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Abstract: This contribution presents the numerical analysis of Hartree-Fock’s method of computing electron atomic
statefunctions using Galerkin’s finite element method. The underlying theory and computational implementation
are presented in some detail for the first time and highly accurate energies are presented for free neutral atoms,
ions, and for the spatially confined He atom. The method of using local basis sets is shown to be competitive with
global basis sets of the Slater and modified Slater types in terms of accuracy and use.
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1 Introduction
Many-electron atomic statefunctions are often re-
quired for the computation of various physical pro-
cesses involving electron motion and interaction. The
champion of numerical methods are those that deter-
mine the electron statefunctions in a self-consistent
manner and according to a variational principle. For
many practical purposes, HF statefunctions are suffi-
ciently accurate and can serve as the basis for more
involved computations including strongly correlated
electrons.

In general, algebraic approximations to HF state-
functions are expanded as a linear combination of ra-
dial orbitals that form the basis for practical compu-
tations. For instance, there are Slater Type Orbitals
(STOs), Gaussian orbitals, polynomials, and mixed
bases, that span the global physical space under inves-
tigation and for many applications a Global Basis Set
(GBS) is sufficient. There are however some cases of
interest where these functions are not sufficiently ac-
curate and should be either modified, or in some cases
abandoned, to obtain reasonable results from compu-
tations. One such case is the spatially confined atom
problem [12, 11].

Spatial confinement is the process of restricting
the motion of atoms by manipulation of their environ-
ment [8]. Consider, for example, an atom trapped in a
fullerene cage [17, 23, 10], or trapped on a semicon-
ducting surface [16, 22], or embedded in a crystalline
matrix or liquid host (quantum dot), or an atom under
external pressure. During recent years, the realisation
of such systems in the form of nano and molecular

electronic circuits has generated considerable interest
in the development of the idea of quantum confine-
ment. Models of confinement are thus important to
study, as they reveal the affect of spatial restriction
on the complex electron-electron and nucleus-electron
interaction, as well as providing tests of existing math-
ematical models, methods, and their approximations
to electronic structure under extreme conditions.

The affect of confinement on electronic structure
is usually studied by considering a single atom or
molecule at the centre of a sphere with a potential im-
posed on the surface of the sphere [16, 22, 23, 25, 5,
26, 10, 13]. The respective confinement potential usu-
ally considered is,

v(r) =

{
−Z
r r < rc

vc(r) r ≥ rc
, (1)

where rc is a given cutoff radius and vc is a supple-
mentary potential often considered to be a constant.
For radii less than the cutoff radius, the potential is
the familiar coulomb potential with the nuclear charge
Z ∈ {Z+} . Both Hartree-Fock (HF) and Kohn-Sham
methods have been used that effectively cancel out the
electron statefunction (or density function) on the sur-
face of the sphere on rc with vc(r) = ∞ . To study
that model of confinement, modified STOs can pro-
vide a sufficiently accurate basis [18].

A more realistic approach corresponds to a soft,
penetrable wall on the surface of the sphere in which
the electron statefunction (or density function) can
tunnel through the surface of the sphere and into the
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classically forbidden region [19, 17, 20, 21]. In these
cases and especially in considering more structurally
complex potentials than (1), it is difficult to propose
a suitable GBS, or a suitable GBS is unknown. An
alternative to a GBS is a Local Basis Set (LBS) that
does not impose any specific restrictions on the ge-
ometric form of the statefunction, though very few
works on the HF method for the many-electron atom
can be found at this time [1, 7, 6, 27, 28]. In par-
ticular, a comparison between global, modified STOs
and LBSs of a finite element (FE) type within HF’s
method has been explored in some detail for highly
spatially confined He [28].

The purpose of this work, as laid out in Sec-
tion 2, is to present for the first time the theoreti-
cal and computational details of our implementation
of HF’s method for the many-electron atom in a FE
basis. Following that, in Section 3, several numeri-
cal experiments are performed using our own home-
brewed code with the aim of testing the accuracy of
the HF statefunctions determined by LBSs. To that
end, computations are performed for a selected num-
ber of atoms and ions as well as for the spatially con-
fined atom problem for helium. The results are shown
to be competitive with those of the HF and Roothaan-
Hartree-Fock (RHF) GBS approaches of Bunge et
al. [4, 3] and Koga et al. [14, 15]. Finally, this con-
tribution is summarised in Section 4 and an outlook
for future directions of research is delivered.

