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Abstract: A new efficient algorithm for linear separable problem of synthesis of communication 
network, titled "method of generalized potentials", has been developed and validated. It is close to the well-
known method of potentials for solving the classical transportation problem. The proposed algorithm has been 
developed for the Gale problem on demand and supply. The finiteness of the algorithm and the inability of the 
looping situations have been proved. 
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1 Introduction 

The classical method of potentials for the 
standard transport problem (STP) is well known. In 
its essence, it is a m odification of the simplex 
method of solving the linear programming problem 
with reference to the STP. It allows, moving from 
some feasible basic solution, to obtain the optimal 
solution for a finite number of iterations [1]. There 
is a modification of this method for transport 
problems with arc capacities limitations [2]. In this 
paper, we consider the generalization of the 
potential method for the problem of optimal linear 
synthesis of a communication network in the 
problem of supply and demand. Initially, this 
method is presented and justified for a deterministic 
problem. Further, its application to a problem with 
undefined factors is considered. 

We consider the problem of network 
synthesis for the Gale model on supply and demand 
[3]. Let us consider a given oriented graph with 
nodes from the set { }η,...,1: == iipP  and arcs j 

from the set G. We shall also consider some set of 
nodes А (subset of Р), { }niipA ,...,1: == , which 

we call nodes of production. Consider also a set of 
nodes C (subset of Р), { }ηη ,...,1: +−== miipC , which we will call 

nodes of consumption. Let us the remaining nodes 
form a set { }mniipB −+== η,...,1: , which we 

will call the intermediate nodes. For each node 
Aip ∈  corresponds to some nonnegative 

production capacity function 0)( ≥xiϕ , Xx∈ , 

where X – the set of feasible distributions of 
resources. Furthermore, non-negative functions 

0)( ≥xjϕ , Gj∈ , are known, which defines the 

arcs capacities, depending also on the distribution 
of resources [2]. Thus, resources are allocated as 
between nodes of production, thereby determining 
the production capacity and between the arcs of the 
network, determining their capacities. For nodes of 
product consumption demands - dj are known. 
Further for simplification of the records we write 

CiBiAi ∈∈∈ ,,  instead of 
CipBipAip ∈∈∈ ,,  (Fig. 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The Gale model on supply and demand 
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It is known, that model with several nodes 
of production and limited stocks of product can be 
reduced to the problem of one node of production 
with an unlimited supply of product (Fig. 2). One 
new node is added - a production point with an 
unlimited supply of the product, which is linked by 
arcs to each of the production nodes. Functions of 
arc capacity of added arcs are functions of 
production capacities of the corresponding nodes.. 
The nodes of set A (nodes of production) become 
intermediate nodes. It is easy to show the 
equivalence of both problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Gale model modification. 
 

The task is to consider possible 
distributions of resources and associated product 
flow, which due to product offerings in the nodes 
of production, satisfy the product demand in the 
nodes of consumption. 
 
2 Problem Formulation 

Mathematical formulation of the problem is 
the following: 

,)(
,

min ∑
Γ∈j jx

yx
                   (1) 

B,A i,
D(i)j jy

C(i)j jy ∪∈=∑
∈

−∑
∈

0  

∑
∈

∈=∑
∈

−
D(i)j

C,i,  id
C(i)j jyjy  

,, Γ∈≤− jjbjxjajy  

Γ.j,jy,jx ∈≥≥ 00  

Where .,,0,0 Γ∈≥> jjbja  

Problem (1) is a linear programming 
problem. Here we are considering the dual 
problem; 

∑
Γ∈

−∑
∈ j jbjCi idi )(max

,
µλ

µλ
                  (2) 

Γ∈≥− jjaj ,01 µ , 

Γ∈≥+− jjajjnjn ,0)(2)(1
µλλ , 

Γ∈≥ jj ,0µ . 

For problems (1) and (2) the following 
theorem can be proved. It is based on a pplying 
well-known theorems of linear programming 
duality theory. 
Theorem 1. For optimality of the vector (x,y) of 
problem (1) is necessary and sufficient the 
existence of a vector ),( µλ satisfying the 
constraints of problem (2) and the associated vector 
(x,y) by the following expressions (the 
complementary slackness conditions): 

Γj,jx,when jajμ ∈>=− 001 ,      (3) 

,Γj,jy when

,jajμ(j)nλ(j)nλ

∈>

=+−

0

0
21 , 

Γjjbjxjajy when,jμ ∈<−= 0

 The essence of the following algorithm 
consists of a sequential viewing of the extreme-
point solutions (1), the values of functional for 
which monotonically decreasing. For a finite 
number of steps extreme-point solution of problem 
(1) is founded, for which there exists a vector 

),( µλ  satisfying the constraints of problem (2) 
and ratios (3). According to the above theorem 1 
the optimality of this solution follows.  
 
3 Problem Solution 

The description of the algorithm is 
presenting bellow. We introduce two definitions. 
Definition 1. We call an arc j θ -arc, if 

0,0 =>= jxjbjy . 

Definition 2. We call an arc j 0-arc, if 0=jy . 

The restrictions of the problem (1) can be 
reduced to an equivalent system of equalities 
specifying limits on the capacities of the arcs as 

jbjzjxjajy =+− and adding the constraint 
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.,0 Γ∈≥ jjz Now we can make the 

following statement. 
Statement 1. The vector (x,y,z) is a 

extreme-point solution of problem (1) if, and only 
if, when, after removal of all θ - arcs in the graph 
no cycle of arcs with non-zero flows remains. 

