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Abstract: Second order scalar ordinary differential equations (ODEs) which are linearizable possess special types of
symmetries. These are the only symmetries which are non fiber-preserving in the linearized form of the equation,
and they are called non-Cartan symmetries and known only for scalar ODEs. We give explicit expressions of non-
Cartan symmetries for systems of ODEs of arbitrary dimensions and show that they form an abelian Lie algebra. It
is however shown that the natural extension of these non-Cartan symmetries to arbitrary dimensions is applicable
only to the natural extension of scalar second order equations to higher dimensions, that is, to equivalence classes
under point transformations of the trivial vector equation. More precisely, it is shown that non-Cartan symmetries
characterize linear systems of ODEs reducible by point transformation to their trivial counterpart, and we verify
that they do not characterize nonlinear systems of ODEs having this property. It is also shown amongst others that
the non-Cartan property of a symmetry vector is coordinate-free. Some examples of application of these results
are discussed.
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1 Introduction

Systems of linear or nonlinear ordinary differential
equations (ODEs) frequently occur in dynamical sys-
tems and in many other mathematically based fields,
and symmetries are valuable tools for studying such
systems. The term symmetry here refers to a genera-
tor of the Lie point symmetry algebra of the system of
equations. These symmetries provide amongst others
valuable means for their identification, the determina-
tion of their first integrals and solutions, as well as the
qualitative study of these solutions, etc. Many nonlin-
ear systems of ODEs that occur in real world applica-
tions and of course also in theoretical context are ac-
tually linear systems in a disguised form, in the sense
that such nonlinear systems can be reduced to linear
ones by point transformations. Their study is there-
fore essentially the same as the study of their linear
counterpart. We shall consequently focus our atten-
tion in this note on linear systems of ODEs.

It is well known that two of the eight Lie point
symmetries generating the symmetry algebra of a sec-
ond order linear ODE are non fiber-preserving and
called non-Cartan. This concept has been known only
for scalar equations [7, 6, 1], and we obtain in this
paper their natural extension to systems of second or-
der ODEs of arbitrary dimensions. However, it ap-
pears that such extension holds only in equivalence

classes (under point transformations) of trivial equa-
tions y(2) = 0, y ∈ Rm and such classes will be
referred to as canonical classes. This confirms the
known fact that the natural extension of scalar linear
ODEs to systems of arbitrary dimensions consists only
of the canonical class. All non-Cartan symmetries are
explicitly determined in this paper for arbitrary sys-
tems of m linear equations in canonical classes and
it is shown that they form an abelian Lie algebra of
dimension 2m .

Moreover, it is shown that non-Cartan symme-
tries characterize linear systems of ODEs reducible by
point transformation to their trivial counterpart, and
we verify that they do not characterize nonlinear sys-
tems of ODEs having this property. It is also shown
amongst others that the non-Cartan property of a sym-
metry vector is coordinate-free. Some examples of
application of these results are discussed.

2 Scalar equations
In order to fix ideas, let us consider the Lie point sym-
metry algebra of the (trivial) free fall equation

y′′(x) = 0, (1)

using the notation y′ = dy
dx = y(1), and y′′ =

d2y
dx2

= y(2), etc. It is the symmetry algebra of the max-
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imal possible dimension for any second order ODE,
and it would be relevant to list here its eight genera-
tors, given by

S1 = ∂y, S2 = x ∂y, Fz = 2x ∂x +y ∂y,
(2a)

Fm = ∂x, Fp = x2 ∂x +xy ∂y, (2b)

H = y ∂y, C1 = y ∂x, C2 = xy ∂x +y2 ∂y .
(2c)

The only two non fiber-preserving symmetries in
(2), i.e. those whose first components do not involve
the dependent variable y, are the last two ones, C1 and
C2, and they are thus the non-Cartan symmetries of
(1). Moreover, we formally prove in the next proposi-
tion that every second order linear ODE has precisely
two non-Cartan symmetries. First we note that any
such equation can always be obtained from the trivial
equation (1) through the equivalence transformation

x = ρ(t), y = π(t)u+ σ(t), (3)

which is in fact the most general point transformation
leaving invariant any nonhomogeneous linear scalar
equation of any given order.

Proposition 1. Every scalar linear second order ODE
has precisely two non-Cartan symmetries.