2 Method of computation
In this section the HF method is first described in
brief (below) and then the formalism is written using
Galerkin’s FE method a spherical coordinate system.
Some details of the algorithm and computational pro-
cedures are included for completeness. Specifically,
we are interested in the accurate computation of the
total energy expressed as,

ε = εke + εv + εH + εx , (2)

which is the sum of the kinetic energy, the nuclear-
electron energy, the direct (Hartree), and the exchange
energy. The kinetic energy and nuclear-electron en-
ergy are respectively,

εke = −1

2

∫
ψ∗a(x)∆xψa(x) dx , (3)

and

εv =

∫
ψ∗a(x)v(x)ψa(x) dx , (4)

where ∆ is the Laplace operator and v(x) is an as of
yet unspecified electrostatic potential. The direct term
is,

εH =

∫∫
ψ∗a(x1)ψa(x1)

1

r12
ψ∗b (x2)ψb(x2) dx1 dx2 ,

(5)

and the exchange term is,

εx =

∫∫
ψ∗a(x1)ψb(x1)

1

r12
ψa(x2)ψ

∗
b (x2) dx1 dx2 ,

(6)

r12 = |x1−x2| is a radial distance and the summation
of electron states N = {a, b, . . .} is implied. Note,
that the exchange integral (6) is a non-local integral
and is challenging to compute.

The electron statefunctions ψ ∈ C are con-
strained by the orthonormalisation condition,∫

ψ∗a(x)ψb(x) dx = δab . (7)

and are determined by the variational principle
(Rayleigh-Ritz approximation) that minimises,

ε =

∫
ψ∗(x)Ĥψ(x) dx∫
ψ∗(x)ψ(x) dx

(8)

and the absolute error of the energy,

η(ε) =
δε

δψ
≤ T , (9)

up to a specified tolerance, T .

2.1 Grid-based Hartree and Fock method
First consider the simplest many-electron case in
which the principle shell, n = {1, 2, . . .} , and sub-
shell of the atom, for angular momentum states, ` =
{0, 1, 2, . . .} = {s, p, d, . . .} , are filled. We refer to
these atomic configurations, written explicitly in Ta-
ble 1, as closed sub-shell atoms. In this picture, the
atomic system has spherical symmetry and thus can
be solved in a spherical coordinate system.

Spherical symmetry is equivalent to a special and
convenient choice of electron statefunctions, that are
decomposed into components of radial, angular, and
spin,

ψa(x) =
Pna`a(r)

r
Y`ama(Θ)χ↑↓ , (10)

where Pna`a are radial (state) functions, Y`ama are
spherical harmonics, Θ = (θ, φ) , and χ↑↓ is an inter-
nal spin-up/spin-down degree of freedom. The quan-
tum numbers {n, `,m} describe the shell and sub-
shell structure of the atom. Here, the sum over the
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magnetic quantum number m is carried out explicitly,
where,

∑
m

← 2(2`+ 1) , (11)

for a given ` and states are spin degenerate. Thus,
the number of quantum numbers required to describe
the shell structure of the atom reduces to two; namely,
the principle quantum number n , and the angular mo-
mentum quantum number ` .

A good choice of FE ansatz, defined with the lo-

cal FE interpolation polynomials ϕ(r) ∈ R , is,

Pna`a =
∑
j

uj(na`a)ϕj(r) , (12)

where Latin indices j label degrees of freedom and
u ∈ R is a vector of coefficients to be determined.
Note, that the interpolation polynomials are indepen-
dent of both quantum numbers n and ` .

