WSEAS Transactions on Mathematics


Print ISSN: 1109-2769
E-ISSN: 2224-2880

Volume 16, 2017

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 16, 2017



The Birkhoff Weak Integral of Functions Relative to a Set Function in Banach Spaces Setting

AUTHORS: Anca Croitoru, Alina Gavrilut, Alina Iosif

Download as PDF

ABSTRACT: In this paper, we define and study the Birkhoff weak integral in two cases: for vector functions relative to a non-negative set function and for real functions with respect to a vector set function. Some comparison results and classical integral properties are obtained: the linearity relative to the function and the measure, and the monotonicity with respect to the function, the measure and the set

KEYWORDS: Birkhoff weak integral; integrable function; non-additive measure; vector integral; vector function

REFERENCES:

[1] A. Aviles, G. Plebanek and J. Rodriguez, The ´ McShane integral in weakly compactly generated spaces, J. Funct. Anal. 259, no. 11, 2010, pp. 2776–2792.

[2] G. Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38, no. 2, 1935, pp. 357–378.

[3] A. Boccuto, D. Candeloro and A. R. Sambucini, A Fubini theorem in Riesz spaces for the Kurzweil-Henstock integral, J. Function Spaces Appl. 9, 2011, pp. 283–304.

[4] A. Boccuto, D. Candeloro and A. R. Sambucini, Vitali-type theorems for filter convergence related to vector lattice-valued modulars and applications to stochastic processes, J. Math. Anal. Appl. 419, 2014, pp. 818–838.

[5] D. Candeloro and A. R. Sambucini, Order type Henstock and McShane integrals in Banach lattice setting, Proceedings of Sisy 2014 - IEEE 12-th Symposium on Intelligent Systems and Informatics, At Subotica-Serbia, 2014, pp. 55–59 (arXiv: 1405.6502

[math. FA])

[6] D. Candeloro and A. R. Sambucini, Filter convergence and decompositions for vector latticevalued measures, Mediterr. J. Math., 2014 (DOI: 10.1007/s00009-014-0431-0).

[7] D. Candeloro, A. Croitoru, A. Gavrilut¸ and A. R. Sambucini, An extension of the Birkhoff integrability for multifunctions, Mediterr. J. Math. 13, Issue 5, 2016, pp. 2551–2575 (DOI: 10.1007/s0009-015-0639-7).

[8] D. Candeloro, A. Croitoru, A. Gavrilut¸ and A. R. Sambucini, Atomicity related to non-additive integrability, Rend. Circolo Matem. Palermo 65 (3), 2016, pp. 435–449 (DOI: 10.1007/s12215- 016-0244-z).

[9] G. Choquet, Theory of capacities, Annales de l’Institut Fourier 5, 1953-1954, pp. 131–295.

[10] A. Croitoru, A. Gavrilut¸ and A. Iosif, Birkhoff weak integrability of multifunctions, International Journal of Pure Mathematics 2, 2015, pp. 47–54.

[11] A. Croitoru, A. Gavrilut¸ and A. Iosif, The Birkhoff weak integral of real functions with respect to a multimeasure, International Journal of Pure Mathematics 3, 2016, 12–19.

[12] A. Croitoru, A. Iosif, N. Mastorakis and A. Gavrilut¸, Fuzzy multimeasures in Birkhoff weak set-valued integrability, Proceedings of the 3- rd International Conference MCSI–2016, IEEE Computer Society, Conference Publishing Services, 2016, pp. 128–135.

[13] A. Croitoru and N. Mastorakis, Estimations, convergences and comparisons on fuzzy integrals of Sugeno, Choquet and Gould type, Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), July 6-11, 2014, Beijing, China, pp. 1205–1212.

[14] A. Croitoru and A. Gavrilut¸, Comparison between Birkhoff integral and Gould integral, Mediterr. J. Math. 12, Issue 2, 2015, pp. 329– 347 (DOI: 10.1007/s0009-014-0410-5).

[15] L. Drewnowski, Topological rings of sets, continuous set functions, integration, I, II,III, Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys. 20, 1972, pp. 277–286.

[16] A. Gavrilut¸, On some properties of the Gould type integral with respect to a multisubmeasure, An. S¸t. Univ. ”Al.I. Cuza” Ias¸i 52, 2006, pp. 177–194.

[17] A. Gavrilut¸, A Gould type integral with respect to a multisubmeasure, Math. Slovaca 58, 2008, pp. 43–62.

[18] A. Gavrilut¸, The general Gould type integral with respect to a multisubmeasure, Math. Slovaca 60, 2010, pp. 289–318.

