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Abstract: In this paper, we consider surfaces in the 3-dimensional Euclidean space E3 which are of finite II-type,
that is, they are of finite type, in the sense of B.-Y. Chen, corresponding to the second fundamental form. We
present an important family of surfaces, namely, tubes in E3. We show that tubes are of infinite II-type.
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1 Introduction
As is well known, the theory of surfaces of finite type
were introduced by B.-Y. Chen about thirty years ago
and it has been a topic of active research by many
differential geometers since then. Let Mn be an n-
dimensional submanifold of an arbitrary dimensional
Euclidean space Em. Denote by ∆I the Beltrami-
Laplace operator on Mn with respect to the first fun-
damental form I of Mn. The submanifold Mn is said
to be of finite type, if the position vector x of Mn can
be written as a finite sum of nonconstant eigenvectors
of the operator ∆I , that is if

x = x0 +

k∑
i=1

xi, ∆Ixi = λixi, i = 1, ..., k, (1)

where x0 is a fixed vector and x1, ..., xk are noncon-
stant maps such that ∆Ixi = λixi, i = 1, ..., k.

The class of finite type submanifolds in an arbi-
trary dimensional Euclidean spaces is very large, on
the other hand, very little is known about surfaces of
finite type in the Euclidean 3-space E3. In particular,
other than minimal surfaces, the circular cylinders and
the spheres, no surfaces of finite type corresponding
to the first fundamental form in the Euclidean 3-space
are known. So in [5] B.-Y. Chen mentions the follow-
ing problem

Problem 1 Determine all surfaces of finite Chen I-
type in E3.

In order to give an answer to the above problem,
important families of surfaces were studied by differ-
ent authors by proving that finite type ruled surfaces
[7], finite type quadrics [8], finite type tubes [4], fi-
nite type cyclides of Dupin [10] and finite type spiral

surfaces [1] are surfaces of the only known examples
in E3. However, for another classical families of sur-
faces, such as surfaces of revolution, translation sur-
faces as well as helicoidal surfaces, the classification
of its finite type surfaces is not known yet. For a more
details, the reader can refer to [6].

Following (1) we say that a surface M is of fi-
nite type with respect to the fundamental form II , or
briefly of finite II-type if the position vector x of M
can be written as a finite sum of nonconstant eigen-
vectors of the operator ∆II , that is if

x = x0+
k∑
i=1

xi, ∆IIxi = λixi, i = 1, ..., k, (2)

where x0 is a fixed vector and x1, ..., xk are noncon-
stant maps such that ∆IIxi = λixi, i = 1, ..., k. If, in
particular, all eigenvalues λ1, λ2, ..., λk are mutually
distinct, then M is said to be of II-type k, otherwise
M is said to be of infinite type. When λi = 0 for some
i = 1,..., k, then M is said to be of null II-type k.

In general when M is of finite type k, it fol-
lows from (2) that there exist a monic polynomial, say
R(x) 6= 0, such that R(∆II)(x − c) = f0. Suppose
that R(x) = xk + σ1x

k−1 + ... + σk−1x + σk, then
coefficients σi are given by

σ1 = −(λ1 + λ2 + ...+ λk),

σ2 = (λ1λ2 + λ1λ3 + ...

+λ1λk + λ2λ3 + ...

+λ2λk + ...+ λk−1λk),

σ3 = −(λ1λ2λ3 + ...+ λk−2λk−1λk),
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σk = (−1)kλ1λ2...λk.

Therefore the position vector x satisfies the fol-
lowing equation, (see [3])

(∆II)kx + σ1(∆
II)k−1x + ...+ σk(x− c) = 0. (3)

In this paper we will pay attention to surfaces
of finite II-type. Firstly, we will give a formula for
∆IIx. Further, we continue our study by proving fi-
nite type surfaces for an important class of surfaces,
namely, tubes in E3.

2 Preliminaries

Let x = x(u1;u2) be a regular parametric represen-
tation of a surface M in the Euclidean 3-space E3

referred to any system of coordinates u1, u2, which
does not contain parabolic points, we denote by bij
the components of the second fundamental form II =
bijdu

iduj of S. Let ϕ(u1, u2) be a sufficient differen-
tiable function on M . Then the second differential
parameter of Beltrami with respect to the second fun-
damental form of M is defined by [14]

∆IIϕ := − 1√
|b|

(
√
|b|bijϕ/i)/j (4)

where
(
bij
)

denotes the inverse tensor of (bij) and
b := det(bij). Applying (4) for the position vector
x of M , we find

∆IIx = − 1

2K
∇III(K,n)− 2n (5)

where K,n and ∇III denote the curvature, the unit
normal vector field and the first Beltrami-operator
with respect to III , see [16].