Proof. Let v = ξ(x, y) ∂x +φ(x, y) ∂y be a symme-
try generator of (1) and suppose that under a change
of variables of the form (3) it has expression v =
η(t, u) ∂t +ψ(t, u) ∂u . Then η = η(t, u) clearly sat-
isfies η = ξ ∂ t∂ x + φ ∂ t∂ y . Since (3) is invertible, one
must have t = µ(x) for a certain function µ depend-
ing on x alone, and thus 0 6= ∂ t

∂ x is expressible in
terms of t alone. Hence it follows from (2) and (3)
that η = ξ(x, y) ∂ t∂ x is the first component of a non-
Cartan symmetry, that is, it depends explicitly on u if
and only if ξ depends explicitly on y. Therefore, since
there are only two non-cartan symmetries in (2), the
transformed version of (1) must also have exactly two
non-Cartan symmetries, due to the invertibility of the
equivalence transformation (3). This completes the
proof of the proposition.

Let Ω = r d
dx + s be an ordinary differential op-

erator, where r and s are given functions of x. It is
well-known [2] that a scalar linear homogeneous ODE
of arbitrary order is reducible by a point transforma-
tion to the trivial equation y(n) = 0 if and only if it is
iterative, that is, of the form Ωn[y] = 0. The normal
form of these iterative equations is more convenient
for their study, in particular because in such a form

they depend on a single arbitrary function. Also, only
this form of reduction is always possible in practice
without invoking any solution of the equation, and in
fact these solutions are often not available even for
second order equations. Here, normal form refers to
the form of the ODE in which the coefficient of the
term of second highest order has vanished. Let

y′′ + qy = 0 (4)

be the normal form of the second order equation
Ω2[y] = 0 for some given and fixed values of r and
s. The requirements for the equation to be in normal
form forces s to become expressible in terms of r and
its derivatives. On the other hand, let

y(n) +A2
n y

(n−2) + · · ·+Ajn y
(n−j) + · · ·+Ann y = 0

(5)
be the normal form of Ωn[y] = 0 corresponding to the
same initial parameter r of Ω. Then the coefficientAjn
in (5) are differential polynomials in q [8, 9]. More-
over if we let u and v be two linearly independent so-
lutions of (4), then their Wronskian uv′−u′v is a con-
stant which we shall normalize to one. It can then be
shown that n linearly independent solutions of (5) are
given by

sk = un−1−kvk, for k = 0, . . . , n− 1. (6)

Every point transformation of the form

y =
1

λ
un−1w, z =

v

u
. (7)

where λ 6= 0 is a constant reduces any nth order equa-
tion (5) to the trivial counterpart y(n) = 0. In partic-
ular, using (7) and (2) one readily sees that the non-
Cartan symmetries corresponding to (4) are given by

C11 = yu ∂x + y2u′ ∂y, C12 = yv ∂x + y2v′ ∂y .
(8)

3 Generalization to systems of linear
equations

For an arbitrary system of ODEs in m dependent vari-
ables (y1, . . . , ym) = y and one independent variable
x, a symmetry generator

v = ξ(x,y) ∂x +
m∑
j=1

φj(x,y) ∂j

of the system will be called non-Cartan if the function
ξ = ξ(x,y) depends explicitly on at least one of the
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m dependent variables yj . Let us denote by Cm ,n the
canonical class of systems of linear ODEs of order n
and dimension m . The complete algebraic structure
of the Lie point symmetry algebra Lm ,n of members
of Cm ,n considered in their most general and normal
forms has recently been obtained in [7] for arbitrary
values of m and for n ≥ 3. In fact as a corollary of this
result it was shown in the same paper that the maximal
dimension of the symmetry algebra for any system of
m (linear or nonlinear) ODEs of order n ≥ 3 is m +
nm + 3, and that this maximum is achieved precisely
on Cm ,n. Note that according to a result of [10], the
normal form of a linear systems in Cm ,n consists of
isotropic systems of the form

y(n) +A2
n y

(n−2) + · · ·+Ajn y(n−j) + · · ·+Ann y = 0,
(9)

where y = (y1, . . . , ym) ∈ Rm , and the Ajn = Ajn(x)
are the same scalars appearing in (5). In other words,
(9) consists of copies of the same iterative equation.
Set ∂j = ∂yj . Then a basis of generators of Lm ,n as
constructed one by one in [7] are given by