Making the transformation to a spherical co-
ordinate system and making use of (10) and (12),
the single non-interacting electron energy inte-
gral, that corresponds to Schrödinger’s equation is,

Ih(na`a) =

∫ ∑
ij

[
1

2
∇ϕi(r)∇ϕj(r) +

`a(`a + 1)

2r2
ϕi(r)ϕj(r) + v(r)ϕi(r)ϕj(r)

]
ui(na`a)uj(na`a) dr . (13)

and with the definition of the interaction term,

[Rh]L(a, b, c, d) =

∫∫
[Gh]L(a, b, c, d) dr1 dr2 (14)

where

[Gh]L(a, b, c, d) =
∑
ij

ϕi(r1)ϕj(r1)ui(na`a)uj(nc`c)
∑
kl

ϕk(r2)ϕl(r2)
rL<
rL+1
>

uk(nb`b)ul(nd`d) , (15)

and r< = min[r1, r2] and r> = max[r1, r2] , the total HF energy is expressed as,

ε =
∑
na`a

[
Ih(na`a) +

∑
nb`b

(2`b + 1)
(

[Rh]0(na`a, nb`b, na`a, nb`b) +
∑
L

ΛL[Rh]L(na`a, nb`b, nb`b, na`a)
)]

,

(16)

Table 1: Closed sub-shell atomic configurations of
neutral atoms with Z ≤ 54 .

N element configuration
2 He 1s2

4 Be [He]2s2

10 Ne [He]2s22p6

12 Mg [Ne]3s2

18 Ar [Ne]3s23p6

20 Ca [Ar]4s2

30 Zn [Ar]3d104s2

36 Kr [Ar]3d104s24p6

38 Sr [Kr]5s2

48 Cd [Kr]4d105s2

54 Xe [Kr]4d105s25p6

where the summation,∑
L

:=

`a+`b∑
|`a−`b|

, (17)

is implied and the lambda symbol represents a func-
tion of the familiar Wigner 3j -symbol,

ΛL = −1

2

(
`a L `b
0 0 0

)2

. (18)

Note, that with the potential, vc(r) =∞ (1), the state-
functions are supplemented with zero-valued Dirich-
let boundary constraints defined by, Pna`a(r) = 0
where r ∈ {0, rc} .

The problem at hand has now become the prob-
lem of finding N = {a, b, . . .} eigenpairs {εa, ua} ∈
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R that satisfy the generalised eigenspectrum problem,[
A− εaB

]
ua = 0 , (19)

where A is the system matrix generated by the Hamil-
tonian Ĥ and,

B =

∫ ∑
ij

ϕi(r)ϕj(r) dr , (20)

is the mass (or overlap) matrix.

2.2 Computational details
The general form of a self-consistent algorithm is well
known. The procedure for the HF method starts from
the initial conjection of either the electron energies or
statefunctions. These initial quantities are then used
to assemble and solve the generalised eigenspectrum
(19) in successive iterations labelled, n = 1, . . . nmax ,
until the energy and statefunctions remain unchanged
up to a specified tolerance, T .

A crucial observation taken from the description
of the HF method in Galerkin’s FE basis lead to a
number of simplifications of the standard algorithmic
procedure. Specifically, if the FE grid does not change
throughout the self-consistent procedure, then natu-
rally, integrals over the FE space are constant through-
out the self-consistent procedure. With these observa-
tions, the generalised eigenspectrum problem (19) can
be written, [

I + Fn − εnaB
]
una = 0 , (21)

where Fn depends on the Wigner 3j -symbol, the co-
efficient vectors un−1a , and the FE integral tensor,

GL,ijkl =
∑
ijkl

ϕi(r1)ϕj(r1)ϕk(r2)ϕl(r2)
rL<
rL+1
>

.

(22)

In the generalised eigenspectrum problem (21), the
matrix I of the single non-interacting electron integral
(cf. (13)), the mass matrix B (cf. (20)), and the FE in-
tegral tensor (22), are constant and are required to be
assembled once only at the start of the self-consistent
procedure.

The resultant self-consistent algorithm is de-
scribed in Algorithm 1. In short, the algorithm starts
from assembling the constant objects in (21), as dis-
cussed above, and continuing with iteratively solving
the generalised eigenspectrum problem in the basis
of matrices, eigenvalues, and coefficient eigenvectors
until the specified convergence specified convergence
criteria are met.

