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Abstract: - This Community detection is one of the most interesting problems in the study of social networks. 
Most of the recent studies focused on how to design algorithms to find the communities without knowing the 
number of communities in advance. In this paper, we define the k-path graph, and generalize Newman’s 
modularity as weighted modularity. It is also highlight the relationship between eigenvalues and the number of 
communities of social networks in this paper.  
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1 Introduction 
The community structure in social networks has 
been studied for almost one and half century since 
the “six-degrees of separation” phenomenon was 
founded [1,2]. Communities in networks usually 
were defined as a sub-graph in which links are more 
dense and the rest are comparatively sparse [3,4]. 
The studies of community detection are potentially 
useful in real networks because nodes in a 
community are more likely to have same properties 
and all these communities may be functional groups. 
The methods for detecting community are similar to 
the graph partition problem in graph theory [5,6]. 
For example, in parallel computing, the pattern of 
required communications can be represented as a  
graph or network in which the nodes represent 
processes and edges are pairs of processes that need 
to communicate. The problem is to allocate the 
processes to processors in such a way as roughly to 
balance the load on each processor, while at the 
same time minimizing the number of edges that run 
between processors, so that the amount of inter 
processor communication is maximized. In general, 
finding an exact solution to this kind of partition 
problem is NP-complete, so it is prohibitively 
difficult to solve it for large graphs, but a wide 
variety of heuristic algorithms have been developed 
that give acceptable good solutions in many cases, 
the best known is perhaps the Kernighan-Lin 
algorithm which has the complexity 3( )O n  on 
sparse graphs [7]. With the more research efforts, 
the detection for communities has been extended to 
many fields such as Internet, biology networks, 
epidemic theory, social networks, etc. 

Many heuristic algorithms on c ommunity 
detection had been proposed recently. One of a 
classical partition is by eigenvectors of graph matrix 
[8]. Newman presented a fast algorithm, which uses 
maximal modularity Q to determine the 
communities [9,10]. However the computational 
complexity of the maximum modularity Q  is 
proved to be NP-complete [11]. They focus on the 
accuracy of the algorithms without knowing the 
number of communities in advance which makes the 
solutions uncertain if we do not  know the real 
number of communities in networks. 

In this article, we determine the number of 
communities based on the eigenvalues of the 
probability matrix of social networks, and obtain an 
estimate of this value regardless of binary or not. 
This paper is formed with the following sections: in 
Section 1, w e define a k -path graph of a given 
network, and present a definition to finding k  -path 
matrix. In Section 2, w e explore the relationship 
between the eigenvalues and modularity, and then 
calculate the modularity of the social networks with 
eigenvalues. Finally we give the conclusion and 
future research problem. 

 
 

2 k -path weight graphs 
We define a matrix consisting of all paths between 
any two nodes, and then outline an approximation 
algorithm to determine the number of communities 
in a social network. We r epresent the agents by 
nodes in network and the influence between two 
nodes by a weight on t he link. In the following, a 
network is denoted by G  with n -node set V , and 
an m -link set E  and G  is also an undirected 
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connected graph without loops nor multi-edges. (If 
G  is disconnected, we consider each of connected 
components. We also view the multi-edges as 
weights on a single link). The adjacency matrix A  
of G  is a n n×  zero-one matrix denoted by 

( )ij n nA a ×= , where 1ija = , if there is a link 

between nodes i  and j ; 0ija = , otherwise. The 
adjacency matrix of an undirected graph is 
symmetric. If the network is weighted, we denote 
the weight of each link by ijw and the weight matrix 

of G  by ( )ij n nW w ×= . Without loss of generality, 
we write W as the weight matrix regardless G  is 
weighted or not. 

For a given positive integer k , denote a path 
from nodes i  to j  by a k -path if it is a walk with 

1k +  nodes and without cycle in it. The matrix of 
k -path graph ( )k k

ijS s=  is found as follows: 

If 0k = , 0 1iis =  and 0ijs =  for all i j=/ . That 

is, 0S  is the identity matrix; 
If 1k = , 1S W= . That is, 1S  is the weight 

matrix of G ; 
For all 2k ≥ , 

1

1
1 s s

l l

kk
ij k i is l

s w
−=

= ∑ ∑ where s is 

the number of edge-disjoint k-paths  from nodes i  
to j . The value k

ijs  can be viewed as the weight of 
an edge connecting i  and j . Hence, we can define 
a k -path weight graph kG on G . 