Hij = yi ∂j , for i, j = 1, . . . ,m (10a)

Skj = sk ∂j , for k = 1, . . . , n and j = 1, . . . ,m ,
(10b)

Fp = v2 ∂x +(n− 1)vv′
∑m

i=1yi ∂i, (10c)

Fm = −u2 ∂x−(n− 1)uu′
∑m

i=1yi ∂i (10d)

Fz = 2uv ∂x +(n− 1)(uv′ + u′v)
∑m

i=1yi ∂i
(10e)

where the sk are as given by (6). Although the gener-
ators (10) are originally constructed only for Lie alge-
brasLm ,n with n ≥ 3, it turns out that by letting n = 2
in (10), the resulting generators are also linearly inde-
pendent symmetries of Lm ,2. However, by a result of
[4], the dimension dm ,2 of Lm ,2 is m2 + 4m + 3, and
this can be written as

dm ,2 = (m2 + nm + 3) + nm , for n = 2.

This shows that in addition to the m2 + 2m + 3 gen-
erators of the form (10), Lm ,2 has precisely 2m addi-
tional generators. The generators of Lm ,2 were also
obtained in [4] but not in a form that exhibit the non-
Cartan ones. In fact, there is no reference of any kind
to non-Cartan symmetries in [4]. It is however clear
that the missing 2m symmetries include all the non-
Cartan ones which can be found by calculation for
systems of low dimensions. In fact, it turns out that
one of the easiest ways to find the 2m symmetries is
to try to guess their expressions from that for scalar
equations given by (8). One thus obtain the following
result.

Theorem 2. For all m ≥ 1 the Lie point symmetry
algebra Lm ,2 of systems of m linear ODEs of order 2 in
Cm ,2 taken in the normal form (9) has 2m non-Cartan
symmetries

Cik = yiuk ∂x +
m∑
j=1

yiyju
′
k ∂j ,

for i = 1, . . . ,m and k = 1, 2,

(11)

where u′k = duk/dx, u1 = u, u2 = v, and as usual
u and v are the two linearly independent solutions of
(4). Moreover, these non-Cartan symmetries form an
abelian Lie algebra.

Proof. Suppose that ∆ ≡ (∆1, . . . ,∆m) = 0 is a sys-
tem of differential equations defined in the spaceM
of independent and dependent variables, and let v be
a vector field on M. Then v is a symmetry of ∆ if
and only if it satisfies the infinitesimal condition of
invariance given by

v(p)(∆ν)
∣∣
(∆=0)

= 0, for all ν = 1, . . . ,m . (12)

where v(p) is the pth prolongation of v to the pth jet
space ofM. Thus the Cik in the theorem are symme-
tries of Lm ,2 because they satisfy the above infinitesi-
mal invariance condition applied to the corresponding
second order system of the form (9). It is also straight-
forward to verify that the Cik are pairwise commuta-
tive, and thus they form an abelian Lie algebra.

4 Characterization of systems of
ODEs admitting non-Cartan sym-
metries

A question that naturally arises at this point is whether
non-Cartan symmetries also exist for systems of lin-
ear ODEs not belonging to Cm ,2, that is, which are not
members of a canonical class. More generally, the re-
sults we have obtained up to now in this paper point
to the question of whether non linearizable systems of
second order ODEs may possess non-Cartan symme-
tries. An answer to the latter question is provided by
the trivial system with m = 1, that is, by scalar ODEs.
It turns out indeed, that some non linearizable second
order ODEs do admit non-Cartan symmetries. To ver-
ify this fact it will be enough to find the general form
of scalar second order odes.

y′′ = F (x, y, y′) (13)

admitting the non-Cartan symmetries C1 = y ∂x and
C2 = yx ∂x +y2 ∂y appearing in (2). We first note
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that (13) admits the symmetry C1 if and only if the
function F satisfies

yFx − 3pF + p2Fp = 0, (14)

where p = y′. Solving the latter partial differentia
equation for F yields

F = (p/y)3G(y,
x

y
− 1

p
), (15)

where G is an arbitrary function of two arguments.
With the new expression for F given by (15), it fol-
lows that C2 is a also a symmetry of (13) if and only
if the function G in (15) is of the form