Algorithm 1 A psuedocode description of the self-
consistent algorithm described in Section 2.2.
Require: Z , v(r) . physical quantities
Require: nmax , η(ε) . convergence criteria

1: for n← 0 to nmax do
2: if n = 0 then
3: assemble: I and B . cf. (13) and (20)
4: assemble: GL,ijkl . cf. (22)
5: Fn ← 0
6: else
7: assemble: Fn

8: end if
9: An ← I + Fn

10: solve:
[
An − εnaB

]
una = 0

11: compute: εn . cf. (16)
12: if n 6= 0 then
13: η(ε)← |εn−1 − εn|
14: if η(ε) ≤ T then
15: n← nmax . break
16: else
17: n← n+ 1
18: end if
19: end if
20: end for

In the numerical experiments that follow, a FE
grid was generated by placing the vertices of FE cells
at positions gi where i ∈ Z = {0, 1, . . .#K} , ac-
cording to the formula [24, 28],

gi =

{
0 i = 0
exp(βi−1)−1
exp(β[#K])−1rmax otherwise

, (23)

where β = log(α)/(#K − 1) and α = 200 is a con-
stant. Naturally, the grid generator (23) results in a
grid that is denser close to the origin and sparser as it
tends toward the boundary, rmax . For practical com-
putations of free atoms and ions and presented below,
the value rmax = 50 was found to be sufficiently large
to correctly describe the statefunctions in the asymp-
totic region.

3 Numerical experiments
In this section the grid-based LBS method described
in Section 2 is implemented first for a variety of free
atoms, then for a series of ions, and finally for the
spatially confined atom problem described in Section
1.

It is worth remarking that our method is based on
a variational principle, which is an indispensable facet
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of the model in order to find the wanted statefunctions.
The main issue is to obtain highly accurate HF state-
functions through carefully controlled and stabilised
self-consistent convergence of the HF energy. Our in-
terest comes from an ambition to apply the scheme to
accurate predictions of the atomic spectra of highly
correlated spatially confined electron motion in the
near future. Naturally, to perform those computa-
tions, high quality HF statefunctions are required to
start from. Furthermore, for accurate predictions of
the atomic spectra so-called ’chemical accuracy’ is re-
quired, which has an absolute tolerance in the HF en-
ergy of, ηabs(ε) ≤ 1 meV ∼ O(10−5) Hartrees .

3.1 Free atoms and ions
Let us consider first closed sub-shell atomic configu-
rations, where the corresponding potential for the free
atom is,

v(r) = −Z
r
. (24)

The atomic sub-shells are filled in the configurations
presented in Table 1. In convergence tests, the largest
atom considered here, Xe (Z = 54) , was found
to exhibit good convergence behaviour up to T ≤
O(10−12) with an FE space with #K = 12 and 9th-
order interpolation polynomials. It is worth remark-
ing, that higher-order polynomials are preferred in or-
der to obtain high quality state-functions in regions
far from the atomic nucleus where smooth, exponen-
tial decay of the statefunctions is observed, cf. Ref.
[28, 9]. Additionally, we remark, that the computa-
tion of Xe requires simultaneous support for five s-
states, four p-states, and two d-states. The HF en-
ergy up to 6 decimal places εXe = −7232.138534
can be compared to that of Bunge et al. [4] and Koga
et al.,[15] who obtain εXe = −7232.138363 and
εXe = −7232.138364 respectively. Clearly, we are
obtaining good quality statefunctions for Xe.

Note, that it is not guaranteed that this FE space
will provide optimised support for lighter atoms with
Z ≤ 54 (though this was found to be the case) since
variations in the nuclear charge Z naturally affect the
frequency of oscillation of the corresponding state-
functions. To have confidence in this, the convergence
of Ar (Z = 18) are examined is Table 2 where the
relative error is defined, ηrel(ε

n) = εn−1 − εn . In
general it is important, though not necessary, that self-
consistent convergence is obtained from above, mean-
ing, that ηrel ≥ 0 . This was found to be the case for
all free atoms considered, where the mixing parameter
was set to α = 0.9 .

