
implemented in a computational platform (which we call XEL-platform). In this work, performance of the above
quadratic gradient descent versions are analyzed under the influence of transversality constraints. We see that,
within this context, transversality conditions can be dealt as isoperimetric constraints and, then, the XEL-platform
can be used to localize minimizers in the spaces of curves determined by the prescribed constraints. Efficiency of
the approach is analyzed by considering two very well known classical problems, the brachystochrone and closed
planar elastica. In the first case, the effect of introducing an isoperimetric constraint is also considered and the
estimated errors are shown to be numerically insignificant. In the second case, minimizers are well known (circles
and eight-figure curves) and we see how the XEL-platform takes very distant curves (from the energy point of
view) within the same homotopy class to the minimizer included in that class. It is also capable to detect local
minimizers which may appear during the gradient descent from the initial curve towards the minimum.
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1 Introduction
In [1] we have developed gradient descent based me-
thods of different type (linear, quadratic and cubic) to
localize minima of an ample family of functionals de-
fined on certain spaces of curves satisfying both affine
and isoperimetric constraints. Numerical implementa-
tion of these methods have been integrated into a com-
putational platform which we call XEL-platform. The
general algorithm introduced in [1] applies equally
well to minimizers with either fixed or free endpoints
and when a finite number of isoperimetric constraints
is allowed. Moreover, solutions provided by our algo-
rithm are tested against well known explicit solutions
of several variational problems have been checked for
measurable errors. Some issues concerning the nu-
merical procedure that might affect the final solution,
such as the choice of the starting curve and the step
tolerance in the isoperimetric constraints, have also
been analyzed in [1].

The main purpose of this note is to show that the
platform can also be used to analyze variational prob-
lems including not only affine and isoperimetric con-
straints but also a generalization of the former named
tranversality conditions.

We first describe the basic formalism which
serves as base for the numerical treatment. Then, we
apply our approach to finding the solutions of two
classical variational problems, the brachystochrone
and planar elastica, under the influence of affine,
isoperimetric and transversality constraints. Treating
transversality conditions as isoperimetric constraints
allows us to use a quadratic type descent method im-
plemented into the XEL-platform [1] to locate en-
ergy minimizers in both above problems which are
reported graphically. The XEL-platform informs of
local minima along the descent evolution which could
be interpreted as a fake global minimizer if the al-
lowed error is not sufficiently small. Whenever it is
possible, results obtained here are numerically com-
pared with known analytical solutions.

1.1 Lagrangians, constraints and higher or-
der descent curves

If H0(I,Rm) = L2(I,Rm) represents the set of
square integrable functions from I to Rm, where I
is an interval [a, b]. we denote by H1(I,Rm) the set
of absolutely continuous maps x : I → Rm such
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that x(1) ∈ H0(I,Rm), where x(1) stands for the
first derivative of the function. Finally, let Hn(I,Rm)
denote the set of maps x : I → Rm such that
x(k) ∈ H1(I,Rm), k ∈ {0, . . . , n − 1}, x(k) being
the k-th derivative of x. Then, Hn(I,Rm) is a Hilbert
space with the following family of inner products [1]

⟨x(t),y(t)⟩n,a,b :=
n−1∑
k=0

⟨η⃗ k
a ∗ x(k)(a),y(k)(a)⟩

+
n−1∑
k=0

⟨η⃗ k
b ∗ x(k)(b),y(k)(b)⟩ (1)

+

∫ b

a
⟨x(n)(t),y(n)(t)⟩dt ,

where ⟨, ⟩ is the standard inner product in Rm,

η⃗ k
a ∗ x(k) (a) =

(
ηka,1x

(k)
1 (a) , . . . , ηka,mx

(k)
m (a)

)
,

η⃗ k
b ∗ x(k) (b) =

(
ηkb,1x

(k)
1 (b) , . . . , ηkb,mx

(k)
m (b)

)
,

ηka,j ≥ 0, ηkb,j ≥ 0 and ηka,j + ηkb,j > 0. These met-
rics are a generalization of metrics considered in [3].
[9], [11]. To simplify the notation, from now on the
above inner product (1) and the space Hn(I,Rm) will
be denoted simply by ⟨ , ⟩n and X = Hn(I,Rm), re-
spectively.