Definition of k -path weight graph: For a fixed 
k , let 

1
( ) k l

ij ijl
w k s

=
=∑ , for all l -paths join nodes 

i  and j , where 1 l k≤ ≤ . We call ( , )k kG V E=  a 
k -path weight graph on G , where kij E∈  if there 
are paths with length no more than k  from i  to j  
in G , denote the weight matrix of kG  by 

( ) ( ( ))ij n nW k w k ×= . If 1k n= − , 1nG −  is a 
complete graph.  
 
 

3  Modularity on kG  
The modularity is defined on binary graphs first and 
it has many generalization (see [3,9,12]). However, 
the values of all the generalized modularity are 
obtained by calculating the direct relations of the 
nodes, that is, they considered the edges weights 
rather than the indirectly weights. In fact, there is 

much useful information about the structure of the 
networks stored in the indirect relations. For 
example, in many society relationships, such as the 
economic systems, agents in system influence one to 
another directly or indirectly: a rush to buy or sell a 
particular asset can prompt the other to do the same. 
In most probability, the agents are influenced by 
their neighbors and the neighbors’ neighbors who 
joint by some relationship. All the buyers and sellers 
form an inseparable structure, a community, and 
have very little interactions with the outside. 
Therefore, we use the modularity to measure the 
direct and indirect information of path weight graph 
and to detect the number of communities in the 
networkG . 

The modularity *Q of k-path weight graph is 
much similar to Newman’s, we take the matrix 

( )W k of k -path weight graph to replace modular 
matrix in Newman’s definition of modularity, 
because the expected matrix in Newman’s is not a 
fixed matrix in calculating modularity. Here, we 
define the objective function *Q which maximize 
the weight of inter communities of k -path weight 
graph. 

We study k -path weight graph ( , )k kG V E=
with matrix ( )W k , and ( , ) ki j E∈ , ( )ijw k is defined 
in k -path weight graph in the previous section. 
Assume that there are ( / 2)q q n≤ non-overlapping 
communities inG , denoted by 1 2{ , , }qC C C=  , 

where i iC V∪ = . 
Case 1. 2q =   
If there are exactly two communities in G , 

namely 1V  and 2V . 
If G  is a binary graph and 1k = , the k -path 

weight graph kG  is the graph G . So, *Q  is 
Newman's modularity. 

If G  is a weighted graph or 2k ≥ , define the 
objective function *Q  to be the maximum of the 
actual weights of inner communities, that is, 

1 2 1 2

*
, 1 2max , where ( , )or( , ).V V V V V ijQ w i j V i j V∪ = ∩ =∅= ∈ ∈∑    

On the other hand, maximizing the weights of inner 
communities means to minimize the inter weights of 
communities since the total actual edges weights of 
networks 

( , ) iji j E
w

∈∑ is a constant. That is why we 

do not take the expected matrix in Newman’s 
modularity into the objective function. 
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To calculate *Q , we define an indictor vector r  
on V , 1 2( , , , )nr r r=r  , where 1ir =  if node 

1i V∈ ;  1ir = −  if 2i V∈ . Then 1i jr r =  if ,i j are in 

the same group; 1i jr r = −  if they are in different 

groups. That is, 1 2i jr r + =  if ,i j are in the same 

group; 1 0i jr r + =  otherwise.  Hence, *Q  is 

 
1 2

1 2

*

( , )or( , )

( , )or( , )

1 max ( 1)
2

max

max ( ) .

ij i j
i j V i j V

ij i j
i j V i j V

T

Q w rr

w rr n

W kr r

∈ ∈

∈ ∈

= +

=

=

∑

∑  (1)  