The respective HF energies and sub-shell energy
eigenvalues for closed sub-shell atoms with Z ≤ 54

Table 2: Convergence of the total HF energy with re-
spect to self-consistent cycles n for Ar.

n εnAr ηnrel(ε)

1 -450.646 748 116 -450.646 748 116
2 -514.572 745 355 -63.925 997 238
3 -525.155 772 285 -10.583 026 930
4 -526.632 846 894 -1.477 074 609
5 -526.798 350 478 -0.165 503 583
6 -526.815 566 162 -0.017 215 684
7 -526.817 316 273 -0.001 750 111
8 -526.817 492 998 -0.000 176 725
9 -526.817 510 808 -0.000 017 809

10 -526.817 512 601 -0.000 001 793
11 -526.817 512 782 -0.000 000 180
12 -526.817 512 800 -0.000 000 018
13 -526.817 512 803 -0.000 000 001
14 -526.817 512 803 -0.000 000 000

are presented in Table 3. The HF energies can be
compared to those extensively tabulated by Koga et
al. [15] evaluated with RHF statefunctions. Their re-
sults, presented up to ten significant figures, are an
improvement over some previous works [4, 14]. First,
we note that the HF energies computed with Z ≤ 30
agree exactly with those of Koga et al. with differ-
ences O(10−6) for Kr and Sr. The largest difference
is on the 4th decimal place for Xe, which is a small
but significant difference, since our variational result
is slightly lower in energy.

Problematically, at this time we have not found
any previous computations of the energy eigenvalues
are reported up to 9 decimal places, and hence we
compare the energy eigenvalues with those of Bunge
et al. [3], written up to chemical accuracy. In ev-
ery case the minimal demand of chemical accuracy
is satisfied and, in some cases, we have obtained
slightly lower energy eigenvalues. For instance, the
largest difference comparing the energy eigenvalues
in Table 3 and in Ref. [3] show an improvement to
O(10−4) Hartrees.

A more difficult problem to solve computation-
ally than the free neutral atom, is to consider the com-
putation of free ions. One way to compute the elec-
tronic structure of ions is to manipulate the nuclear
charge. For instance, the negative ion H− is equiva-
lent the computation of He with Z = 1 and the pos-
itive ion Li+ is equivalent to the computation of He
with Z = 3 . The ground-state of some stable ions are
collected in Table 4. Here, convergence from above
was only guaranteed where the mixing parameter was
set to the lower value, α = 0.75 , which increased the
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Table 3: Total HF energy and orbital energy values for atoms in the first five periods of the periodic table of the
elements. Underlined digits denote energy differences, cf. [15]. For all atoms considered the virial ratio is satisfied.

Z element ε n s (` = 0) p (` = 1) d (` = 2)
2 He -2.861 679 996 1 -0.917 955 562

4 Be -14.573 023 168
1 -4.732 669 894
2 -0.309 269 551

10 Ne -128.547 098 109
1 -32.772 442 802 -0.850 409 653
2 -1.930 390 883

12 Mg -199.614 636 424
1 -49.031 736 070 -2.282 226 016
2 -3.767 721 465
3 -0.253 052 581

18 Ar -526.817 512 803
1 -118.610 350 558 -9.571 465 562
2 -12.322 153 311 -0.591 017 411
3 -1.277 353 027

20 Ca -676.758 185 925

1 -149.363725889 -13.629 269 203
2 -16.822 744 270 -1.340 706 953
3 -2.245 376 002
4 -0.195 529 691

30 Zn -1777.848 116 297

1 -353.304 542 396 -38.924 841 351 -3.839 374 125
2 -44.361 721 863 -0.782 537 479
3 -5.637 816 573
4 -0.292 507 211

36 Kr -2752.054 978 746

1 -520.165 471 119 -63.009 786 743 -3.825 234 975
2 -69.903 083 616 -8.331 502 060
3 -10.849 467 123 -0.524 186 782
4 -1.152 935 248

38 Sr -3131.545 689 310

1 -583.687 886 884 -72.996 037 443 -5.694 395 091
2 -80.390 795 627 -10.699 975 673
3 -13.475 028 674 -1.098 162 609
4 -1.896 811 438
5 -0.178 456 308

48 Cd -5465.133 191 723

1 -955.315 401 230 -132.047 019 267 -16.071 970 993
2 -142.006 829 830 -23.597 233 527 -0.763 657 206
3 -27.708 623 087 -3.053 504 065
4 -4.450 534 706
5 -0.264 855 826