Let us prove Statement 1. It is known, that 
the vector (x,y,z) is extreme-point solution if and 
only if the columns corresponding to the nonzero 
components form a linearly independent system of 
vectors. The matrix structure of the constraints in 
the problem (1) is shown in Fig. 3. Let us denote 
the matrix of incidence graph as IN.  

The arc j is an θ -arc if and only if 
0,0 == jxjz . Therefore, the columns 

corresponding to these variables are not included in 
the system. Then it is easy to see that in any 
combination of null vectors (representing zero 
vector) the column which corresponds to variable 
yj, enters with a zero coefficient. 

 
          y                            x                             z 
 

IN 
 

 
0 

 
0 

1                   0 
     1 
           1 
                1 
0                    1 

-a1                 0 
       . 
            . 
                . 
0                  -an 

1                    0 
      1 
           1 
                1 
0                    1 

Fig. 3. The matrix structure of the constraints in the 
problem (1) 

 
From the structure matrix of constraints, it 

is easy to see that the columns of the system are 
linearly independent if and only if when the 
columns of the incidence matrix of the system 
corresponding to non θ -arcs, are linearly 
independent. From graph theory, it is known, that 
this is equivalent to saying that these arcs form a 
forest. Which in its turn is equivalent to saying that 
these arcs do not  form cycles. The proof is 
complete. 
Definition 3. Arc j belonging to some spanning 
subtree, is called properly oriented if the beginning 
of the arc )(1 jn  belongs to the path connecting the 

end of the arc )(2 jn  with the root of the tree. 

Let there be a spanning subtree with the set 
of arcs GT, which we shall call the current subtree. 
Let us also say that there is an admissible solution 
(x,y) of problem (1), such that: 

1) arcs not belonging to the set GT are either 0-arcs, 
or θ - arcs; 
2) all 0-arcs belonging to set GT are properly 
oriented. 

Then from Statement 1, it follows that  
vector (x,y) is an extreme-point solution of problem 
(1). Suppose 0=jµ  if GTj∈ and j is an 

opposite direction θ -arc. For the rest j let 0=jµ , 

if jbjy <  and 
jaj

1
=µ , if jbjy ≥ . 

For any two nodes I1 and I2 in the current 
subtree GT exists the only way from I1 to I2. The 
algebraic sum of variables jµ  along a path 

connecting the nodes I1 and I2, therefore, with a 
plus sign if the arc has a orientation coinciding with 
the orientation of the path, and negative otherwise, 

will be denote as 












 →

2,1 II . 

Let us CBAiii ∪∪∈












→
== ,,0,00 λλ . 

We will continue to check the following 
inequalities: 

Γ  j,jμ(j)nλ(j)nλ ∈≥+− 0
21

,              (4) 

.00
21

Γjj y,  (j)nλ(j)nλ ∈>≥−          (5) 

It is easy to check that conditions (4) and 
(5) are fulfilled for all j from the set GT. 

Consider first the case when the inequality 
is violated for some j0 in the conditions (4). The set 
of the common nodes of the paths ))0(1,0( jn  and 

))0(2,0( jn  is not empty. Their last common 

node, if we move from the root of the tree, denote 
I0. Then the paths ))0(1,0( jnI  and )0),0(2( Ijn  

together with the arc j0 form a c ycle. This is the 
only cycle that is formed by joining arc j0 to the 
current subtree GT (Fig. 4). 

Next, we define some values E and Y for 
cycle with the set of arcs H. For the positive 
orientation of the cycle we will take the orientation 
of the arc j0. If the arc j orientation is positive, let 
us put: 

jyjbjyjj −=∆=∆ ,µµ .                      (6) 

WSEAS TRANSACTIONS on MATHEMATICS Oleg Kosorukov

E-ISSN: 2224-2880 115 Volume 17, 2018



If the arc j orientation is opposite, let us 
put: 

jbjyjyjj −=∆−=∆ ,µµ , if jbjy > , (7) 

jyjyj =∆=∆ ,0µ , if jbjy ≤<0 . 

 
Fig. 4. The structure of the cycle that occurs when 

joining the arc j0 

 
If j is the opposite oriented 0-arc, then by 

putting E=0 and Y=0, we will consider them 
calculated. Otherwise, put them equal: 

jΔy

jH:Δ:j
Y

Hj
,jΔμE min

0>∈
=∑

∈
=  (8) 

Statement 2. If 0≥Е , then 
)0),0(2(: Ijnjj ∈∃ , that arc j is θ -arc or 0-

arc. 
Let us prove statement 2. Let us assume the 

contrary. Since in path ))0(1,0( jnI  there are no 

0-arcs, then from the assumptions it follows that E 
is the algebraic sum of variables jµ  along the 

whole cycle. Then 
( ) ( )

( ) ( ) ,
ja

)(j,nI)(j,nI

)(j,n)(j,n(j)nλ(j)nλ

0

1
010020

010020
12

>−=

−=−

 

( ) ( )
( ) ( ) 0)0(2,0)0(1,0

0

1

)0(2,00
)0(1,0

<−+≤

−+=

jnIjnI
ja

jnIjjnIE µ

. 