We want to analyze the variational problem asso-
ciated to a certain family of energy functionals F :
X → R defined on X or on suitable subspaces of
curves in X . We consider functionals of the form

F (x) =

∫ b

a
f (t,x (a) ,x (b) ,x (t) , . . . , (2)

. . . ,x(n−1) (a) ,x(n−1) (b) ,x(n−1),x(n)
)
dt ,

where x = (xj(t)) ∈ X , j = 1, . . . ,m and
f : W ⊂ R3nm+m+1 → R is a continuously differ-
entiable functions defined on a sufficiently large do-
mains W . We also assume that f satisfies suitable
additional conditions which guarantee the (Gâteaux)
differentiability of F and the (local) convergence of
the gradient steepest descent method [12].

Usually, one considers F acting on subspaces of
functions x = (x1, · · · , xm) ∈ X satisfying along
with their derivatives x(i) = (x

(i)
1 , · · · , x(i)m ) given

boundary conditions at the endpoints of the interval
(they will be referred to as affine constraints). For in-
stance, for a given i ∈ {0, 1, .. ., n − 1}, fix pi =
(pi1, · · · , pim) and qi = (qi1, · · · , qim) be points in Rm

for i ∈ {0, 1, . . . , n − 1}. Then the following sub-

spaces

X
(i)
a,j =

{
y : [a, b] −→ Rm; y

(i)
j (a) = pij

}
,

X
(i)
b,j =

{
y : [a, b] −→ Rm; y

(i)
j (b) = qij

}
,

X
(i)
a,b,j = X

(i)
a,j ∩X

(i)
b,j = {y : [a, b] −→ Rm;

y
(i)
j (a) = pij , y

(i)
j (b) = qij

}
,

(3)

for j ∈ {1, 2, · · · ,m} are affine subspaces of X . De-
note by X∗ any choice of either X = Hn(I,Rm) or
of some intersection of any finite combination of the
subspaces in (3). Then,X∗ are closed submanifolds of
X that can be considered as Hilbert manifolds whose
corresponding tangent spaces (as submanifolds of X)
at any point x ∈ X∗ will be denoted by TxX∗ = Ω∗.
These tangent spaces are finite intersections of the fol-
lowing linear subspaces for the corresponding {i, j}

Ω
(i)
a,j =

{
v⃗ : [a, b] −→ Rm; v

(i)
j (a) = 0

}
,

Ω
(i)
b,j =

{
v⃗ : [a, b] −→ Rm; v

(i)
j (b) = 0

}
,

Ω
(i)
a,b,j = Ω

(i)
a,j ∩ Ω

(i)
b,j = {v⃗ : [a, b] −→ Rm;

v
(i)
j (a) = v

(i)
j (b) = 0

}
.

(4)

Note that the linear subspaces of X = TxX = Ω
given in (4) do not depend on the point x ∈ X∗ and
that the subspaces X∗ are affine translations in X of
the corresponding tangent spaces Ω∗. So endpoint
(affine) constraints lead to spaces of functions which
are not linear but they are affine spaces instead what
causes minor computational additional difficulties.

In contrast, suppose that we are seeking functions
which not only satisfy affine constraints but also ver-
ify extra restrictions (which will be called isoperimet-
ric restrictions) of the form G (x) = r, r ∈ R where

G (x) =

∫ b

a
g (t,x (a) ,x (b) ,x (t) , . . . , (5)

. . . ,x(n−1) (a) ,x(n−1) (b) ,x(n−1),x(n)
)
dt ,

and g is also a continuously differentiable function
defined on sufficiently large domain of R3nm+m+1.
Now any candidate to be a solution must lie in the
hypersurface XG = G−1 (c) ⊆ X , which is not an
affine subspace. Of course, more that one isoperi-
metric restriction may appear at the same time, and
then any solution to the variational problem must lie
in XG = XG1 ∩ · · · ∩XGh

.
Assuming the above functional (2) acting on X∗,

the gradient of F at x is defined to be the unique
∇∗Fx ∈ Ω∗ that satisfies ⟨∇∗Fx, w⟩n = DFx(w),
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for all w ∈ Ω∗. The existence and uniqueness of
∇∗Fx is guaranteed by the Riesz representation the-
orem. Actually, as it has been proved in [1], for a
functional F : X∗ −→ R of the type (2) (satisfying
suitable conditions), the gradient is given by