G(x, u) = H(xu),

for some arbitrary function H of a single argument.
Consequently, the most general scalar second order
ODE admitting the symmetries C1 and C2 is of the
form

y′′ = (p/y)3H(x− y

p
). (16)

Consider for instance the particular case of an equa-
tion of the form (16), given by

y′′ =
p3[p(x+ 1)− y]

y3(y − xp)
. (17)

It clearly follows from Lie’s linearization algorithm
for second order ODEs [3, 5, 11] that the latter equa-
tion is not linearizable for the obvious reason that is
is not a polynomial of degree at most 3 in p. Yet,
by construction it admits the symmetries C1 and C2.
We have thus established the fact that non lineariz-
able equations may admit non-Cartan symmetries. It
should also be noted that in order to establish this fact,
it was enough to exhibit only a non linearizable ODE
that does admit any given non-Cartan symmetry. In
particular, it was enough to consider in the discussion
leading to a counterexample of the form (17) only one
of the two symmetries C1 and C2.

From the results obtained up to this point in this
section, we can affirm that non-Cartan symmetries do
not characterize general systems of ODEs reducible by
point transformations to their trivial counterpart, given
that some non linearizable systems of ODEs do admit
non-Cartan symmetries. However, it turns out that the
non-Cartan symmetries do characterize linear systems
of second order ODEs reducible by point transforma-
tion to their trivial counterpart, and this is the case at
least for systems of m = 2 equations which we shall
prove. First, we note that every system of two second
order ODEs can always be put into the normal form

y′′ =

(
a1 a2

a3 a4

)
y, y = (y1, y2) ∈ R2 (18)

where the entries a1, a2, a3 and a4, are arbitrary func-
tions of the independent variable x.By a result of [10],
the equivalence group of (18) consists of invertible
point transformations of the form

x = f(z), y = f ′(z)1/2Cw, (19)

where f is a smooth function and C = (Cij) ∈ K4

is a constant matrix. Applying (19) to (18) transforms
the latter to an equivalent equation of the form

y′′ =

(
A B
C −A

)
y, y = (y, w) ∈ R2 (20)

depending on only three arbitrary functions A,B, and
C, provided that the function f = f(z) satisfies the
nonlinear ode

−2[(a1 + a4) ◦ f ]f ′4 − 3f ′′ 2 + 2f ′f ′′′ = 0. (21)

Let z = g(x) be the inverse of the function x = f(z).
By virtue of the invertibility of (19), the function g ex-
ists and it follows from (19) that the equation satisfied
by the auxiliary function q = g′(x) is given by

−2(a1 + a4) q2 + 3q′ 2 − 2qq′′ = 0. (22)

It follows from Lie’s linearization algorithm for sec-
ond order ODEs [3] that (22) is linearizable, and hence
integrable. Consequently, (21) is also integrable.
Hence without loss of generality, we may assume that
any system of two linear second order ODEs is of the
form (20).

Let an nth order system of m linear equations be
given in the form

y(n) +An−1 y
(n−1) + · · ·+A1 y

′ +A0 y = b,
(23)

y = (y1, . . . , ym) ∈ Rm , (24)

where the m × m matrices Aj = Aj(x) are given
functions of the independent variable x, and b =
(b1(x), . . . , bm(x)) is the nonhomogeneous term. We
recall here that by a result of [10] the equivalence
group of (23) consists of invertible point transforma-
tions of the form

x = f(z), y = Qw + s, w, s ∈ Rm , (25)

where Q = Q(z) =
(
qij
)

is an m × m matrix and
s = s(z) = (s1, . . . , sm) is a particular solution of
(23).
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Lemma 3. The non-Cartan property of a symmetry of
a given system of linear ODEs is coordinate-free. That
is, a symmetry generator of a linear system of ODEs is
non-Cartan in a given coordinate system if and only
if it remains non-Cartan under the general change of
variables (25).

Proof. Let O be an open subset of R× Rm coordina-
tized by x = (x,y) where y = (y1, . . . , ym). Let

v = ξ(x) ∂x +
∑
i

φi(x) ∂j (26)

be a vector field on O. Denote by z = ψ(x) a
change of coordinates of the general form (25). Thus
z = (z,w), with w = (w1, . . . , wm). To prove the
lemma it suffices to show that v is non-Cartan in the
x coordinates if and only if it is non-Cartan in the z
coordinates. Suppose that in the z coordinates v has
expression

v = ξ̄(z) ∂z +
∑
i

φ̄i(z) ∂wj .