It follows infidelity of made assumptions 
from the obtained contradiction, and the proof is 
complete. 

Consider the case when 0≥Е . In this 
case, set of θ -arcs and 0-arcs of the path 

)0),0(2( Ijn  is not empty. Choose the first one.  

Removing it f rom the subtree GT and adding the 
arc j0, we get a n ew spanning subtree GT*, which 
satisfies the conditions (4) and (5) for the plan (x,y). 
We assume tree GT* as the new current subtree. If 
we calculate a vector )~,~( µλ  according to the 
above rules, we can prove the following statement. 
Statement 3. 1) ),0()0(2:,~ ijniii ∉= λλ ; 

2) ),0()0(2:,~ ijniii ∈∆−= λλ , where 

0
0)(1)(2
>−−=∆ jjnjn µλλ . 

Let us prove Statement 3. Item 1) is 
obvious, since the node i in the new subtree GT* 
has the same path (0,i) as in subtree GT. 

To justify item 2), consider the nodes of 
three types – x, y, z (Fig. 5). 

Initially, consider the nodes of type x. 

=+++

−=++=























xjnjjn

jnjnxjnjjnx

),0(20)0(1

)0(2)0(2
),0(20)0(1

~

µλ

λλµλλ

( ) ∆−=∆−+= xxjnjn λλ ),0(2)0(2
. 

Next we consider the nodes of type y. Note 
that the path )),0(2( yjn  contains no 0-arcs and 

θ -arcs.  

 
 

Fig. 5. The arrangement of nodes of three types – x, 
y, z 
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( )

( )=+

++−

=++=

yjn

jjnjnjn

yjnjjny

),0(2

0)0(1)0(2)0(2

),0(20)0(1

~

µλλλ

µλλ

 

( )
( ) ( )
∆−

=∆−++

=∆−+=

y

yjnjnyy

yjnjn

λ

λ

λ

),0(2)0(2,

),0(2)0(2
. 

Next we consider the nodes of type z. Note 
that the path )),0(2( Ajn  contains no 0-arcs and 

θ -arcs. 
( ) ( )

+++−=

+++=

0)0(1)0(2)0(2

,),0(20)0(1

~

jjnjnjn

zAAjnjjnz

µλλλ

µλλ
 

( ) ( ) ( )
( ) ( ) ( )

.

,,),0(2

)0(2,,),0(2

∆−=∆−

+=∆−++

+=++

z

zAAzAAjn

jnAAzAAjn

λ

λ

λ

 

The proof is complete. 
Now consider the case when 0<Е . It is 

easy to see that then Y>0. Let us demonstrate how 
in this case to move to a n ew extreme-point 
solution of problem (1) with a smaller value of the 
functional. This will be carried out by cyclical 
change in flow according to arc j0 orientation on the 
value Y, i.e. suppose HjYjyjy ∈+= ,~ , if 

the orientation of the arc j is positive and 
HjYjyjy ∈−= ,~ , if the orientation of the 

arc j is not positive and Hjjyjy \,~ Γ∈= . 

Put also HjYjjxjx ∈∆−= ,~ µ  and 

Hjjxjx \,~ Γ∈= . Values jµ∆  were 

defined above. 
Statement 4. Vector )~,~( yx  is a admissible solution 
of the problem (1). 

Let us prove Statement 4. It is obvious that 
a cyclical change in flow does not violate the 
balance constraints for the flow. Therefore, we will 
test the feasibility of only the following three 
limitations: 

jbjxjajyjxjy ≤−≥≥ ~~,0~,0~ . 

Let us do it, using the rules of jµ∆  calculation, 

formulas (6) and (7) and the formulas given above 
to calculate the vector )~,~( yx . We co nsider four 
different cases: 
1) the arc j orientation is positive and 

))0(1,0( jnIj∈  (Fig. 6). 

Consider the case 1a) jbjy ≥ . Then the 

following relationship is fair, namely: 
,0~ ≥+= Yjyjy  (1st constraint). Since 

01,1
≥==∆=

jajj
jaj µµµ , it follows 

the validity of the following 
,0~ ≥≥∆+= jxYjjxjx µ  (2nd constraint) and 

jbjxjajyjjaYjxjajy

YjjxjaYjyjxjajy

≤−=∆−+−

=∆+−+=−

)1(

)(~~

µ

µ
  

(3rd constraint). 

 
Fig. 6. The scheme of the cycle for case 1 

 
Consider the case 1b) jbjy < . The 

proof of this case coincides with the proof of case 
2b) below. 
2) The arc j orientation is positive and 

))0(2,0( jnIj∈  (Fig. 7). 

Consider the case 2a) jbjy > . The 

proof of this case coincides with the proof of case 
1a) above. 

Consider the case 2b) jbjy ≤ . Then 

the following relationship is fare, namely: 
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,0~ ≥+= Yjyjy  (1st constraint). Since 

0,0,0 ≥−=∆==∆= jyjbjyjjj µµµ

, it follows the validity of the following 
,0~ ≥=∆+= jxYjjxjx µ  (2nd restriction), and 

jbjxjajbjyjbjxjajy

YjjxjaYjyjxjajy

≤−=−+−

≤∆+−+=− )(~~ µ
  

(3rd constraint). 

 
Fig. 7. The scheme of the cycle for case 2 

 
3) Arc j orientation is not positive and 

))0(1,0( jnIj∈  (Fig. 8). 