From (5) we obtain the following results which
were proved in [16]:

Theorem 1 A surface S in E3 is of II-type 1 if and
only if S is part of a sphere.

Theorem 2 The Gauss map of a surface M in E3 is
of II-type 1 if and only if M is part of a sphere.

Up to now, the only known surfaces of finite II-
type inE3 are parts of spheres. So the following ques-
tion seems to be interesting:

Problem 2 Other than the spheres, which surfaces in
E3 are of finite II-type?

Another generalization of the above problem is to
study surfaces in E3 of coordinate finite type, that is,
their position vector x satisfying the relation

∆IIx = Ax, (6)

where A ∈ R3×3.
From this point of view, we also pose the follow-

ing problem

Problem 3 Classify all surfaces in E3 with the posi-
tion vector x satisfying relation (6).

This paper provides the first attempt at the study
of finite type families of surfaces in E3 corresponding
to the second fundamental form. Our main result is
the following

Theorem 3 All tubes in E3 are of infinite type corre-
sponding to the second fundamental form.

Our discussion is local, which means that we
show in fact that any open part of a tube is of infinite
Chen type.

3 Tubes in E3

Let ` : w = w(u), uε(a, b) be a regular unit speed
curve of finite length which is topologically imbed-
ded in E3. The total space Nw of the normal bundle
of w((a, b)) in E3 is naturally diffeomorphic to the
direct product (a, b)× E2 via the translation along w
with respect to the induced normal connection. For a
sufficiently small r > 0 the tube of radius r about the
curve w is the set:

Tr(w) = {expw(u)w | w ∈ Nw, ‖ w ‖= r, u ∈ (a, b)}.

Assume that t,h,b is the Frenet frame and κ the
curvature of the unit speed curve w = w(u). For a
small real number r satisfies 0 < r < min 1

|κ| , the
tube Tr(w) is a smooth surface in E3, [15]. Then a
parametric representation of the tube Tr(w) is given
by

F : x(u, ϕ) = w + r cosϕh + r sinϕb. (7)

It is easily verified that the first and the second
fundamental forms of F are given by

I =
(
δ2 + r2τ2

)
du2 + 2r2τdudϕ+ r2dϕ2,

II =
(
− κδ cosϕ+ rτ2

)
du2 + 2rτdudϕ+ rdϕ2,
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where δ := (1 − rκ cosϕ) and τ is the torsian of the
curve w. The Gauss curvature of F is given by

K = −κ cosϕ

rδ
. (8)

Notice that κ 6= 0 since the Gauss curvature van-
ishes. The Beltrami operator corresponding to the sec-
ond fundamental form of F can be expressed as fol-
lows

∆II = − 1

κδ cosϕ

[
∂2

∂u2
− 2τ

∂2

∂u∂ϕ

+
(
τ2 − κδ cosϕ

r

) ∂2

∂ϕ2
+

(1− 2δ)β

2κδ cosϕ

∂

∂u

+
(
− τ́ +

τβ(2δ − 1)

2κδ cosϕ
+

κ(2δ − 1) sinϕ

2r

) ∂

∂ϕ

]
, (9)

where β := κ́ cosϕ+ κτ sinϕ and´:= d
du .

Before we start of proving our main result, we
mention and prove the following special case of tubu-
lar surfaces for later use.

3.1 Anchor rings
A tube in the Euclidean 3-space is called an anchor
ring if the curve ` is a plane circle (or is an open por-
tion of a plane circle). In this case, the torsian τ of
w vanishes identically and the curvature κ of w is a
nonzero constant. Then the position vector x of the
anchor ring can be expressed as

F : x(u, ϕ) =

{(a+ r cosu) cosϕ, (a+ r cosu) sinϕ, r sinu},
(10)

a > r, aεR.

The first fundamental form is

I = r2du2 + (a+ r cosu)2dϕ2,

while the second is

II = rdu2 + (a+ r cosu) cosudϕ2.

Hence, the Beltrami operator is given by

∆II = −1

r

∂2

∂u2
−
[ 1

(a+ r cosu) cosu

] ∂2
∂ϕ2

+
sinu

2r

[ 1

cosu
+

r

a+ r cosu

] ∂
∂u
. (11)

Let x3 be the third coordinate function of x. By
virtue of (11) one can find

∆IIx3 =
3

2
sinu+

r cosu sinu

2(a+ r cosu)
. (12)

which can be rewritten as

(∆II)2x3 =
1

(a+ r cosu)2 cosu
f1(cosu, sinu)

− 3r2 cos2 u sin3 u

4(a+ r cosu)3 cosu
, (13)

where f1(cosu, sinu) is a polynomial in cosu, sinu
of degree 5. Moreover, by a direct computation, it can
be easy seen that

