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Abstract: Let H be a Hilbert space with the unit operatorI. We consider linear non-autonomous distributed
parameter systems governed by the equationdy/dt = S(t)y + B(t)y (y = y(t), t > 0), whereS(t) is an
unbounded operator, such that for some constantc, S(t)+ cI is dissipative;B(t) is an operator uniformly bounded
on [0,∞), having a uniformly bounded derivative and commuting withS(t). Exponential stability conditions are
established. An illustrative example is presented.
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1 Introduction and statement of the
main result

In this paper, we investigate stability of linear nonau-
tonomous distributed parameter systems governed by
differential equations in a Hilbert space. The prob-
lem of stability analysis of various infinite dimen-
sional systems continues to attract the attention of
many specialists despite its long history. It is still
one of the most burning problems because of the ab-
sence of its complete solution. The literature on sta-
bility of linear distributed parameter systems is very
rich, cf. [1, 2, 4, 9], but the time variant systems have
been considered mainly in the case of equations with
dissipative operators, cf. [1, 3]. Certainly, we could
not survey the whole subject here and refer the reader
to the above listed publications and references given
therein. Below we consider equations with operators
which are non-dissipative in general.

Besides we considerably generalize the main re-
sult from [8] for systems with concentrated parame-
ters and refine the the stability conditions from the pa-
per [5] in which the leading operator is assumed to be
constant.

Let H be a complex Hilbert space with a scalar
product(., .), the norm‖.‖ =

√
(., .) and unit opera-

tor I. All the considered operators are assumed to be
linear. For an operatorA, A∗ is the adjoint one,σ(A)
is the spectrum. In addition,α(A) = sup < σ(A),
andDom(A) is the domain.

Our main object is the equation

. .

ẏ = S(t)y + B(t)y (y = y(t), t > 0; ẏ = dy/dt),
(1.1)

whereS(t) for eacht ≥ 0 is a closed operator inH
with a dense constant domain

Dom (S(t)) ≡ D0 (t ≥ 0),

continuous onD0 and

Λ(S(t)) := sup
w∈D0,‖w‖=1

< (S(t)w,w) < ∞, (1.2)

B(t) is an operator uniformly bounded on[0,∞),
having a strong derivativeB′(t) which is also uni-
formly bounded on[0,∞) and

S(t)B(s)h = B(s)S(t)h (h ∈ D0; t, s ≥ 0).
(1.3)

So B(t) mapsD0 into itself. Under the conditions
below the quantityΛ(S(t)) is uniformly bounded on
[0,∞).

A solution to (1.1) for giveny0 ∈ D0 is a func-
tion y : [0,∞) → D0 having a strong derivative and
satisfyingy(0) = y0. The existence and uniqueness
of solutions under considerations is assumed. For var-
ious existence results see for instance [1].

Equation (1.1) is said to be exponentially stable,
if there are positive constantsM, ε, such that‖y(t)‖ ≤
Mexp [−εt]‖y(0)‖ (t ≥ 0) for any solution of (1.1).
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It is assumed that

γ(S) := sup
t≥0

1
t

∫ t

0
Λ(S(s))ds < ∞

and for eachτ ≥ 0, the operatorB(τ) + γ(S)I is
Hurwitzian, namely,

q(τ) := 2
∫ ∞

0
‖e(B(τ)+γ(S)I)s‖2ds < ∞. (1.4)

Now we are in a position to formulate the main result
of this paper.

Theorem 1 Let the conditions (1.2)-(1.4) and

sup
t≥0

q2(t)‖B′(t)‖ < 2 (1.5)

hold. Then equation (1.1) is exponentially stable.

This theorem is proved in the next section.

2 Proof of Theorem 1

PutA(t) = B(t) + γ(S)I.

Lemma 2 Let conditions (1.2)-(1.4) hold. Then
equation (1.1) is exponentially stable, provided the
equation

u̇(t) = A(t)u(t) (t ≥ 0), (2.1)

is exponentially stable.