∇∗Fx = (∇∗Fx1 , . . . ,∇∗Fxm) ∈ Ω∗ , (6)

with

∇∗Fxj =

∫ t

a

n· · ·
∫ t

a
Ef

xj ,n dt+ Pxj ,2n−1 (t) , (7)

where Ef
xj ,n are defined recursively as

Ef
xj ,0

=
∂f

∂xj
= fxj ,

Ef
xj ,i

= f
x
(i)
j

−
∫ t

a
Ef

xj ,i−1ds (8)

=
i∑

k=0

(−1)i−k
∫ t

a

i−k· · ·
∫ t

a
f
x
(j)
j

ds .

and Pxj ,2n−1 (t) =
∑2n−1

k=0 cj,kt
k are polynomials of

degree 2n− 1, whose coefficients cj,k are fully deter-
mined as the solutions of 2n×2n linear systems which
depend on the concrete choice of the metric ⟨, ⟩n and
the affine boundary constraints.

Notice then that, while an extremal is a zero of the
gradient for any choice of the metric (1), the gradient
itself depend on the metric and, therefore the metric
choice is crucial in our computations.

When F is considered acting on a subspace sat-
isfying additional isoperimetric constraints X∗,G , the
gradient of F is the orthogonal projection of ∇∗Fx

onto the corresponding tangent space and computa-
tion of the gradient requires a more elaborated pro-
cess. To simplify, we first assume that we are given
an isoperimetric restriction G as defined in (5). For
this process to work we need to assume also that G
is regular, that is, ∇∗Gx ̸= 0 at any point x ∈ X∗
where the functional F is defined. Then Ω∗ splits into
the orthogonal sum or the line span by ∇∗Gx and the
tangent spaces Ω∗,x,G = {v ∈ Ω∗; ⟨∇∗Gx,v⟩ = 0}
to the hypersurface X∗,G = {x ∈ X∗, G(x) =
r} ⊂ X∗. The splitting depends on the point x
and on the vector field ∇∗Gx which spans the nor-
mal space to Ω∗,x,G . Denote now by (∇∗Fx)G the or-
thogonal projection of ∇∗Fx onto the tangent space
Ω∗,x,G , ∇∗Fx = (∇∗Fx)G + λ (x)∇∗Gx, for a cer-
tain smooth function λ (x) on X∗, and the condition

DxG
(
(∇∗Fx)G

)
= 0

determines λ (x), which is thus given by

λ (x) =
⟨∇∗Fx,∇∗Gx⟩
⟨∇∗Gx,∇∗Gx⟩

. (9)

In case there are a finite number of isoperimetric
constraints G1,. . . , Gh : X∗ → R. Then, the varia-
tional problem is defined on points x ∈ X∗ satisfy-
ing Gi(x) = ri for i ∈ {1, ..., h}, that is to say, the
submanifold of points where the problem is defined,
X∗,G , and its tangent space, Ω∗,x,G , are, respectively

X∗,G = X∗,G1 ∩ · · · ∩X∗,Gh
,

Ω∗,x,G = Ω∗,x,G1 ∩ · · · ∩ Ω∗,x,Gh
.

Thus, for any x ∈ X∗,G the projected gradient
(∇∗Fx)G can be obtained from the decomposition

∇∗Fx = (∇∗Fx)G + λ1 (x)∇∗G1,x + · · ·
+ λh (x)∇∗Gh,x,

(10)

for certain smooth functions {λi (x) , i = 1, ..., h}.
Acting as previously in the single case, the functions
λi (x) can be obtained by solving a certain linear sys-
tem (for more details see [1]).

On the other hand, one of the most common meth-
ods for minimization of F is the gradient steepest de-
scent method. Basically, the essence of this method is
to analyze the behavior of the sequence {xk, k ∈ N}
of successive approximations for the local minimum
points of F given by the formula

xk+1 = xk + tkhk, k ∈ N ,

where tk is a sequence of positive numbers, the so
called control parameters, which lie in a closed in-
terval of the real line. In order to construct the se-
quence {xk, k ∈ N}, start with an arbitrary point
xo ∈ X∗ (where, of course, ∇∗Fxo ̸= 0), then, as-
suming that xo,x1, . . . ,xk have already been con-
structed, proceed by choosing a sequence hk ∈ Ω∗
such that ⟨∇∗Fxk

