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Abstract: Let H be a Hilbert space with the unit operatbr We consider linear non-autonomous distributed
parameter systems governed by the equadignit = S(t)y + B(t)y (v = y(t),t > 0), whereS(t) is an
unbounded operator, such that for some constafitt) + cI is dissipative;B(t) is an operator uniformly bounded
on [0, o0), having a uniformly bounded derivative and commuting wilt). Exponential stability conditions are

established. An illustrative example is presented.
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1 Introduction and statement of the
main result

In this paper, we investigate stability of linear nonau- — g(¢)y + B(t)y (y = y(t),t > 0;4 = dy/dt),

tonomous distributed parameter systems governed by (1.1)

differential equations in a Hilbert space. The prob- whereS(t) for eacht > 0 is a closed operator il

lem of stability analysis of various infinite dimen-  ith a dense constant domain

sional systems continues to attract the attention of

many specialists despite its long history. It is still Dom (S(t)) = Dy (t >0),

one of the most burning problems because of the ab-

sence of its complete solution. The literature on sta- continuous oD, and

bility of linear distributed parameter systems is very

rich, cf. [1, 2, 4, 9], but the time variant systems have A(S(t)) == sup R (St)w,w) < oo, (1.2)

been considered mainly in the case of equations with weDo, lwl|=1

dissipative operators, cf. [1, 3]. Certainly, we could B(t) is an operator uniformly bounded df), o),

not survey the whole subject here and refer the reader haying a strong derivativé3’(t) which is also uni-

to the above listed publications and references given formly hounded ono, o) and

therein. Below we consider equations with operators

which are non-dissipative in general. S(t)B(s)h = B(s)S(t)h (h € Dgp; t,s > 0).
Besides we considerably generalize the main re- (1.3)

sult from [8] for systems with concentrated parame- So B(t) mapsD, into itself. Under the conditions

ters and refine the the stability conditions from the pa- below the quantity\(S(¢)) is uniformly bounded on

per [5] in which the leading operator is assumed to be [0, o).

constant. A solution to (1.1) for giveryy € Dg is a func-

Let H be a complex Hilbert space with a scalar tiony : [0,00) — Dy having a strong derivative and
product(.,.), the norm||.|| = +/(.,.) and unit opera- satisfyingy(0) = yo. The existence and uniqueness
tor I. All the considered operators are assumed to be of solutions under considerations is assumed. For var-
linear. For an operatof, A* is the adjoint oneg(A) ious existence results see for instance [1].
is the spectrum. In additiony(A) = sup R o(A), Equation (1.1) is said to be exponentially stable,
andDom/(A) is the domain. if there are positive constanid, ¢, such that|y(¢)|| <

Our main object is the equation Mezxp [—e€t]||y(0)|| (¢ > 0) for any solution of (1.1).
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It is assumed that Thus,

= sup ¢ / A(S(s))ds < oo W ()| < exp [/OtA(S(sl))dsl —(S)]

and for eachr > 0, the operatorB(7) + v(S)I is

1 t
< - - <
Hurwitzian, namely, < exp [t(5 /0 A(S(s1))ds1 — ()] <1
(B S))s |2 Hence|y(t)|| = W)V (Ol < [[V()yoll. This
T) = 2/0 [P+ 2ds < 00, (1.4) proves the required result. Q.E.D.

Now we are in a position to formulate the main result Furthermore, recall that the equation

of this paper.
i ALY + YAy = E (2.3)

Theorem 1 Let the conditions (1.2)-(1.4) and _ _
with a constant bounded stable operatés (i.e.

sup ¢?(t)|| B’ ()| < 2 (1.5) a(AO_) < 0) ar_1d a constant bounded operatbhas a
t>0 solutionY which is represented as

hold. Then equation (1.1) is exponentially stable. 0,
q ( ) p y Yy — _/ ersEerst7 (2'4)
0

This theorem is proved in the next section.
cf. [3, Section 1.5]. Consequently, the operator

2 Proof of Theorem 1 _2/ ()5 4

PutA(t) = B(t) + v(S)I.
Lemma 2 Let conditions (1.2)-(1.4) hold. Then

equation (1.1) is exponentially stable, provided the A*()Q(t) + Q(t)A(t) = =21 (t>0) (2.5)
equation

is a unique solution of the equation

Lemma 3 Let condition (1.4) hold and\(t) is differ-
u(t) = A(t)u(t) (t>0), (2.1) entiable. Then

is exponentially stable. QM < q(t), (2.6)

Proof: Let V(t) be the Cauchy operator to the equa- Q(t) also is differentiable and[|Q'(t)|| <
tion (2.1), that is}/ (¢) is a bounded operator satisfy-  ¢*(¢)||A’(¢)].
ing V(t)u(0) = wu(t) for any solutionu(t) of (2.1).