Proof: Let V (t) be the Cauchy operator to the equa-
tion (2.1), that is,V (t) is a bounded operator satisfy-
ing V (t)u(0) = u(t) for any solutionu(t) of (2.1).
Let W (t) be the Cauchy operator to the equation

v̇(t) = S0(t)v(t) (t ≥ 0), (2.2)

whereS0(t) = S(t) − γ(S)I. Put

y(t) = W (t)V (t)y0 (y0 ∈ D0).

According to (1.3)W (t)V (t) = W (t)V (t). Tak-
ing into account thatdW (t)/dt= S0(t)W (t) and
dV (t)/dt = A(t)V (t), we have

ẏ = (S0(t) + A(t))y = (S(t) + B(t))y.

SoW (t)V (t)y0 is a solution to (1.1). From (2.2) and
(1.2) it follows

d

dt
(v(t), v(t)) = (S0(t)v(t), v(t))+(v(t), S0(t)v(t))

≤ 2(Λ(S(t)) − γ(S))(v(t), v(t)) (t ≥ 0).

Thus,

‖W (t)‖ ≤ exp [
∫ t

0
Λ(S(s1))ds1 − γ(S)t]

≤ exp [t(
1
t

∫ t

0
Λ(S(s1))ds1 − γ(S))] ≤ 1.

Hence‖y(t)‖ = ‖W (t)V (t)y0‖ ≤ ‖V (t)y0‖. This
proves the required result. Q.E.D.

Furthermore, recall that the equation

A∗
0Y + Y A0 = E (2.3)

with a constant bounded stable operatorA0 (i.e.
α(A0) < 0) and a constant bounded operatorE has a
solutionY which is represented as

Y = −
∫ ∞

0
eA∗

0sEeA0sds, (2.4)

cf. [3, Section I.5]. Consequently, the operator

Q(t) := 2
∫ ∞

0
eA∗(t)seA(t)sds

is a unique solution of the equation

A∗(t)Q(t) + Q(t)A(t) = −2I (t ≥ 0) (2.5)

Lemma 3 Let condition (1.4) hold andA(t) is differ-
entiable. Then

‖Q(t)‖ ≤ q(t), (2.6)

Q(t) also is differentiable and ‖Q′(t)‖ ≤
q2(t)‖A′(t)‖.

Proof: Inequality (2.6) is due to (1.4). Differentiating
(2.5) we have

A∗(t)Q′(t) + Q′(t)A(t)

= −((A∗(t))′Q(t) + Q(t)A′(t)) (t ≥ 0).

Hence due to (2.4)

Q′(t) =
∫ ∞

0
eA∗(t)s((A∗(t))′Q(t)

+Q(t)A′(t))eA(t)sds.

Thus,

‖Q′(t)‖ ≤
1
2
q(t)‖(A∗(t))′Q(t) + Q(t)A′(t)‖

≤ (t)‖Q(t)‖‖A′(t)‖. (2.7)

Now (2.6) yields the result. Q.E.D.
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Lemma 4 Let

sup
t≥0

‖Q′(t)‖ < 2. (2.8)

Then

(Q(t)u(t), u(t)) ≤ (Q(0)u(0), u(0)) (t ≥ 0).

Proof: Multiplying equation (2.1) byQ(t) and doing
the scalar product, we can write

(Q(t)u′(t), u(t)) = (Q(t)A(t)u(t), u(t)).

Since

d

dt
(Q(t)u(t), u(t)) = (Q(t)u′(t), u(t))

+(u(t), Q(t)u′(t)) + (Q′(t)u(t), u(t)),

it can be written

d

dt
(Q(t)u(t), u(t)) = (Q(t)A(t)u(t), u(t))

+(u(t), Q(t)A(t)u(t)) + (Q′(t)u(t), u(t))

= ((Q(t)A(t) + A∗(t)Q(t))u(t), u(t))

+(Q′(t)u(t), u(t)) = −2(u(t), u(t))

+(Q′(t)u(t), u(t)).