,xk⟩ < 0 (usually, hk = −∇∗Fxk
)

and then take xk+1 = xk + tkhk. Assuming at the
moment that only affine constraints are present, the
functional (2) is defined on the space of functions X∗,
an affine subspace of the main spaceX described pre-
viously. To solve the variational problem one seeks a
function x ∈ X∗ that minimizes (2) among curves sat-
isfying the boundary affine constraints. At the compu-
tational side of the problem, the implemented gradient
descent algorithm creates a functional decreasing se-
quence {xν}, ν ∈ N, into the X∗ space itself, in such
a way that

F (x0) > F (x1) > · · · > F (xν) > · · · (11)
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while |∇∗Fxν | → 0, as ν → ∞. To start with, let
xν ∈ X∗ be a function satisfying the boundary con-
straints and take its gradient ∇∗Fxν ∈ Ω∗. The curve
Γν : R −→ X∗ given by

Γν (λ) = xν − λ · ∇∗Fxν (12)

is then well defined. For λ > 0 this curve begins
decreasing the functional, that is, F (Γν (λ)) is a de-
creasing function for λ > 0 small enough. Hence,
choosing an adequate λν > 0 and taking xν+1 =
Γ (λν), we have that F (xν) > F (xν+1) with xν+1

satisfying the same affine boundary constraints as xν .
Continuing in this manner, we obtain the decreasing
sequence (11) and the way the {λν} are chosen deter-
mines the way in which |∇∗Fxν | → 0. Typically, a
recursion termination condition, that is to say, a pre-
determined stopping criterion, is established so that
the algorithm is stopped when it is satisfied. Introduc-
tion of isoperimetric constraints at this point comes
at a price, because now the space of functions X∗,G ,
where the variational problem is defined, is not an
affine subspace of X , and given xν ∈ X∗,G , the curve

Γν (λ) = xν − λ · (∇∗Fxν )G (13)

does not need to lie on X∗,G . Thus, even though for
small enough λ > 0, F (Γν (λ)) is a decreasing func-
tion, the curve Γν (λ) may be moving away from sat-
isfying the isoperimetric constraint. Different proce-
dures have been established in [1] to overcome this
issue.

Although, for simplicity, the above arguments
have been made for the traditional gradient descent
linear model, we have proposed in [1] to explore new
gradient descent curve models, within the scope of
this type of variational problems. In fact, the stan-
dard linear model can be seen as the linear approx-
imation to an ideal curve Γ̃ = Γ̃ (λ) in X∗,G , that
passes through the point Γ̃ (0) = xν with tangent vec-
tor Γ̃ ′ (0) = − (∇∗Fxν )G , descending towards the so-
lution function of the variational problem. That is, the
descent curve (13) would be nothing but

Γν (λ) = Γ̃ (0) + λ · Γ̃ ′ (0) .

So, if there were a way to approximate the second
derivative Γ̃ ′′ (0), it would be reasonable to think that
the new curve

Γ2,ν (λ) = Γ̃ (0) + λ · Γ̃ ′ (0) +
λ2

2
Γ̃ ′′ (0)

will improve the linear approximation. This approach
have been considered in [1] not only for quadratic but
also for cubic approximations of the descent curves.

Finally, a numerical method to locate minimiz-
ers of this general class of variational problems un-
der both affine and isoperimetric constraints is imple-
mented in [1] (see also, www.ikergeometry.org). The
method is suitable for application to the energy func-
tionals described previously, in particular it will be ap-
plicable to actions described in the next sections after
some convenient adjustments.

1.2 Tranversality constraints
Consider the isoperimetric constraint G (x) = r, r ∈
R, introduced in (5) and assume that the function g
has the form

g
(
x (a) ,x (b) , . . . ,x(n−1) (a) ,x(n−1) (b)

)
. (14)

Then, in this case the isoperimetric constraint deter-
mined by G (x) is actually a transversality condition
given by G (x) with

G (x) = (b− a)×

×g
(
x (a) ,x (b) . . . ,x(n−1) (a) ,x(n−1) (b)

)
,

(15)

that should be satisfied by a solution x at its end
points. Thus, these kind of transversality conditions
generalize the affine constraints and can be imple-
mented using the isoperimetric constraint scheme.
That is, they can be treated as isoperimetric con-
straints and what it has been proved in [1] for the latter
applies to this case. In particular, the numerical pro-
cedure implemented in [1] under the XEL-platform to
deal with order 1, 2 and 3 gradient descent methods,
works equally well when dealing with transversality
constraints. This approach is analyzed in the next two
sections for some concrete well known lagrangian en-
ergies. For our analysis we use the quadratic (order 2)
gradient descent method. This method is better suited
for dealing with isoperimetric constraints than the lin-
ear one, being, at the same time, much less computa-
tional demanding that the cubic (order 3) method.