Consider the case 3a) jbjy ≥ . Then 

the following relationship is fair, namely: 
,0~ ≥+= Yjyjy  (1st constraint). Since 

01,1
≥==∆=

jajj
jaj µµµ , it follows 

the validity of the following 
,0~ ≥≥∆+= jxYjjxjx µ  (2nd constraint). 

jbjxjajyjjaYjxjajy

YjjxjaYjyjxjajy

≤−=∆−+−

=∆+−+=−

)1(

)(~~

µ

µ
  

(3rd constraint). 
Consider the case 3a) jbjy > . Then 

the following relationship is fair, namely: 
0>−=∆ jbjyjy , 

,0~ ≥=∆−≥−= jbjyjyYjyjy   

(1st constraint). Since 

 
Fig. 8. The scheme cycle for case 3 

 

01,1
≥−=−=∆=

jajj
jaj µµµ , it 

follows the validity of the following ratio 

,0)(1)(1

1~

≥+−=∆−

≥−=∆+=

jbjyjxja
jajyjxja

ja

Y
jajxYjjxjx µ

 

(2nd constraint)), 

jbjxjajyjjaYjxjajy

YjjxjaYjyjxjajy

≤−=∆+−−

=∆+−−=−

)1(

)(~~

µ

µ
 

(3rd constraint). 
Consider the case of 3b) jbjy ≤ . In 

this case the following relationship is fair, namely:  

,0~

,0

=∆−≥−=

≥=∆

jyjyYjyjy
jyjy

 

(1st constraint). Since 
0,0 =−=∆= jjj µµµ , it follows the 

validity of the following 
,0~ ≥=∆+= jxYjjxjx µ  (2nd constraint), and 

jbjxjajbYjxjajyjxjajy ≤−≤−−=− ~~  

(3rd constraint). 
4) arc j orientation is not positive and 

))0(2,0( jnIj∈  (Fig. 9). 

Consider the case of 4a) jbjy > . 

The proof of this case coincides with the proof of 
case 3a), given above. 
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Consider the case of 4b) jbjy ≤ . 

The proof of this case coincides with the proof of 
case 3b) above. 

The proof is complete. 
Statement 5. ∑

Γ∈
>∑

Γ∈ j jx
j jx ~ . 

Let us prove Statement 5. 

 
Fig. 9. The scheme cycle for case 4 

 

∑
∈

<=∆∑
∈

=−

∑
Γ∈

=−∑
Γ∈

=−∑
Γ∈

Hj
YEjY

Hj jxjx
j jxjx

j jx
j jx

0)~(

)~(~

µ
.  

The Statement 5 is proved. 
Statement 6. There is an arc j, Hj∈ , such that it 
is either an θ -arc, or an 0-arc. 

Let us prove Statement 6. We choose an 
arbitrary index j, such that 

jy

jyHj
Argj ∆

>∆∈
∈ min

0:
. Then 

Yjy =∆<0 . Let j has positive orientation, then 

we have the following: 

jbjyjbjyjyjyYjyjy =−+=∆+=+= )(~

That is, this arc is θ -arc. Suppose now that j has 
the opposite orientation. Then, if jbjy > , 

then 

jbjyjbjyjyjyYjyjy =+−−=∆−=−= )(~

That is, this arc is an θ -arc. If jbjy ≤<0 , 

then 0~ =−=∆−=−= jyjyjyjyYjyjy . 

That is, this arc is a 0 -arc. The Statement 6 is 
proved. 

Now we show how to choose an arc j1 is to 
be deleted from the set GT. The path 

)0),0(1( Ijn  can contain only collinear with it 

0-arcs. If their set is not empty, then we choose j1`as 
the last of them.  

Otherwise as j1 choose any of the θ -arcs, 
which are in force Statement 6 in this case is not 
empty. Removing the arc j1 from the set GT, and 
adding an arc j0, we get a new spanning subtree 
GT*, which for plan )~,~( yx  satisfies the conditions 
1) and 2). Note that because of conditions (4) and 
the Statement 1 the plan is an extreme-point 
solution of problem (1). 

Now consider the case when inequality j0 
of conditions (5) is violated. Consider the same 
loop as above in the opposite direction of the arc j0. 
Calculate the values E and Y according to the 
formulas (6), (7) and (8). In this case following 
statement is fare. 
Statement 7. If 0≥E , then there exists an arc j 
that )0),0(1( Ijnj∈  and j is an θ -arc or 0-arc. 

The proof of this Statement is similar to 
that of Statement 2. 

If 0≥E let us delete from the tree GT the 
first θ -arc or 0-arc, belonging to the path 

)0),0(1( Ijn  and add arc j0. We get a n ew 

spanning subtree GT*, which satisfies conditions 1) 
and 2). For the corresponding vector )~,~( µλ  the 
following statement is true. 
Statement 8. 
1) ),0()0(1:,~ ijniii ∉= λλ ; 

2) ),0()0(1:,~ ijniii ∈∆−= λλ , where 

0)(1)(2
>−=∆ jnjn λλ . 

The proof of this Statement is similar to 
Statement 3. 