(∆II)nx3 =

1

(a+ r cosu)2n−2 cosu
fn−1(cosu, sinu)

+
λnr

n cos2 u sin2n−1 u

2n(a+ r cosu)2n−1 cosu
, (14)

where fn−1(cosu, sinu) is a polynomial in
cosu, sinu of degree 2n+ 1 and

λn = (−1)n−1
n∏
j=1

(2j − 3)(4j − 5),

Now, if F is of finite type, then there exist real
numbers, c1, c2, ..., cn such that

(∆II)nx+c1(∆
II)n−1x+ ...+cn−1∆

IIx+cnx = 0.
(15)

Since x3 = r sinu is the third coordinate of x,
one gets

(∆II)nx3 + c1(∆
II)n−1x3 + ...+ cn−1∆

IIx3
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+cnx3 = 0. (16)

From (12-14) and (16) we obtain that

1

(a+ r cosu)2n−2 cosu
fn−1(cosu, sinu)

+
λnr

n cos2 u sin2n−1 u

2n(a+ r cosu)2n−1 cosu

+c1
1

(a+ r cosu)2n−4 cosu
fn−2(cosu, sinu)

+c1
λn−1r

n−1 cos2 u sin2n−3 u

2n−1(a+ r cosu)2n−3 cosu

+...+
3

2
cn−1 sinu+

cn−1
r cosu sinu

2(a+ r cosu)
+ cnr sinu = 0

which can be rewritten as

λnr
n cosu sin2n−1 u

2n(a+ r cosu)
+G(cosu, sinu) = 0, (17)

where G is a polynomial of the variables cosu, sinu
of degree 2n− 1.

This is impossible for any n ≥ 1 since λn 6= 0.
Consequently, we have the following

Corollary 4 Every anchor ring in the Euclidean 3-
space is of infinite II-type.

4 Proof of the main theorem

Applying relation (9) on the position vector x of (7)
gives

∆IIx =
βδ

2(κδ cosϕ)2
t

−
(

2 cosϕ+
sin2 ϕ

2δ cosϕ

)
h

−
(

2 sinϕ− sinϕ

2δ

)
b,

which can be rewritten as

∆IIx =
βδ

2(κδ cosϕ)2
t

+
1

κδ cosϕ
Q1(cosϕ, sinϕ), (18)

where Q1(x, y) is a vector valued polynomial in x, y
of degree 3 with functions in u as coefficients. More-
over, by a long computation, we obtain

(∆II)2x =
δ(3δ − 1)(12δ − 5)β3

4(κδ cosϕ)5
t

+
1

(κδ cosϕ)4
Q2(cosϕ, sinϕ), (19)

where Q2(x, y) is a vector valued polynomial in x, y
of degree 7 with functions in u as coefficients.

We need the following lemma which can be
proved directly by using (9).

Lemma 5 For any natural numbers m and n we have(
∆II δg(δ)βm

(κδ cosϕ)n

)
= − δg̃(δ)βm+2

(κδ cosϕ)n+3

+
1

(κδ cosϕ)n+2
P (cosϕ, sinϕ),

where g(δ) is a polynomial in δ of degree d, P is a
polynomial in x, y of degree n + 3 with functions in u
as coefficients and deg(g̃(δ)) = d +2.

Using lemma 5 and relation (9) one finds

(∆II)λx = dλ
β2λ−1

(κ cosϕ)4λ−1
t

+
1

(κ cosϕ)4λ−2
Pλ(cosϕ, sinϕ), (20)

where

dλ = (−1)λ−1
2λ−1∏
j=1

(2j − 1).

It can be seen that dλ 6= 0, for each natural num-
ber λ. Moreover, we have
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(∆II)λ+1x = dλ+1
β2λ+1

(κ cosϕ)4λ+3
t

+
1

(κ cosϕ)4λ+2
Pλ+1(cosϕ, sinϕ). (21)

Let F be of finite type. Then there exist real num-
bers, c1, c2, ..., cλ such that

(∆II)λ+1x + c1(∆
II)λx + ...+ cλ∆IIx = 0. (22)

Using (18-21), one has

dλ+1
β2λ+1

κ cosϕ
t = Q1t +Q2h +Q3b, (23)

where Qi, i = 1, 2, 3, are polynomials in r, s with
functions in u as coefficients.

Now, if β 6= 0. From (23) we find

dλ+1
β2λ+1

κ cosϕ
= Q1(cosϕ, sinϕ) (24)

This is impossible, since Q1 is polynomial in
cosϕ and sinϕ. Assume now β = 0. Then κ́ = 0
and κτ = 0 so κ = const. 6= 0 and τ = 0. Therefore
the curve ` is a circle, and so F is anchor ring. Hence,
F is of infinite type according to Corollary (4). This
completes our proof.
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