2 Brachystochrone

We first apply the XEL procedure to a version of the
brachystochrone problem. As originally posed by Jo-
hann Bernoulli in 1696, the brachystochrone problem
consists in finding the curve joining two given points
(not vertically aligned) along which a bead of given
mass falls under the influence of gravity in the min-
imum time. Newton, Leibniz, L’Hospital, and Jakob
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and Johann Bernoulli showed that the solution is a cy-
cloid, the curve traced out by a point on the rim of a
rolling circle, [4]. Solutions of the classical Brachis-
tochrone problem typically use techniques of calculus
of variations, [6]. Here it will be solved by consider-
ing affine, isoperimetric and transversality constraints.

The shape of the wire will be given by the graph
of a continuously differentiable function y : I =
[0, 1] → R , y ∈ H1(I,Rm), so we may think of
the curve x (t) = (x (t) , y (t)) as a frictionless wire
in a vertical plane (x, y), with positive x-axis extend-
ing to the right and negative function y-axis extending
downwards.

The descent time of a particle, assumed with
an initial velocity v0 ̸= 0, along a curve
(x (t) , y (t)) joining the origin (0, 0) and a point
(x (1) , y (1)) , y (1) < 0, is given by

T (x) : =
1√
2G

∫ 1

0

√
(x′)2 + (y′)2√

v2o/(2G)− y (t)
dt,

G being the gravitational force. Thus, the shape of the
wire will be obtained by minimizing the above func-
tional T subject to certain boundary and transversal-
ity conditions. These can be complemented also with
isoperimetric constraints that, in our case will come
by prescribing the length of the curve

L (x) : =

∫ 1

0

√
(x′)2 + (y′)2dt .

Putting a penalty on the length of the variation curves
can be interpreted, by using a Lagrange multiplier ar-
gument, in terms of the minimization of the extended
functional T − λL. On the other hand, as pointed out
in section 1.2, the isoperimetric constraints scheme
introduced in [1] can be used to implement transver-
sality conditions to be satisfied by the endpoints of
a brachystochrone. For instance, suppose we want
to obtain solutions to the brachystochrone problem
for particles traveling from (0, 0) to a point x (1) =
(x (1) , y (1)) freely located on a suitable circumfer-
ence, say, (x− x0)

2 + (y − y0)
2 = r2. Then, we

consider the Time and Length functionals, T and L
respectively, acting on the space of functions

X∗ =
{
x = (x, y) : [0, 1] −→ R2;

x (0) = 0, y (0) = 0} ,

whose tangent space is also Ω∗ = X∗.
The new transversality restriction specified by im-

posing the right endpoint to lie on a circle may be
switched on by invoking another isoperimetric con-
straint, G2 (x) = 0, obtained by setting

g = (x (1)− x0)
2 + (y (1)− y0)

2 − r2,

in (15), (x0, y0) and r being the circle center and ra-
dius, respectively.

Figure 1 shows the XEL output corresponding to
the evolution under the gradient flow of a given initial
curve (in black) to the brachistochrone cuve (in blue)
with free right endpoint on a circle, and assuming both
no length contraint on the evolution curves (figure 1a)
and an evolution by curves of the same length (figure
1b). In both cases the brachystochrone solution goes
from the point(0, 0) to the circle

(x− 0.85)2 + (y + 1.15)2 = 0.045 .

The first curve of both evolutions is the same:

x0 (t) =

(
x0 (t) = t, y0 (t) = −t2 sin2

(
3

2
πt

))
.

Moreover, table 1 shows the corresponding nu-
merical time in seconds along the solutions and the
accumulated errors along both descents if non affine
constraints are considered. A little explanation on
what is meant by this is the following. Curves along
the evolution show an small deviation from fulfilling
the transversalilty condition (treated as isoperimet-
ric constraint here), i.e., the right endpoint is slightly
apart from the given circle. What the error row of ta-
ble 1 contains is the accumulated error of all curves
appearing in the evolution. As it is clear, the error is
not numerically relevant.