In the case when E<0, let us do cyclic 
change of the flow in the opposite direction of the 
arc j0 on the value of Y. We obtain a new 
admissible solution )~,~( yx  of the problem (1) by 
the same formulas as above. For the solution 

)~,~( yx  Statements 4 and 5 will be fair. 
Now we show how to choose an arc j1 to be 

deleted from GT. The path )0),0(2( Ijn  can 

contain only collinear with it 0-arcs. If their set is 
not empty, then we choose the last one. Otherwise 
consider the arc j0. If it i s a 0-arc, then leave the 
current subtree without changes. Otherwise, 
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consider the path ))0(1,0( jnI  that may contain 

only collinear with it 0-arcs. If their set is not 
empty, then we choose j1 as the last of them. 
Otherwise as j1 choose any of the θ -arcs of the 
cycle, which in this case, as to Statement 6 is not 
empty. Removing the arc j1 from the set GT, and 
adding an arc j0, we get a new spanning subtree 
GT*, which for solution )~,~( yx  satisfies the 
conditions 1) and 2). So )~,~( yx  is an extreme-point 
solution of problem (1). 

Thus, at each step there is a transition either 
to a n ew extreme-point solution with a sm aller 
value of the functional or to a new spanning 
subtree, the values of the components of the vector 
λ which is no more than, and at least for one node 
strictly smaller, than the vector components λ  of 
the previous spanning tree. This eliminates the 
possibility of looping by the above algorithm. 

Due to the fact that there is a finite number 
of different spanning subtrees and extreme-point 
solutions for problem (1), we get an extreme-point 
solution (x,y) and a spanning subtree GT that satisfy 
the conditions 1) and 2), such that the associated 
vector ),( µλ  satisfies the inequalities (4) and (5) 
in a finite number of steps. 

Consider the following vector )~,( µλ , such 
that )(1)(2

~
jnjnj λλµ −= , if 

θ−ΓΓ∈ jTj ,\ -arc and jj µµ =~  for the 

other j. Note that due to relations (4) and (5) 

Γ∈≤≤ j
jaj ,10 µ . 

It is easy to check that the vector )~,( µλ  is 
an admissible solution of the problem (2) and 
associated by conditions (3) with extreme-point 
solution (x,y). By theorem 1 it follows that vector 
(x,y) is the optimal solution of the problem (1). 

It remains to show the existence of some 
initial feasible solution (x,y) and a spanning subtree 
GT for which the conditions 1) and 2) are fulfilled. 
It is easy to do, relying on the following statement. 
Statement 9. There is a c onnecting subtree of the 
original graph with the proper orientation 
(Definition 3) of all its arcs. 

Let us prove statement 9. For each node of 
the initial graph an oriented path exists from root to 
this node, otherwise the node could be initially 
excluded from consideration, together with the 
incident arcs. We will take the root of the tree as 
the initial subtree. Connect the root by oriented way 

with an arbitrary node, not belonging to the subtree. 
Consider the plot of this path from this node to the 
first node belonging to the subtree. A new subtree 
contains at least one node more than the previous 
one, and all its arcs are properly oriented. 
Continuing the above procedure, for a finite 
number of steps we will construct a spanning 
subtree with the proper orientation of all its arcs. 
The proof is complete. 

Problem (1) was considered by us in the 
assumption that Γ∈> jja ,0 . Let us now 

consider the problem in the general case, when 
Γ∈≥ jja ,0 . Note also that the case 0<ja  

has no meaningful sense from the point of view of 
the consideration of the x variables as resource 
variables. In the general case the problem has the 
following form: 

,

1

)(
,

min ∑
Γ∈j jx

yx
                     (9) 

,,0
)()(

Bi
iDj jy

iCj jy ∈=∑
∈

−∑
∈

 

∑
∈

∈=∑
∈

−
)(

,,
)(iDj

Ciid
iCj jyjy  

,2, Γ∈≤ jjbjy  

,1, Γ∈≤− jjbjxjajy  

.,0,1,0 Γ∈≥Γ∈≥ jjyjjx
 

Where 







 >Γ∈=Γ 0:1 jaj

,







 =Γ∈=Γ 0:2 jaj . 

Problem (9), generally speaking, may not 
have admissible solutions. Now let us consider an 
auxiliary problem by introducing additional 
variables 20 Γ∈≥ jjx and capacity functions 

20 Γ∈≥+ jjbjxδ ,  

where 

 ∑
Γ∈

−=

1

1)12(
j ja

δ . 

The mathematical formulation of the 
auxiliary problem has the following form: 
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,)(
,

min ∑
Γ∈j jx

yx
                          (10) 

,,0
)()(

Bi
iDj jy

iCj jy ∈=∑
∈

−∑
∈

 

∑
∈

∈=∑
∈

−
)(

,,
)(iDj

Ciid
iCj jyjy  

,2, Γ∈+≤ jjbjxjy δ  

,1, Γ∈≤− jjbjxjajy  

.,0,0 Γ∈≥≥ jjyjx  

Problem (10) refers to the type of problems 
which can be solved by algorithm discussed in 
detail above. Therefore, it can be solved by method 
of generalized potentials. 

The following theorem is fair. 
Theorem 2. Let (x*,y*) is optimal solution of 

problem (10). If it exists 2Γ∈i , such that 0* >ix , 

the set of feasible solutions of problem (9) is 
empty. Otherwise, vector (x*,y*) is optimal 
solution of problem (9). 