It is well known from standard results on transfor-
mation groups [12, 13] that in the z coordinates, the
components ξ̄ and φ̄i of v are given by

ξ̄(z) = ξ(x)
∂ ψ0

∂ x
+

m∑
i=1

φi(x)
∂ ψ0

∂ yi
(27a)

φ̄j(z) = ξ(x)
∂ ψj
∂ x

+

m∑
i=1

φi(x)
∂ ψj
∂ yi

, (27b)

where (ψ0, ψ1, . . . , ψm) = ψ. Since z = ψ(x) rep-
resents the change of coordinates (25) one has z =
ψ0(x) = g(x), where g is the inverse of the function
f from (25). Consequently, it follows from (27a) that

ξ̄(z) =
1

f ′(z)
ξ(x) =

1

f ′(z)
ξ(f(z), y1, . . . , ym)

(28a)

where by (25) one has

yi =
∑
j

qijwj + si(z). (28b)

It thus follows from the invertibility of the matrix
Q =

(
qij
)

that each of the variables yi depends ex-
plicitly on at least one of the new dependent variables
wj . Consequently, (28) clearly shows that ξ(x) de-
pends explicitly on one of the original dependent vari-
ables yi if and only if ξ̄(z) also depends explicitly on
one of new independent variables wj . In other words,
v is non-Cartan in the x coordinates if and only if it
is non-Cartan in the z coordinates and this completes
the proof of the lemma.

It should be noted that Proposition 1 may also be
obtained as a corollary of Lemma 3.

Theorem 4. An arbitrary linear system (S) of two sec-
ond order ODEs is reducible by a point transformation
to the trivial equation y′′ = 0,y ∈ R2 if and only if it
admits a non-Cartan symmetry.

Proof. It follows from Lemma 3 that without loss of
generality one may assume that the given system of
ODEs is in the reduced normal form (20). Moreover,
by Theorem 2 and Lemma 3 it suffices to show that if
an equation of the form (20) admits a non-Cartan sym-
metry, then it is trivial. Therefore, let a vector field of
the form (26) with m = 2 be a symmetry generator of
(20). By applying the second prolongation of v to (20)
according to the infinitesimal invariance criterion (12)
and then expanding the resulting expression as poly-
nomials in the derivatives of y(z) and w(z) yields the
so-called determining equations for v. In this instance
they are given by

ξww = 0, ξyw = 0, ξyy = 0 (29a)

ηww = 0, φyy = 0 (29b)

φww − 2ξxw = 0, 2ηyw − 2ξxw = 0 (29c)

ηyy − 2ξxy = 0, −2ξxy + 2φyw = 0 (29d)

2ηxw − 2Bwξw − 2Ayξw = 0 (29e)

2Awξy − 2Cyξy + 2φxy = 0 (29f)

−Aη −Bφ− yξAx − wξBx −Awηw + Cyηw

+Bwηy +Ayηy − 2Bwξx − 2Ayξx + ηxx = 0

(29g)

3Awξw − 3Cyξw −Bwξy
−Ayξy − ξxx + 2φxw = 0

(29h)

Awξw − Cyξw − 3Bwξy

− 3Ayξy + 2ηxy − ξxx = 0
(29i)

− Cη +Aφ+ wξAx − yξCx + 2Awξx − 2Cyξx

−Awφw + Cyφw +Bwφy +Ayφy + φxx = 0.

(29j)

It thus follows from (29a) that

ξ = αy + βw + γ, (30)

where α, β, and γ are some functions of x. It also
follows from (29b) that

η = aw + b, and φ = Ry + S,

where a and b are functions of x and y while R and
S are functions of x and w. Substituting these new
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expressions for ξ, η, and φ into (29) and solving the
resulting version of (29c) and (29d) shows that

R = α′w + r1, S = β′w2 + s1w + s2 (31a)

a = β′y + a1, b = α′y2 + b1y + b2, (31b)

where r1, s1, s2, a1, b1, and b2 are of course some
functions of x. Substituting the new expressions from
(31) into the latest version of (29), it follows from the
resulting version of (29e) and (29f) that r1 = k1 and
a1 = k2 for some constants k1 and k2. Updating the
latest version of (29) with these new values for r1 and
a1 yields the new system of remaining determining
equations