T 0.36756074 0.46297652

error 4.0 · 10−8 6.0 · 10−7

Table 1

To end this section a similar experiment is repeated
when the left endpoint of the brachistochrone is (0, 0)
while its right endpoint is required to lye freely on a
parable y = m−n (x− xo)

2. Again both cases, min-
imizers among arbitrary length curves and minimizers
when there is a length penalty on the variation curves
are considered.

Figure 2 shows the brachistochrone curve (in
blue) with free right endpoint on a certain parable
assuming both no length constraint (figure 2a) and a
length penalty for the evolution curves (figure 2b).

In this particular instance the brachystochrone so-
lution goes from the point (0, 0) to the parable

y = −0.96− 4 (x− 0.9)2 .
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1.210.80.60.40.20
0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4

-1.6

(a) With no penalty on the length of variation curves

1.210.80.60.40.20
0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4

-1.6

(b) With length penalty

Figure 1: Brachystochrone from (0, 0) to a circle with and
without length penalty.

1.41.210.80.60.40.20
0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4

-1.6

-1.8

(a) With no penalty on the length of variation curves

1.41.210.80.60.40.20
0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4

-1.6

-1.8

(b) With length penalty

Figure 2: Brachystochrone from (0, 0) to a parable with
and without length penalty.
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Also, the same curve as before x0

x0 (t) =

(
x0 (t) = t, y0 (t) = −t2 sin2

(
3

2
πt

))
has been used in both cases as initial step to initiate
the descent method. Once more, the corresponding
numerical time in seconds and the accumulated errors
along the descents (with the same meaning as that of
table 1) if non affine constraints are present have been
collected in table 2.

T 0.38226595 0.45807026

error 8.0 · 10−8 8.0 · 10−7

Table 2

3 Closed Elasticae in R2

Consider now another classical variational problem,
the problem of minimizing the bending energy

F (γ) =

∫
γ
κ2 (s) ds , (16)

for planar curves γ joining two given points p =
(p1, p2) and q = (q1, q2) in R2, κ and s being the
curvature and arc-length parameter of γ, respectively.
In a letter to L. Euler in 1742, D. Bernoulli proposed
minimizers of (16) as models for the elastic rods.
Thus, curves minimizing (or more generally, critical
curves of) (16) are called elastic curves or, simply,
elasticae. Planar elastic curves were classified by L.
Euler [5] in 1743 and since then, the variational prob-
lem associated to elastic curves, under different con-
straints and boundary conditions, has attracted the in-
terest of many mathematicians [7]. In particular, their
curvatures can be computed explicitly in terms of the
Jacobi elliptic functions [8]. Then, there exist elasti-
cae for which the curvature is always positive, called
orbitlike or non-inflectional elasticae, and elasticae
whose curvature changes sign, called wavelike or in-
flectional elasticae (for more details, see [8], [10]).

If we parametrize a plane curve by using the an-
gle which makes with a fixed direction, θ (s), then the
curvature is nothing but κ (s) = θ ′ (s) and the bend-
ing energy (16) can be written as

F (γ) = F (θ) =

∫
γ

(
θ′ (s)

)2
ds . (17)

Hence, up to plane congruences, the arc-length Carte-
sian parametrization of the curve γ is then obtained

by

γ (s) =

(∫
cos θ (s) ,

∫
sin θ (s)

)
, (18)

so the functionals defined by

G1 (γ) = G1 (θ) =

∫
γ
cos θ (s) ds, (19)

G2 (γ) = G2 (θ) =

∫
γ
sin θ (s) ds. (20)

will give us the isoperimetric constraints needed to en-
sure that the curves actually join the two given points
p and q. Thus, the study of the variational problem as-
sociated to (16) is restricted to curves γ whose turning
angle function θ (s) satisfies the equations

G1 (θ) = q1 − p1 and G2 (θ) = q2 − p2. (21)

Angular constraints at the endpoints may be im-
posed by setting angles ψ0 = ∠ (−→pq, v⃗) and ψ1 =
∠ (−→pq, w⃗) at the points p = γ (0) and q = γ (L),
respectively, in the above arc-length parametrization
(18) of plane curves. These constraints are affine
(boundary) conditions what determine both the affine
space X∗ and the vector space Ω∗ where the varia-
tional problem is to be defined. According to section
1, we have that if the angles ψ0 and ψ1 have to remain
fixed at endpoints the corresponding spaces are given
by

X∗ = {θ : [0, L] −→ R; θ (0) = ψ0 ,

θ (L) = ψ1mod(2π)} ,

Ω∗ =
{
ϕ⃗ : [0, L] −→ R; ϕ⃗ (0) = 0, ϕ⃗ (L) = 0

}
.