Hence, condition (2.8) implies

d

dt
(Q(t)u(t), u(t)) ≤ (−2+‖Q′(t)‖)(u(t), u(t)) < 0.

This proves the result. Q.E.D.

Furthermore, for a stable operatorA0 puty1(t) =
eA0tv (v ∈ H). Thenẏ1(t) = A0y1, and

d(y1(t), y1(t))
dt

= ((A0 + A∗
0)y1(t), y1(t)). (2.9)

Hence

d(y1(t), y1(t))
dt

≥ λ(A0 + A∗
0)(y1(t), y1(t))

and therefore

‖eA0tv‖2 ≥ etλ(A0+A∗
0)‖v‖2,

whereλ(A0 +A∗
0) is the smallest eigenvalues ofA0 +

A∗
0. Recall thatA0 is stable, soλ(A0 + A∗

0) < 0. Put

Q0 = 2
∫ ∞

0
eA∗

0seA0sds.

Then due to (2.9)

(Q0h, h) = 2
∫ ∞

0
(eA∗

0seA0sh, h)ds

≥ 2
∫ ∞

0
eλ(A0+A∗

0)sds ‖h‖2 = 2‖h‖2|λ(A0+A∗
0)|

−1

(h ∈ H). Hence, for any continuous functionu1 :
[0,∞) → H we have

(Q(t)u1(t), u1(t)) ≥ 2‖u1(t)‖
2|λ(A(t) + A∗(t))|−1.

Now the previous lemma implies.

(u(t), u(t)) ≤ |λ(A(t) + A∗(t))|(Q(0)u(0), u(0)).

But |λ(A(t)+A∗(t))| is uniformly bounded and there-
fore all the solutions of (2.1) are uniformly bounded
(i.e. (2.1) is Lyapunov stable). Furthermore, substi-
tute into (2.1)

u(t) = uε(t)e
−εt (ε > 0). (2.10)

Then
u̇ε(t) = (A(t) + εI)uε(t). (2.11)

Applying our above arguments to (2.11) can assert
that equation (2.10) with small enoughε > 0 is Lya-
punov stable. So due to (2.10) equation (2.1) is expo-
nentially stable, provided (2.8) holds. Now Lemma 3
implies

Lemma 5 Let

sup
t≥0

q2(t)‖A′(t)‖ < 2.

Then (2.1) is exponentially stable.

The assertion of Theorem 1follows from Lem-
mas 2 and 5, and the equalityA′(t) = B′(t). Q.E.D.

3 A particular case

Let Cn be the complexn-dimensional Euclidean
space with a scalar product(., .)n, the Euclidean
norm ‖.‖n =

√
(., .)n and the unit matrixIn. For

n × n-matrix, ‖A‖n = supx∈Cn ‖Ax‖n/‖x‖n is the
spectral (operator) norm,A∗ is the adjoint operator,
N2(A) is the Hilbert-Schmidt (Frobenius) norm ofA:
N2(A) =

√
trace AA∗; λk(A) (k = 1, ..., n) are

the eigenvalues with their multiplicities. Soα(A) =
maxk Re λk(A).

Furthermore, letΩ be a bounded domain of the
real Euclidean space with a finite Lebesgues measure.
In this sectionH = L2(Ω,Cn) is a Hilbert space of
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functionsf, h defined onΩ with values inCn and the
scalar product

(f, h)L2 =
∫

Ω
(f(x), h(x))ndx.

Consider the equation

u̇(t, x) = S(t)u(t, x) + b(t)u(t, x) (x ∈ Ω, t ≥ 0),
(3.1)

whereb(t) is a differentiable int matrix independent
of x, andS(t) is a linear operator inL2(Ω,Cn), com-
muting withb(t) and satisfying (1.2).