− 2Cyα+ 2w (Aα+ αxx) = 0 (32a)

− 2Bwβ − 2y (Aβ − βxx) = 0 (32b)

−Ab2 −BS2 + w2 (−βBx − 2Bβx)

+ w (−2Ak2 +Bb1 − γBx −BS1 − 2Bγx)

+ b2x,x + y2 (−αAx −Aαx + Cβx + αxxx)

+ y
(
−Bk1 + k2C − γAx − 2Aγx + b1xx

+ w (−βAx − αBx −Bαx − 3Aβx + βxxx)
)

= 0

(32c)

2s1x + y (−Aα− 3Cβ + αxx)

+ w (−Bα+ 3Aβ + 3βxx)− γxx = 0
(32d)

2b1x + y (−3Aα− Cβ + 3αxx)

+ w (−3Bα+Aβ + βxx)− γxx = 0
(32e)

− Cb2 +AS2 + y2 (−αCx − 2Cαx)

+ w (Bk1 − k2C + γAx + 2Aγx + s1xx)

+ S2xx + y
(
2Ak1 − Cb1 − γCx + CS1 − 2Cγx

+ w (αAx − βCx + 3Aαx − Cβx + αxxx)
)

+ w2 (βAx +Bαx +Aβx + βxxx) = 0.

(32f)

Recall that from the expression for ξ given in (30), v
is non-Cartan if and only if α 6= 0 or β 6= 0.

We first suppose that α 6= 0. Then, by the van-
ishing of the coefficient of y in (32a), it follows that
C = 0. Substituting this new value for C in (32) and
comparing the coefficient of w in the resulting version
of (32d) and (32e) shows that B = 0 must hold. With
this new value of B, comparing the coefficient of w
in (32a) and the coefficient of y in (32d) shows that
A = 0 must also hold. In view of the form of the orig-
inal equation (20), we have thus shown that if α 6= 0
then (20) reduces to the trivial equation.

We now consider the case β 6= 0. Since the roles
of α and β in the expression of ξ in (30) are clearly
symmetrical, it also follows that β 6= 0 implies that
(20) is trivial. In other words, if the symmetry vector
v is non-Cartan, then the corresponding equation (20)
is trivial, and this completes the proof of the theorem.

It should be noted that it is not essential in the
proof of Theorem 4 to assume that the given system
of ODEs is of the form (20). One could as well assume
even more simply that it is rather of the more general
form (18). The proof of the theorem is then carried out
in that case along the same lines as in the given proof,
except that the resulting system is not a trivial one,
but rather an isotropic one. One can then make use
of a result of [10] to conclude that such an isotropic
system is reducible to the trivial equation by a point
transformation.

Concluding remarks
We have proved in this paper that the non-Cartan prop-
erty of a symmetry is coordinate-free for a system lin-
ear ODEs of arbitrary order and dimension, and that
non-Cartan symmetries do not embed a characteri-
zation of nonlinear systems reducible to their trivial
counterpart by a point transformation. We have how-
ever shown that non-Cartan symmetries do character-
ize linear systems of second order ODEs reducible by
a point transformation to the trivial system. More ex-
actly, we have provided the proof to this fact for sys-
tems of two equations. Although it is apparent that
the result holds for any system of m ≥ 2 equations, it
remains an open problem to systematically prove this
fact.

An immediate application of this result is an easy
method for identifying linear systems of ODEs re-
ducible by point transformation to their trivial coun-
terpart. Indeed, the results of the paper suggest that
one simple way to determine if a given system of lin-
ear equations is in Cm ,n is to find out if it has any
non-Cartan symmetry, in case the Lie point symmetry
algebra is available. For instance if we let A = ( 1 0

2 1 ) ,
and y = (y1, y2), then the system of linear equa-
tions y′′ +Ay = 0 has a seven dimensional Lie point
symmetry algebra, all of whose generators are fiber-
preserving. Therefore the given system is not a mem-
ber of Cm ,2.

When the Lie point symmetry algebra is not avail-
able, the other simple way to find out if a given system
of linear equations is a member of Cm ,n is to test if the
system admits any non-Cartan symmetry, and in so
doing the component ξ in (26) should be taken in the
form (30).
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