Prove theorem 2. L et (x*,y*) is optimal 
solution of problem (10). Suppose that the set 

{ }0*:2 >Γ∈= ixiB  is not empty. If the 

solution (x*,y*) is not an extreme-point of the 
feasible set, it can be represented as some convex 
combination of optimal extreme-points. Then it can 
be stated that if Bj ∈0 , then an optimal extreme-

point exists for which 0*
0
>jx . That is, a set B 

that is not empty. Thus, we can assume without loss 
of generality that (x*,y*) is the optimal extreme-
point. 

Now assume that the set of feasible 
solutions is not empty and the vector (x,y) is a 
feasible solution of the problem (9). If 

∑
Γ∈

=

1i ixA  it is easy to show that problem (9) is 

equivalent to the problem on the set: 

1,0,2

,0,2,0

Γ∈≤≤Γ∈

+≤≤Γ∈≤≤

jAjxj

jbjAajyjjbjy

 Consequently, the problem has a solution 
because of the Weierstrass theorem. Since the 
problem (9) is a linear programming problem, then 
it has an optimal extreme-point, which we denote 

as ),( yx . If now we complement the vector ),( yx  
by components 2,0 Γ∈= jjx , the resulting 

vector )~,~( yx  is an extreme-point of problem (10). 
This follows from the admissibility of the vector 

)~,~( yx  and the fact that the system of columns 
corresponding to positive components is not 
changed, that is still linearly independent. 

From the theory of linear programming, it 
is known, that a sequence of extreme-points exists, 
starting with arbitrary initial point )~,~( yx  and 
ending with the optimal solution (x*,y*). Adjacent 
members of this sequence are adjacent extreme-
points (that is, their bases are different by a single 
vector), and the value of the functional at these 
points does not increase monotonically. 

Directly from the above algorithm of the 
generalized potentials description it follows that the 
transition from extreme-point to a neighboring 
extreme-point with not bigger value of the 
functional is proceeded by varying vectors y and x 
along some cycle for which 0≤E  and 0>Y . 

Since for the vector )~,~( yx  corresponding 
set B is empty, and for the vector (x*,y*) is not 
empty, then in the sequence a pair of neighboring 
points (x1,y1) and (x2,y2), exists for which the set B 
is empty and not empty, respectively. 

This transition can be carried out only for 
the loop containing the properly oriented arc j0 of 

the set G2. But then ∑
Γ∈

==∆

1

121

0 j jaj δ
µ . If 

the cycle contains arc j of the set G2 with the 
opposite orientation, then 0=∆ jµ . Let r arcs in a 

cycle of the set G2 have the proper orientation. 
Then the following is fair: 

0

1

11
>∑

Γ∈
−≥∆∑

∈
=

j ja
rjHj

E
δ

µ . 

Therefore, such a t ransition is impossible. 
And, therefore, the assumption of non-emptiness of 
the set of feasible solutions of problem (9) is 
incorrect. Thus, the first part of the theorem is 
proved. 

The justice of the second part of the 
theorem follows directly from the fact that the 
vector (x*,y*) is an admissible solution of the 
problem (9), and the problem (9) is a restriction of 
problem (10) for a subset of the set of the 
admissible solutions. The theorem is proved. 
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4 The problem with undefined factors 
A finite number of undefined factors of a 

scenario type that affect the form of the arc 
capacity functions and production capacities are 
considered. The mathematical formulation of the 
problem of optimal synthesis with uncertain factors 
is the following: 

,)(
,

min ∑
Γ∈j jx

yx
                        (11) 

,,0
)()(

BAi
iDj

k
jy

iCj
k
jy ∪∈=∑

∈
−∑

∈
 

∑
∈

∈≥∑
∈

−
)(

,,
)(iDj

Ciid
iCj

k
jyk

jy  

,, Γ∈≤− jk
jbjxk

jak
jy  

l.100 ,...,Γ,  k,  jk
j y, jx =∈≥≥  

The problem (11) is a linear programming 
problem. The dual problem to it has the following 
form: 

∑ ∑∑
Γ∈ =

−∑
∈ = j

k
jbk

j
l

kCi

l

k
k
iid )

11
)((max

,
µλ

µλ
    (12) 

Γ∈≥∑
=

− jk
jak

j
l

k
,0

1
1 µ ,                         (13) 

)0(\,0)(1)(2
Cjk

jjnjn Γ∈≤−− µλλ , 

)0(,0)(2
Cjk

jjn ∈≤− µλ  

.100 ,...,lC,  k,  ik
iΓ,  λ,  jk

jμ =∈≥∈≥  

Taking into account the restrictions (13) 

and the fact that 0≥k
jµ , we can add restrictions  

lkjk
jak

j ,...,1,,1 =Γ∈≤µ  

to the constraints of the problem (12). The problem 
(12) remains unchanged. If we introduce auxiliary 

variables lzzz ,...,1, to reduce the constraints to 
the system of equations, then the constraint matrix 
of problem (12) takes the form shown in Fig. 10.  
 

1λ  1µ  1z
 

2λ
 

2µ
 

2z  … z  b 

 
0 

 
A1 

 
0 

 
0 

 
A2 

 
0 

 
 

 
E 

 
x 

1 
… 
1 

 
INT 

 
E 

 
-E 

 
0 

 
0 

 
0 

  
0 

 
y1 

0 
… 
0 

 
… 

 
… 

 
… 

 
… 

 
… 

 
… 

 
… 

 
… 

 
… 

 
… 
 

 
0 

 
0 

 
0 

 
0 

 
INT 

 
E 

 
-E 

 
0 

 
yl 

0 
… 
0 

Fig. 10. Structure of the constraint matrix. 
 