54 Xe -7232.138 534 464

1 -1224.397 939 313 -177.782 449 002 -26.118 868 897
2 -189.340 136 110 -35.221 661 669 -2.777 880 779
3 -40.175 665 284 -6.008 338 139
4 -7.856 302 125 -0.457 290 051
5 -0.944414425
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Table 4: HF energies for a selected number of ions.
Underlined digits denote energy differences, cf. [15].
Z element ε+ ε−

1 H− -0.487 930
3 Li± -7.236 415 -7.428 232
5 B+ -24.237 575
9 F− -99.459 454

11 Na± -161.676 961 -161.855 126
13 Al+ -241.674 670
17 Cl− -459.576 925
19 K± -599.017 579 -599.161 917
21 Sc+ -759.462 097
29 Cu− -1638.964 145
31 Ga+ -1923.059 723
35 Br− -2572.536 273
37 Rb± -2938.219 932 -2938.354 901
39 Y+ -3331.472 886
47 Ag− -5197.700 089
49 In+ -5739.978 454
53 I− -6918.076 024
55 Cs+ -7553.810 532

number of iterations in self-consistent procedure by a
few cycles. Nevertheless, clearly, good quality state-
functions are found in almost all cases. For instance,
the seemingly large differences for Ag−, I−, and Sc+
possibly arise from a coincidental numerical round-
off (compare our result with that of Koga et al. [15],
where the value is, εAg− = −5197.698473).

Another possible explanation for these differ-
ences is, that our interpretation of the electron struc-
ture does not correspond to the physical one; for in-
stance, the electronic structure of Sc+ was assumed
to equivalent to Ca with Z = 21 . Nevertheless,
our computation of the HF energy yields, εSc+ =
−759.462097 which compared to the value of Koga
et al. [15] of εSc+ = −759.735718 is a difference of
0.03% of the total energy. These anomalous results
are open for future investigation and refinement.

Another measure of the quality of the statefunc-
tions is the virial ratio,

ξ = −ε− εke
εke

= −εpe
εke

= 2 . (25)

It was found (not shown here) that for all atoms in
Table 3 and ions in Table 4, that the virial ratio is sat-
isfied, to η(ξ) ≤ O(10−9) .

3.2 Spatially Confined helium
Here we consider the spatially confined atom prob-
lem for He [2] with the corresponding potential (1)

with vc(r) = ∞ . Naturally, this implies zero-valued
Dirichlet boundary constraints at r = {0, rc} and the
only remaining grid parameter is rmax = rc . Values
of the cutoff radius rc considered here are chosen to
coincide with the supplementary material of Young et
al. [28] for the comparison with a different implemen-
tation of Galerkin’s FE basis as well as with the GBS
(modified STOs) used there. For these computations,
the tolerance on self-consistent determination of the
HF energy is set to, T ≤ O(10−9) .

Here, we are interested in the HF energy ε , the
direct energy εH , the exchange energy εX , and the
virial ratio ξ ≤ 2 , cf. (25). These quantities and
moments of the general form,

〈rk〉 =

∫
ψ∗a(r)r

kψa(r) dr , (26)

are collected in Table 5 for k ∈ {−1, 1, 2} . Nat-
urally, 〈r0〉a = 1 , cf. (7) and is satisfied to within
O(10−9) for all computed statefunctions at all con-
finement radii considered.

One point of interest is the HF energy at the ex-
treme cutoff radius rc = 0.1 . Here, the HF en-
ergy is computed to be εhe = −906.616396 whereas
Young et al. find εhe = −906.616349 with a GBS,
which is a small difference of 4 × 10−5 . This is the
largest difference occurring from the set of HF en-
ergies analysed from Table 5, with all other differ-
ences η(ε) ≤ O(10−6) . Additionally, there is an im-
provement over the LBS presented there in Ref.[28]
by two orders of magnitude. Clearly, we are obtaining
good quality statefunctions and energies to within the
wanted chemical accuracy.