(22)

According to the notation introduced in section 1
the spaces X∗ and the vector space Ω∗ would corre-
spond to X(i)

a,b,j , Ω
(i)
a,b,j , for a = 0, b = L, i = 0 and

j = 1. The metric (1) defined on vector spaces Ω∗ is
given by⟨

ϕ⃗, φ⃗
⟩
= ϕ⃗ (0) · φ⃗ (0) +

∫ L

0
ϕ⃗ ′ · φ⃗ ′ ds . (23)

Let us focus now on the problem of closed elas-
tic curves. Closed elastica can be considered an spe-
cial case of elastica with clamped points, that is, the
variational problem is defined on the space of curves
traveling from p to q, leaving p with direction v⃗ and
arriving at q with direction w⃗. On the other hand, it is
well known [8], that the only planar closed elasticae
are the figure-eight shaped wavelike elastica and the
circle orbitlike elastica.
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To work with XEL on closed elastic curves, we
set p = q and w⃗ = v⃗ (that is ψ0 = ψ1), so,
in order to guarantee that all curves during the gra-
dient descent are closed, the experiments must take
place in the space of curves parametrized by func-
tions θ = θ (s) satisfying the isoperimetric constraints
G1 (θ) = G2 (θ) = 0, (G1,G2 are given in (21)), and
the transversality condition

θ (1)− θ (0) =

∫ 1

0
κ (s) ds = 2πk,

for k ∈ Z. Here, k = 0 stands for wavelike case while
k ̸= 0 implies orbitlike case.

In addition, we are going to check also that dif-
ferent evolutions created from far apart initial curves
(meaning by this that they have very different elas-
tic energy) of the same homotopy class, arrive to the
same solution curve, as expected.

In fact, consider the following pairs of functions
θ0 (s) = θ̃ (s) and θ0 (s) = θ̂ (s) as initial curves to
feed the gradient flow descent evolutions seeking for
the figure-eight shaped elastica

θ̃ (s) = η sin (4πs)− 5 cos (4πs) ,

θ̂ (s) = η sin (64πs)− 5 cos (64πs) ,
(24)

where s ∈ [0, 1], θ̃ (0) = θ̃ (1), θ̂ (0) = θ̂ (1), and the
parameter η = 2.339073... has been computed to en-
sure that both curves satisfy the isoperimetric bound-
ary conditions.

Step by step evolution of the initial curve θ0 = θ̃ (s)
is analyzed graphically in figure 3. The other initial
function θ̂ (s) define a curve so knotty and its graph-
ical evolution is so dense and we are not to make a
clear picture of it. In spite of that, our numerical ex-
periments show that in both cases the algorithm takes
the two initial curves of (24) to the same global min-
imum: the eight figure elastica. Figure 3 shows the
gradient flow evolution with initial curve θ0 = θ̃ (s)
(in black) to the eight figure elastica (in blue). The
procedure stops once prescribed stopping conditions
are fulfilled.

In this case, we see from to table 3 that, even
though the bending energy of θ̂ (s) is more than two
hundred times greater than that of θ̃, the energies
of the two solution curves reached by the algorithm
taking them, respectively, as initial curves in the de-
scent, are separated by less than 1.20 · 10−7. On the
other hand, in [2] we explicitly determine the cur-
vature κ (s) of the analytical wavelike elastic closed
curve (figure eight curve) and obtain its elastic energy,
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(a) The curve in red is an intermediate local minimums

minimum
global

minimum
local

∞∞

steps

|∇F| Quadratic gradient descent

20000150001000050000

80

70

60

50

40

30

20

10

0

-10

(b) Schematic picture of the quadratic gradient de-
scent evolution shown in (a). The black curve plots
the gradient norm while the algorithm decreases the
elastic energy (red curve) searching for its minimum.

Figure 3: Evolution of θ0 = θ̃ curve (in black) under the
gradient descent.

which is to be considered as reference value. Then, we
see that the relative deviations between the numerical
approximations energies and this value of reference
are less than 5.00 · 10−7. Taking into account also
that, in both cases, once the descents are completed
the deviations in the isoperimetric constraints are less
that 6.00 · 10−7, we see that the differences are not
numerically relevant.