  (1)  
We denote the eigenvector of ( )W k  corresponding 
to the eigenvalue iβ  by iu , and ii

b=∑ ir u  as the 
linear normalization of all the eigenvectors of 

( )W k . Hence T
ib = iu r . Then Eq.(1) is equivalent 

to 

* 2max .i i
i

Q b β= ∑                             (2) 

The optimal value of *Q  in Eq. 2 relies not only 
on the positive eigenvalues iβ  as well as the values 
of all ib . Assume the eigenvalues are in decreasing 
order 1 2 nβ β β≥ ≥ ≥ , then largest eigenvalue 1β  
of ( )W k  is the possible solution such that the Eq. 2 
achieves the optimal solution. Let 

(1) (1) (1)
1 2( , , , )T

nu u u=1u   be the eigenvector 
corresponding to the largest eigenvalue 1β . Then 
the indictor vector r  is obtained by 1ir =  if 

(1) 0iu ≥ ; 1ir = −  if (1) 0iu < . Hence the value of 

objective function is (1) 2
11

( | |)n
ii

u β
=∑ , 

corresponding to the eigenvalue 1β . And the two 

communities have (1)|{ | 0} |ii u ≥  nodes and 
(1)|{ | 0} |in i u− ≥  nodes respectively. 

Case 2. 2q >   
The objective function *Q  for two communities 

in Case 1 can be naturally generalized to the case of 
more communities. We assume that there are q  
groups in the network and define an indictor matrix 

( , , )= 1 qR r r  with 1 2( , , , )T
i i inr r r=ir   and 

1ijr = , if node i  is in the community j ; 0ijr = , 
otherwise. Since all the communities are non-
overlapping, each pair of columns are mutually 
orthogonal and total number of nodes is n , hence 

( )Tr n=TR R . Applying the similar analysis with 
the equations Eq. 1 and Eq. 2, we have 

* 2

1 1
,max ( )

qn
T

j
j s

Q j su r β
= =

= ∑∑                               (3) 

where ju  are eigenvectors of matrix ( )W k  

corresponding to eigenvalues jβ  ( 1, 2 ,j q= … ). 
Without loss of generality, assume that all the 
positive eigenvalues are in decreasing order 

1 2 cβ β β≥ ≥ ≥ . Clearly, 1q c≤ + , since the 

objective is to maximize *Q  in Eq. 3 with c  
positive eigenvalues corresponding to c  parts from 
V  and the remaining is the ( 1)c + th part. In order 
to make *Q  as large as possible, we choose the first 
q  largest eigenvalues from all the positive 

eigenvalues. Then 2
1 1

( )n q T
jj s

β
= =∑ ∑ j su r  is the 

maximum value in the Eq. 3. However, there are q  
indictor vectors ir  ( 2q > ), it is not as easy as how 
we choose the components of indictor vector in 
Case 1, and may not be able to choose as many ones 
as in the indictor vectors corresponding to the first 
q  largest eigenvalues and eigenvectors. By the Eq. 
2 and Eq. 3, t he maximum value of the objective 
function is closely related to all the positive 
eigenvalues and the eigenvectors of matrix ( )W k  of 

kG . Because the exact numbers of nodes in each 
community are unknown, and there doesn't exist a 
method to choose the indictor vectors in R , we 
have to rely on the only known information, matrix 

( )W k , to determine the exact number of 
communities. Therefore, we need other means to 
estimate the number of communities in kG .  

In the worst case, the computation 
complexity of the weight modularity is 2(n q)O , 
where n and q are the size of nodes and 
communities respectively. 

4 Conclusion 
 In this article, we investigate the number of 
communities in spares social networks. Unlike the 
other methods focusing on the community detection 
without knowledge of the number of communities, 
we study the eigenvalues of the k -path graph matrix, 
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and reveal the relationship between the eigenvalues 
and the number of communities in graph.   

In this topic, we do not consider the network 
structure changes with time evolves, the number of 
communities based on the steady state of the 
network would bias the real number of communities 
without information of the evolution of the networks. 
It will be more interesting to characterize the 
relationship between eigenvalues and the evolving 
communities’ structure. 
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