Another point of general interest is the critical
spatial confinement radius, for which the HF energy
ε = 0 and the virial ratio ξ = 1 . By using the method
of bisection, we report, that the critical spatial confine-
ment radius for He was found to be rc = 1.106448 .
This value can be verified by GBS in future numerical
analyses.

4 Summary
In this contribution, our implementation of HF’s
method in a spherical coordinate system was intro-
duced for the first time in some detail. It was shown,
that the HF statefunctions can be accurately deter-
mined by means of LBSs of the FE type. Unlike with
GBSs, the grid on which the statefunctions are repre-
sented was not changed for the computation ground-
state of atoms and for ions with Z ≤ 54 . This, plus
the fact that the only restrictions of the statefunctions
are boundary constraints, mean that the method is at-
tractive for seeking the HF statefunctions for more
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Table 5: HF, and direct and exchange components of the HF energy and the virial ratio computed for the spatially
confined atom problem for He at a variety of cutoff radii rc . Moments (26) of the HF statefunction are also shown.

rc ε εH εx ξ 〈r−1〉 〈r1〉 〈r2〉
0.1 906.616 396 36.084 203 -18.042 101 0.082 068 24.774 698 0.049 501 0.002779
0.2 206.204 532 18.235 120 -9.117 560 0.166 789 12.598 736 0.097 968 0.010925
0.3 82.386 229 12.293 793 -6.146 896 0.253 981 8.548 825 0.145 347 0.024136
0.4 41.030 936 9.329 884 -4.664 942 0.343 393 6.530 847 0.191 581 0.042093
0.5 22.790 953 7.557 347 -3.778 673 0.434 695 5.325 984 0.236 612 0.064462
1.0 1.061 202 4.063 502 -2.031 751 0.902 610 2.966 756 0.441 719 0.229769
1.2 -0.664 622 3.504 695 -1.752 347 1.083 432 2.595 746 0.513 396 0.313 57
1.4 -1.574 173 3.119 000 -1.559 500 1.252 371 2.342 796 0.578 614 0.402630
1.6 -2.084 225 2.842 489 -1.421 244 1.404 635 2.164 083 0.637 152 0.493771
1.8 -2.382 684 2.639 456 -1.319 728 1.536 913 2.035 038 0.688 927 0.584048
2.0 -2.562 580 2.488 243 -1.244 121 1.647 758 1.940 694 0.734 012 0.670873
3.0 -2.831 049 2.142 374 -1.071 187 1.931 449 1.735 410 0.871 768 0.998758
3.5 -2.851 875 2.089 878 -1.044 939 1.973 162 1.706 834 0.900 880 1.087268
4.0 -2.858 588 2.066 843 -1.033 421 1.990 038 1.694 840 0.915 588 1.137639
5.0 -2.861 388 2.053 641 -1.026 820 1.998 781 1.688 271 0.925 358 1.175798
6.0 -2.861 654 2.051 786 -1.025 893 1.999 867 1.687 395 0.927 011 1.183417
7.0 -2.861 677 2.051 564 -1.025 782 1.999 986 1.687 293 0.927 241 1.184636
8.0 -2.861 680 2.051 540 -1.025 770 1.999 998 1.687 283 0.927 269 1.184804
9.0 -2.861 680 2.051 538 -1.025 769 1.999 999 1.687 282 0.927 272 1.184825

10.0 -2.861 680 2.051 538 -1.025 769 1.999 999 1.687 282 0.927 273 1.184827
25.0 -2.861 680 2.051 538 -1.025 769 1.999 999 1.687 282 0.927 273 1.184827

complex examples of the potential (1) describing the
atom’s environment. The results presented for free
atoms and ions show that local LBSs are a competitive
alternative to GBSs and can reproduce HF statefunc-
tions with the same or superior quality as the RHF
statefunctions presented by Bunge et al. [4, 3] and
Koga et al. [14, 15]. The results presented for the spa-
tially confined He are also an improvement on the pre-
vious grid-based implementation of Young et al. [28].

From here, we will continue with this implemen-
tation of HF’s method using LBS of the FE type and
consider the method for heavier atoms under extreme
spatial confinement and with the more involved sup-
plementary potential, vc(r) = [0,∞) , as well as post-
HF methods that include correlated electron motion.
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