Login



Other Articles by Authors

Toby D. Young



Authors and WSEAS

Toby D. Young


WSEAS Transactions on Mathematics


Print ISSN: 1109-2769
E-ISSN: 2224-2880

Volume 16, 2017

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 16, 2017



Numerical Analysis of N-Electron Atomic Statefunctions Using Local Basis Sets

AUTHORS: Toby D. Young

Download as PDF

ABSTRACT: This contribution presents the numerical analysis of Hartree-Fock’s method of computing electron atomic statefunctions using Galerkin’s finite element method. The underlying theory and computational implementation are presented in some detail for the first time and highly accurate energies are presented for free neutral atoms, ions, and for the spatially confined He atom. The method of using local basis sets is shown to be competitive with global basis sets of the Slater and modified Slater types in terms of accuracy and use.

KEYWORDS: Atomic physics, Finite element method, Numerical analysis, Quantum confinement

REFERENCES:

[1] M. Y. Amusia, V. K. Dolmatov, and V. K. Ivanov. Photonization of atoms with half-filled shells. Sov. Phys. JETP, 58(1):67, 1983.

[2] N. Aquino. The hydrogen and helium atoms confined in spherical boxes. Adv. Quantum Chem., 57:123, 2009.

[3] C. F. Bunge, J. A. Barrientos, and A. V. Bunge. Roothaan-Hartree-Fock ground-state atomic wave functions: Slater-type orbital expansions and expectation values for Z = 2−54. At. Data Nucl. Data Tables, 53:113, 1993.

[4] C. F. Bunge, J. A. Barrientos, A. V. Bunge, and J. A. Cogordan. Hartree-Fock and RoothaanHartree-Fock energies for the ground state of He through Xe. Phys. Rev. A, 46(7):3691, 1992.

[5] B. L. Burrows and M. Cohen. Exact solution for spherically confined hydrogen-like atoms. Int. J. Quantum Chemistry, 106(2):478, 2005.

[6] O. Certik. ˘ Physics in screening environments. PhD thesis, University of Nevada, Reno, 2012.

[7] J. Connerade. Soft chemistry and reversible ion storage: The underlying physics. J. Alloys Compd., 255:79, 1997.

[8] J. Connerade and P. Kengkan. Confined atoms. In Proc. Idea-Finding Symposium, page 35. Frankfurt Institute for Advanced Studies, 2003.

[9] D. Davydov, T. D. Young, and P. Steinmann. On the adaptive finite element analysis of the Kohn-Sham equations: Methods, algorithms, and implementation. Int. J. Numer. Meth. Eng., 106(11):863, 2016.

[10] A. Galano, A. Perez-Gonz ´ ales, L. del Orlmo, ´ M. Fancisco-Marquesz, and J. R. Leon- ´ Carmona. On the chemical behaviour of C60 hosting H2O and other isoelectronic neutral molecules. J. Mol. Model., 20:2412, 2014.

[11] J. Garza, J. M. Hernandez-P ´ erez, J. Ramirez, and ´ R. Vargas. Basis set effects on the Hartree-Fock description of confined many-electron atoms. J. Phys. B: At. Mol. Opt. Phys., 2012.

[12] B. M. Gimarc. Polynomial radial functionsfor atomic wavefunctions. J. Chem. Phys, 44(1):373, 1966.

[13] N. D. Gurav, S. P. Gejji, L. J. Bartolotti, and R. K. Pathak. Encaged molecules in external electric fields: A molecular ”tug-of-war”. J. Chem. Phys., 145:074302, 2016.

[14] T. Koga, H. Tatewaki, and A. J. Thakkar. Roothaan-Hartree-Fock wave functions for atoms with Z ≤ 54. Phys. Rev. A, 47(5):4510, 1993.

[15] T. Koga, S. Watanabe, K. Kanayama, R. Uasuda, and A. J. Thakkar. Improved Roothaan-HartreeFock wave functions for atoms and ions with N ≤ 54. J. Chem. Phys., 103(8):3000, 1995.

[16] J. D. Levine. Nodal hydrogenic wave functions of donors on semiconductor surfaces. Phys. Rev, 140(2A):A586, 1965.

[17] E. Ley-Koo and S. Rubinstein. The hydrogen atom within spherical boxes with penetrable walls. J. Chem. Phys, 71:351, 1979.

[18] E. V. Lidena. SCF calculations of hydrogen in a ˜ spherical box. J. Chem. Phys., 66(2):468, 1976.

[19] E. V. Ludena. SCF Hartree-Fock calculations ˜ of ground-state wavefunctions of compressed atoms. J. Chem. Phys., 69:1770, 1978.

[20] M.-A. Martinez-Sanchez, M. Rodriguez- ´ Bautista, R. Vargas, and J. Garza. Solution of the Kohn-Sham equations for many-electron atoms confined by penetrable walls. Theor. Chem. Acc., 135:207, 2016.

[21] M. Rodriguez-Bautista, C. D´ıaz-Garcia, A. M. Navarrete-Lopez, R. Vargas, and J. Garza. ´ Roothaan’s approach to solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior. J. Chem. Phys., 143:034103, 2015.

[22] S. Satpathy. Eigenstates of Wannier excitons near a semiconducting surface. Phys. Rev. B, 28(8):4585, 1983.

[23] M. Saunders, H. A. Jimenez-V ´ azquez, R. J. ´ Cross, and R. J. Poreda. Stable compounds of helium and neon: he@c60 and ne@c60. Science, 259(5):1428, 1993.

[24] O. Certik, J. E. Pask, and J. Vack ˘ a´˘r. dftatom: A robust and general Schrodinger and Dirac ¨ solver for atomic structure calculations. CPC, 184(7):1777, 2013.

[25] Y. P. Varshni. Critical cage radii for a confined hydrogen atom. J. Phys. B: At. Mol. Opt. Phys., 31(13):2849, 1998.

[26] B. Xu and X. Chen. Electrical-driven transport of endohedral fullerene encapsulating a single water molecule. Phys. Rev. Lett., 110:156103, 2013.

[27] T. D. Young. A finite basis grid analysis of the Hartree-Fock wavefunction method for one- and two-electron atoms. AIP Conf. Proc., 1558:1540, 2013.

[28] T. D. Young, R. Vargas, and J. Garza. A HartreeFock study of the confined helium atom: Local and global basis set approaches. Phys. Lett. A, 380:712, 2016.

WSEAS Transactions on Mathematics, ISSN / E-ISSN: 1109-2769 / 2224-2880, Volume 16, 2017, Art. #44, pp. 412-420


Copyright © 2017 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site