Where E is the unit matrix, IN is the matrix of 
incidence of the graph of the network, and the 
matrix Ai is a diagonal matrix of the coefficients a 
of the following form (Fig. 11): 





















=

i
na

ia

iA

000
0.0
00.0
0001

 

Fig. 11. Structure of matrix Ai. 
 

The constraint matrix of problem (12) is a 
block matrix with a group of connecting rows. For 
such problems, the application of decomposition 
methods is effective. Consider the well-known 
Danzig-Wolfe decomposition method [10]. We will 
not describe here the general scheme of the method. 
We note only that its essence consists in replacing 
the solution of the original problem by solving a 
series of problems of lower dimension [11]. In our 
case, at each iteration it is necessary to solve the 
problem of the following form: 

∑
Γ∈

−∑
∈ j

k
jbk

jCi
k
iid )~(max

,
µλ

µλ
        (14) 

Γ∈≥− jk
jak

j ,01 µ , 

)0(\,0)(1)(2
Cjk

jjnjn Γ∈≤−− µλλ , 

)0(,0)(2
Cjk

jjn ∈≤− µλ , 
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.100 ,...,lC,  k,  ik
iΓ,  λ,  jk

jμ =∈≥∈≥  

Where are coefficients k
jb~ that vary by iteration. 

The problem dual to the problem (14) has the 
following form: 

,)(
,~min ∑

Γ∈j jx
yx

                       (15) 

,,0
)()(

BAi
iDj

k
jy

iCj
k
jy ∪∈=∑

∈
−∑

∈
 

∑
∈

∈≥∑
∈

−
)(

,,
)(iDj

Ciid
iCj

k
jyk

jy  

,,~
Γ∈≤− jk

jbjxk
jak

jy  

,...,l.Γ,  k,  jj,  yjx 100 =∈≥≥  

Let’s consider the sets { } bГ:  jГ k
j 0~

1 ≥∈=  and  

12 \ ГГГ = . For .00
~

,2 ≥=−≥∈ jx
k
ja

k
jb

jxГj  

Let’s make the change of variables: 

1
~

2
0~ Γ,  jjxj, xΓ,  jjxjxjx ∈=∈+= . 

The problem (15) in new variables looks as: 
,)~(

,~min ∑
Γ∈j jx

yx
                      (16) 

,,0
)()(

BAi
iDj

k
jy

iCj
k
jy ∪∈=∑

∈
−∑

∈
 

∑
∈

∈≥∑
∈

−
)(

,,
)(iDj

Ciid
iCj

k
jyk

jy  

,1,~
Γ∈≤− jk

jbjxk
jak

jy  

,2,0~ Γ∈≤− jjxk
jak

jy  

,...,l.Γ,  k,  jj,  yjx 100~ =∈≥≥  

The problem (16) admits a solution by the 
method of generalized potentials expounded earlier. 
In addition, along with the optimal solution ),~( yx  

in the course of implementing the method, we 
simultaneously obtain a vector )~,( µλ  that is a 
solution of the problem dual to problem (16). We 
set 

.Γ,  j
k
ja

k
j,  μΓ,  jk

jμk
jμ 2

1~ ∈=∈=  

Statement 10. The vector ),( µλ  is the optimal 
solution of the problem (14). 

Let us prove statement 10. It is not difficult 
to see that the vector ),( µλ  is an admissible 
solution of the problem (14). Let the vector (x, y) 
be a solution of the problem (11), and let the vector 

),~( yx be a solution of the problem (16). We show 
that the vectors (x, y) and ),( µλ  are related by 
(13). This proves the assertion to be proved. 
1) Let 1 and0 Γj jx ∈> , then  

1~,~ == k
jak

j
k
j

k
j µµµ  

and hence, 1=k
jak

jµ . If 2Γ∈j , then 

1=k
jak

jµ . 

2) Let 0>jy . If k
j

k
j µµ ~= , then 

0~
)(1)(2

=−− k
jjnjn µλλ  and, hence, 

0)(1)(2
=−− k

jjnjn µλλ . If k
j

k
j µµ ~≠ , then 

0=jx  and, hence, 0=jy . 

3) Let k
jbjxk

jak
jy <− , then 1Γ∈j  and, hence, 

0~ == k
j

k
j µµ . Statement is proved. 

Thus, applying the Danzig-Wolfe decomposition 
method and the algorithm described above, one can 
obtain a solution ),( µλ  of the problem (12). 
 Let us dwell on the question of how to use 
the obtained vector ),( µλ  to find the vector (x, y), 
which is the optimal solution of the problem (11). 

Consider the following problem, which is a 
modification of the problem (11): 
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min ∑
Γ∈j jx

yx
                          (17) 
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iCj
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−∑

∈
 

∑
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,,
)(iDj

Ciid
iCj
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jyk

jy  

,, Γ∈≤− jk
jbjxk

jak
jy  

,...,l.Γ,  k,  jj,  yjx 100 =∈≥≥  

The following statement is true. 
Statement 11. 
1) The optimal values of the functions being 
minimized in problems (11) and (17) coincide. 
2) If the vector )~,( yx  is a solution of the problem 
(17), then there exists a vector (x, y), which is a 
solution of the problem (11). 