Introduce the quantity

g(A) = (N2
2 (A) −

n∑

k=1

|λk(A)|2)1/2

for an n × n-matrix A plays an essential role here-
after. The following relations are checked in [6, Sec-
tion 1.5]: g2(A) ≤ N2

2 (A) − |Trace A2|,

g(A) ≤
1
√

2
N2(A − A∗) (3.2a)

and

g(eiτA + zIn) = g(A) (τ ∈ R, z ∈ C); (3.2b)

if A is a normal matrix:A∗A = AA∗, theng(A) = 0.
If A1 andA2 are commuting matrices, theng(A1 +
A2) ≤ g(A1) + g(A2). In addition, by the inequality
between the geometric and arithmetic mean values,

(
1
n

n∑

k=1

|λk(A)|2)n ≥ (
n∏

k=1

|λk(A)|)2.

Henceg2(A) ≤ N2
2 (A)−n|det A|2/n. For a constant

Hurwitz matrixA0, due to [6, Lemma 1.9.2],

2
∫ ∞

0
‖eA0s‖2

nds ≤
n−1∑

j,k=0

(k + j)!gk+j(A0)
2k+j |α(A0)|k+j+1(k!j!)3/2

.

(3.3)
DefineB(t) by the multiplication by matrixb(t) and
take into account that

‖eB(t)s‖L2 ≤ ‖eb(t)s‖n (t, s ≥ 0).

In addition, from (3.2b) it follows thatg(b(t) +
γ(S)In) = g(b(t)). Assume thatb(t) + γ(S)In is
Hurwitzian. Then (3.3) implies

q(t) = 2
∫ ∞

0
‖e(b(t)+γ(S)In)s‖2

nds ≤ μ(t) (t ≥ 0),

(3.4)
where

μ(t) :=
n−1∑

j,k=0

(k + j)!gk+j(b(t))
2k+j |α(b(t)) + γ(S)|k+j+1(k!j!)3/2

.

Now Theorem 1 yields

Corollary 6 Let the conditions (1.2) ,α(b(t)) +
γ(S) < 0 (t ≥ 0) and

sup
t≥0

μ2(t)‖b′(t)‖ < 2 (3.5)

hold. Then equation (3.1) is exponentially stable.

4 Example

Consider the problem

u̇(t, x) =
∂

∂x
a(t, x)

∂u(t, x)
∂x

+ b(t)u(t, x)

(t > 0; 0 < x < 1), (4.1)

with the boundary condition

u(t, 0) = u(t, 1) = 0, (4.2)

whereb(t) = (bjk(t)) is a real differentiable2 × 2−
matrix independent ofx, a(t, x) is a positive scalar
function, differentiable inx and continuous int.

TakeH = L2([0, 1],C2). In the considered case
the operatorS(t) = d

dxa(t, x) d
dx with the domain

D0 = {h ∈ L2([0, 1],C2) : h′′ ∈ L2([0, 1],C2);

h(0) = u(1) = 0}

is selfadjoint. Besides,

−(S(t)h, h) = −(a(t, x)h′, h′) ≥ −a0(t)(h
′, h′),

wherea0(t) = infx a(t, x) > 0. Simple calculations
show thatΛ(S(t)) = −π2a0(t) and therefore,

γ(S) = −π2 inf
t≥0

1
t

∫ t

0
a0(s)ds. (4.3)

Sincen = 2, the eigenvalues ofb(t) are simply cal-
culated. In addition, due to (3.2a)g(b(t)) ≤ |b12(t)−
b21(t)|, and

μ(t) :=
1

ρ(t)
+

g(b(t))
ρ2(t)

+
g2(b(t))
2ρ3(t)

(4.4)

with ρ(t) = |α(b(t)) + γ(S)|, providedα(b(t)) +
γ(S) < 0, that is,b(t) + γ(S)I2 is a Hurwitz matrix.
Now we can directly apply Corollary 6.

5 Conclusion

We have established the exponential stability condi-
tions for equation (1.1). Besides, we do not require
thatS(t)+B(t) is dissipative. As the example shows,
our test can be effectively applied, provided the norm
of the derivative of operatorB(t) is sufficiently small.
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