Let W (¢) be the Cauchy operator to the equation Proof: Inequality (2.6) is due to (1.4). Differentiating

(2.5) we have

(t) = So(t)u(t) (t>0), (2.2) AO00) + O OAW)
WReres(t) = 51 = (ST Pu (A (1)Q) + QWD) (¢ 0).
y(t) =WV {yo (yo € Do). Hence due to (2.4)
According to (1.3)W(H)V(t) = W(t)V(t). Tak- rey T AR @)s g g% eV
in(g:jc?r:tcl)ngccc:)ount thagi%V((t))/dt: Sgogt)év)(t) z:lnd Q) _/0 (A0 Q)
dV(t)/dt = A(t)V (t), we have
+Q()A'())er D2 ds.
g = (So(t) + A@®))y = (S(t) + B(1))y. Thus,
SoW )V (t)yo i lutionto (1.1). F 2.2 d
L2 tfotons oo G- FOMEAE o) < Lol wyan + awa)
%(v(t),v(t)) = (So(t)v(t),v(t)) + (v(t), So(t)u(t)) < @OIQIIIA @I (2.7)

Now (2.6) yields the result. Q.E.D.
< 2(A(S(8)) = (9)(v(t), v(t)) (t=0).
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Lemma 4 Let

sup [|Q'()]| < 2. (2.8)
t>0

Then
(Q(t)u(t), u(?)) < (Q(0)u(0),u(0)) (t=0).

Proof: Multiplying equation (2.1) byQ(¢) and doing
the scalar product, we can write

+(u(), Q) (1)) + (Q"(H)u(t), u(t)),

H(Q ()ult), u(t))-

Hence, condition (2.8) implies

d

21 (@u(t), u(t)) < (=2+[1Q"(B)) (u(?), u(t)) < 0.

This proves the result. Q.E.D.

Furthermore, for a stable operatdg puty; (t) =
ety (v € H). Thenyy(t) = Agy1, and

d(y1(t), y1(t))

Iy = ((Ao + Ag)y1 (1), 51 (1))

(2.9)

Hence

d(y1(t),y1(t))

ph > M Ao + Ap) (1 (1), y1(2))

and therefore

L Y

whereA(Ag + Af) is the smallest eigenvalues 4f +
Aj. Recall thatdy is stable, so\(Ap + Af) < 0. Put

* Azs A
QO:Q/ e0%e0%(s.
0

E-ISSN: 2224-2880 82

Michael Gil

Then due to (2.9)

(Qoh, h) = 2 / (455495, h)ds
0

> [ D g 1 = 2N Ao A
JO

(h € H). Hence, for any continuous functian :
[0,00) — H we have

(Q(tyur (£), ua (1)) = 2[lur (1) AA() + A*(6)]

Now the previous lemma implies.

(u(t), u(t)) < |A(A() + A% (1) |(Q(0)u(0), u(0)).

But|A(A(t)+A*(¢t))| is uniformly bounded and there-
fore all the solutions of (2.1) are uniformly bounded
(i.e. (2.1) is Lyapunov stable). Furthermore, substi-
tute into (2.1)

u(t) = uc(t)e™ (e > 0). (2.10)
Then

Uc(t) = (A(t) + el )ue(t). (2.11)

Applying our above arguments to (2.11) can assert
that equation (2.10) with small enough> 0 is Lya-
punov stable. So due to (2.10) equation (2.1) is expo-
nentially stable, provided (2.8) holds. Now Lemma 3
implies

Lemmab5 Let

sup ¢*(1)[| A’ (1)]] < 2.
>0

Then (2.1) is exponentially stable.

The assertion of Theorem fbllows from Lem-
mas 2 and 5, and the equality(t) = B’(t). Q.E.D.