Let us prove statement 11. We begin with 
the proof of 2). Suppose that for some vertex i the 
restriction is satisfied as a strict inequality, that is. 

∑
∈

>=∑
∈

−
)(

0
)(iDj

p
iCj

k
jyk

jy .  

Then there exists some path consisting of arcs with 
nonzero flows from the vertex 0 to the vertex i. Let 

y∆  there be a minimal flow flowing along the arcs 
of the given path. Then we set Y = min ( y∆ , p). 
We reduce the values of the streams of arcs of the 
given path by the amount Y. In this case, all 
constraints of the problem (17) remain satisfied. 
And the restrictions of equality of a species will 

remain ∑
∈

=∑
∈

−
)(

0
)(iDj iCj

k
jyk

jy . 

If p = 0, then, for the node i, we have the equality 
of the incoming and outgoing streams. Otherwise, 
repeat the procedure for selecting the path. It is 
clear that applying the described algorithm in a 
finite number of steps will result in equalization of 
the incoming and outgoing streams for the i-th, and, 
consequently, for any other node. Thus, in a finite 
number of steps, a solution (x, y) satisfying the 
constraints of the problem (11) will be constructed. 

We now prove part 1). Let A be the value 
of the minimum in problem (11), and B the value of 
the minimum in problem (17). We note that the 
values of the functionals for the vectors )~,( yx and 
(x, y) are the same. From this and from 2) it follows 
that. BA ≤ .Since the set of admissible solutions 

of the problem (17) is wider than of the problem 
(11), then BA ≥ . Whence finally we have A = B. 
The statement is proved. 

Since the transition from solution )~,( yx  to 
solution (x, y) is very simple, we will only seek 
solutions of problem (16). We write the problem 
dual to the problem (16) in the canonical form: 

∑
Γ∈

∑
=

−∑
∈

∑
= j

k
jbk

j
l

kCi

l

k
k
iid )

11
)((max

,
µλ

µλ
    (18) 

Γ∈=+∑
=

jjzk
jak

j
l

k
,1

1
µ , 

)0(\,0)(1)(2
Cjk

jvk
jjnjn Γ∈=+−− µλλ

)0(,0)(2
Cjk

jvk
jjn ∈=+− µλ , 

,k
j,  vk

j,  zk
iΓ,  λ,  jk

jμ 0000 ≥≥≥∈≥  

,...,l.C,  kBAi 1=∪∪∈  
This problem differs from the problem (12) 

by the non-negativity of all its variables. The 
solution ),( µλ  of problem (12) in view of its 
nonnegativity is simultaneously a solution of 
problem (18). From the vector ),( µλ  found, the 
components of the vectors z and v are uniquely 
determined. Thus, we finally have a vector 

),,,( vzµλ  that is a solution of the problem (18). 
However, the solution ),,,( vzµλ  can, firstly, not 
be the extreme point of a feasible set, and secondly, 
it is a degenerate extreme point. 

In the first case, we single out the maximal 
linearly independent system among the columns 
corresponding to the positive components of the 
vector ),,,( vzµλ . We supplement it to a basis B. 
It is known that there exists an optimal extreme 
point with basis B [3]. 

In the second case, the rank of the system 
of columns corresponding to positive components 
is less than the rank of the matrix of the constraint 
system. In this case it is necessary to supplement it 
to a complete basis B. 

In both cases, the formation of the basis B 
is equivalent in complexity to reducing the matrix 
to a triangular form. 

Let b be the vector of the right-hand sides 
of the constraints of the problem (17). From the 
theory of duality of linear programming, it is 
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known that if there is a pair of dual-purpose 
problems 

),,(max λ
λ

b  

cA =λ , 
0≥λ . 

  ,),(min xc
x

 

bxTA ≥ . 
and B is the basis of the optimal solution of one of 

the problems *λ , then the vector 

BbTBx 1)(* −=  is the optimal solution of the 

other problem. Using this statement in our case, we 

can assert that the vector )~,( yx = BbTB 1)( −  is 

the optimal solution of the problem (17). 
 
5 Conclusion 

Thus it has been developed and validated a 
new efficient algorithm for linear separable 
problem of synthesis of communication networks, 
titled "method of generalized potentials", which is 
close to the well-known method of potentials for 
solving the classical transportation problem [3].  

The algorithm was developed for the Gale 
problem on demand and supply with the arcs 
capacities, depending on the distribution of 
resources. It is shown that from a mathematical 
point of view the task from multiple points of 
production and limited stocks of product can be 
reduced to the task with a single item of production 
with an unlimited supply of the product. The 
algorithm of the method of generalized potentials 
applied to the reduced problem. The developed 
algorithm of transition to the solution of the 
original problem, proved the finiteness of the 
algorithm and the inability of the looping 
situations. 

An original algorithm is constructed on the 
basis of the Danzig-Wolfe decomposition method 
and the method of generalized potentials for large-
dimensional problems with indeterminate factors, 
which allows one to reduce the solution of the 
original large-dimensional problem to solving a 
series of problems that are considerably simpler 
 
 
 
 
 
 
 
 
 
 

from a computational point of view.  
An algorithm for the synthesis of the 

optimal solution of the original problem is 
proposed. The proposed algorithm makes it 
possible to substantially increase the dimensionality 
of the problems being solved. 
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