Moreover, along the curve evolution starting at θ̃
the descent algorithm reports on the existence of an
intermediate local minimum (colored in red in figure
3a). That is, in this case the first candidate for mini-
mizer the algorithm reports on is, in fact, a local min-
imum which slows down the energy decreasing rate
for a while. Then, the energy decreasing rate speeds
up again until the final solution is reached. The rel-
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ative deviation of the final energy with respect to the
reference value is also less than 3.00 ·10−7. This situ-
ation is outlined in figure 3b where the horizontal axis
indicates the number of steps during the descending
sequence. If we had chosen the cubic gradient descent
evolution [1] instead of the quadratic one, the outlined
picture would be roughly the same, but only a 20% of
the number of steps would have been needed.

As for the circle case, we take as initial curves
θ̃ (s) and θ̂ (s) the functions given by

θ̃ (s) = 2πs+ cos (12πs) + 8 sin (12πs) ,

θ̂ (s) = 2πs+ 12 cos (12πs) + 24 sin (24πs) ,
(25)

where s ∈ [0, 1] and θ̃ (1)− θ̃ (0) = 2π.
Again, step by step evolutions of the initial curve

θ0 = θ̃ (s) is analyzed graphically in figure 4. Once
more, the initial function θ̂ (s) defines an extremely
knotty curve so that we are not able to make a clear
picture of its graphical evolution. Nevertheless, it can
be seen that in both cases the algorithm takes the two
initial curves of (25) to the global minimum in this
case: the circular elastica. Figure 2b shows the evo-
lution of θ̃ (in black) towards to the global minimum:
the circular elastica (in blue). The procedure stops
once prescribed stopping conditions are fulfilled.

According to table 4 we see that in case of the
circular elastica, the consequences are quite similar
to those outlined above for the eight-figure elastica.
For instance, we observe that along the main descent
with prescribed affine constraints, the energies of the
solution curves reached by the algorithm and the en-
ergy considered as reference value are separated by
less than 6.00 · 10−11. However, this time no interme-
diate local minimum shows up.

Finally, the above two evolution problems end-
ing at the eight figure and circle, respectively, can be
considered also under other affine constraints. For in-
stance, we may assume that at least one of the tangent
vectors (angles) at the endpoints is unprescribed. Due
to the symmetry of the problem, the solution comes
out immediately: in all cases, it would be the half
of the figure-eight shaped elastica, while its energy
would be that of a quarter of the figure-eight elastica
bending energy. These facts are reflected in columns
F (θlast,1) and F (θlast,2) of tables 3 and 4, respec-
tively.
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(a) Initial curve θ̃ (s) given in (25) for a gradient de-
scent looking for the circle.
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(b) Initial curve θ̂ (s) given in (25).
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(c) Evolution using θ̃ as first step

Figure 4: The second curve is so curly that its evolution is
too dense to take a clear picture, but it evolves toward the
circle too. The numerical values are collected in table 4
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θ0 F (θ0) F (θlast) F (θmid)

θ̂ 2406.0 112.439651 449.758531

θ̃ 615914 112.439597 -
1-1 ref. 112.439610 449.758438

θ0 F (θlast,1) F (θlast,2) δG
θ̂ 28.109902 28.109902 4.00 · 10−8

θ̃ 28.109916 28.109906 6.00 · 10−7

1-1 ref. 28.109902 28.109902

Table 3: Numerical summary of the experiments on
the eight-shaped elasticae. F (θ0) stands for the bend-
ing energy of the initial curves in the descent; F (θlast),
F (θlast,1) and F (θlast,2) are the bending energies of the
final curves for the three cases on affine boundary con-
straints; F (θmid) is the energy of the intermediate local
minima (if any) that the descents report; and δG is the
highest accumulated relative deviations of the isoperimet-
ric constraints in each descent. The last row contains the
reference values obtained in table 2 of [2].

θ0 F (θ0) F (θlast) F (θlast,1)

θ̂ 46229 39.478418 28.109898

θ̃ 1739616 39.478418 28.109897
1-1 ref. 4π2 = 39.478417604... 28.109902

θ0 F (θlast,2) δG -
θ̂ 28.109898 1.00 · 10−7 -
θ̃ 28.109896 2.20 · 10−6 -

1-1 ref. 28.109902 - -

Table 4: Summary of the experiments on the circular elas-
tica with the same meanings for column headers as in table
3.
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