3 A particular case

Let C" be the complexn-dimensional Euclidean
space with a scalar produgt,.),, the Euclidean
norm ||.||, = +/(.,.)» and the unit matrixZ,,. For
n X n-matrix, || All, = sup,ccn |Az||n/l|z|, is the
spectral (operator) normd* is the adjoint operator,
N3 (A) is the Hilbert-Schmidt (Frobenius) norm df
Na(A) = Virace AA*; \p(A) (kK = 1,...,n) are
the eigenvalues with their multiplicities. SgA) =
maxy Re \i(A).

Furthermore, lef) be a bounded domain of the
real Euclidean space with a finite Lebesgues measure.
In this sectiond = L?(2, C") is a Hilbert space of
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functionsf, h defined ort2 with values inC™ and the
scalar product

(f,h)p2 = /Q (f(x), h(z))pde.
Consider the equation

u(t,x) = S(t)u(t,x) + b(t)u(t,z) (x € Q,t>0),
(3.1)
whereb(t) is a differentiable int matrix independent
of z, andS(t) is a linear operator id.?(Q2, C"), com-
muting withb(¢) and satisfying (1.2).
Introduce the quantity

9(A) = 212

Z e

for ann x n-matrix A pIays an essential role here-
after. The following relations are checked in [6, Sec-

tion 1.5]: g?(A) < N2(A) — |Trace A?|,
9(4) < \}§N2<A —A) (32a)
and
g(eTA+ 2I,) = g(A) (1 €R,z€C); (3.2b)

if Aisanormal matrixA*A = AA*, theng(A) = 0.

If A and A, are commuting matrices, ther{A; +
Az) < g(A1) + g(A2). In addition, by the inequality
between the geometric and arithmetic mean values,

(S AP > (T A(4))?
k=1 k=1

Henceg?(A) < N3(A)—n|det A|>/™. For a constant
Hurwitz matrix Ay, due to [6, Lemma 1.9.2],

(k + j)'g"(Ap)
Aps 12
2/ ™ llnds < Z o 2647 |a(Ag)[FHitL (Rlj1)3/2

(3.3)
Define B(t) by the multiplication by matrix(t) and
take into account that

15D 2 < 11" O%|ln (8,5 > 0).

In addition, from (3.2b) it follows thatg(b(t) +
v(S)I,) = g(b(t)). Assume thab(t) + v(S)I, is
Hurwitzian. Then (3.3) implies

t) = 2/ PO P ds < p(t) (¢ > 0),
0

(3.4)
where
= (k +4)lg" (b(1))
o J',kzzo 26+ (b(t)) + 7 (S)[F+I+1 (k1 j1)3/2

Now Theorem 1 yields
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Corollary 6 Let the conditions (1.2) «(b(t)) +
7v(S) <0 (t > 0) and
sup 12 (1|6 (t)]] < 2 (3.5)
>0

hold. Then equation (3.1) is exponentially stable.

4 Example
Consider the problem
) 0 ou(t, )
u(t,r) = %a(t,x) o + b(t)u(t, )
(t>0;0<z<1), (4.1)
with the boundary condition
u(t,0) = u(t,1) =0, (4.2)

whereb(t) = (b;i(t)) is a real differentiabl@ x 2—
matrix independent of, a(t,z) is a positive scalar
function, differentiable inc and continuous in.

Take H = L?([0,1], C?). In the considered case
the operatolS(¢) = La(t, z)-L with the domain

Dy = {h € L*([0,1],C?) : " € L?([0,1], C?);
h(0) = u(1) = 0}

is selfadjoint. Besides,

—(S()h, h) = —(alt,2)W',h) = —ao(t)(h', 1),

whereay(t) = inf, a(t,z) > 0. Simple calculations
show thatA (S(t)) = —n2ag(t) and therefore,

7(S) = —n? inf % /Ot ap(s)ds. (4.3)

>0
Sincen = 2, the eigenvalues df(t) are simply cal-
culated. In addition, due to (3.2a)b(t)) < |bi2(t) —
bgl(t)|, and

1 g(b@®) ( (t))
w0 = S+t 50
with p(t) = \a( () + ~(9)], prowdeda(b( ) +

v(S) < 0, that is,b(t) + v(S) Iz is a Hurwitz matrix.
Now we can directly apply Corollary 6.

(4.4)

5 Conclusion

We have established the exponential stability condi-
tions for equation (1.1). Besides, we do not require
thatS(¢) + B(¢) is dissipative. As the example shows,
our test can be effectively applied, provided the norm
of the derivative of operataB(t) is sufficiently small.
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