[19] A. Gavrilut¸, Fuzzy Gould integrability on atoms, Iranian Journal of Fuzzy Systems 8, no. 3, 2011, pp. 113–124.

[20] A. Gavrilut¸, A. Iosif and A. Croitoru, The Gould integral in Banach lattices, Positivity, 2014 (DOI: 10.1007/s11117-014-0283-7).

[21] A. Gavrilut¸ and A. Petcu, A Gould type integral with respect to a submeasure, An. S¸t. Univ. ”Al.I. Cuza” Ias¸i 53, f. 2, 2007, pp. 351–368.

[22] A. Gavrilut¸ and M. Agop, Approximation theorems for fuzzy set multifunctions in Vietoris topology. Physical implications of regularity, Iranian Journal of Fuzzy Systems 12, no. 1, 2015, pp. 27–42.

[23] A. Gavrilut¸, On the regularities of fuzzy set multifunctions with applications in variation, extensions and fuzzy set-valued integrability problems, Information Sciences 224, 2013, pp. 130– 142.

[24] A. Gavrilut¸, Regular Set Multifunctions, Pim Publishing House, Ias¸i, 2012.

[25] G. G. Gould, On integration of vector-valued measures, Proc. London Math. Soc. 15, 1965, pp. 193–225.

[26] M. Grabisch and C. Labreuche, A decade of applications of the Choquet and Sugeno integrals in multi-criteria decision aid, 40R 6, 2008, pp. 1–44.

[27] V. M. Kadets and L. M. Tseytlin, On integration of non-integrable vector-valued functions, Mat. Fiz. Anal. Geom. 7, Number 1 (2000), pp. 49-65.

[28] Mahmoud, Muhammad M.A.S. and S. Moraru, Accident rates estimation modeling based on human factors using fuzzy c-means clustering algorithm, World Academy of Science, Engineering and Technology (WASET) 64, 2012, pp. 1209–1219.

[29] R. Mesiar and B. De Baets, New construction methods for aggregation operators, Proceedings of the IPMU’2000, Madrid, 2000, pp. 701–707.

[30] E. Pap, Null-Additive Set Functions, Kluwer Academic Publishers, Dordrecht, 1995.

[31] E. Pap, An integral generated by decomposable measure, Univ. u Novom Sadu Zh. Rad. Prirod.- Mat. Fak. Ser. Mat. 20, 1990, pp. 135–144.

[32] E. Pap, Pseudo-additive measures and their applications, In: Pap E. (ed) Handbook of Measure Theory vol.II, Elsevier, 2002, pp. 1403–1465.

[33] M. Patriche, Equilibrium of Bayesian fuzzy economics and quasi-variational inequalities with random fuzzy mappings, Journal of Inequalities and Applications 374, 2013.

[34] T. D. Pham, M. Brandl, N. D. Nguyen and T. V. Nguyen, Fuzzy measure of multiple risk factors in the prediction of osteoporotic fractures, Proceedings of the 9-th WSEAS International Conference on Fuzzy Systems (FS’08), 2008, pp. 171–177.

[35] M. Potyrala, Some remarks about Birkhoff and Riemann-Lebesgue integrability of vector valued functions, Tatra Mt. Math. Publ. 35 (2007), pp. 97–106.

[36] A. M. Precupanu, A Brooks type integral with respect to a multimeasure, J. Math. Sci. Univ. Tokyo 3, 1996, pp. 533–546.

[37] A. Precupanu and A. Croitoru, A Gould type integral with respect to a multimeasure I/II, An. S¸t. Univ. ”Al.I. Cuza” Ias¸i, 48, 2002, pp. 165–200 / 49, 2003, pp. 183–207.

[38] A. Precupanu, A. Gavrilut¸ and A. Croitoru, A fuzzy Gould type integral, Fuzzy Sets and Systems 161, 2010, 661–680.

[39] A. Precupanu and B. Satco, The Aumann-Gould integral, Mediterr. J. Math. 5, 2008, pp. 429– 441.

[40] B. Satco, A Komlos-type theorem for the set- ´ valued Henstock-Kurzweil-Pettis integral and applications, Czechoslovak Math. J. 56, 2006, pp. 1029–1047 (DOI: 10.1007/s10587-006- 0078-5).

[41] J. Sipos, Integral with respect to a pre-measure, Math. Slovaca 29, 1979, pp. 141–155.

[42] N. Spaltenstein, A Definition of Integrals, J. Math. Anal. Appl. 195, 1995, pp. 835–871.

[43] C. Stamate and A. Croitoru, Non-linear integrals, properties and relationships, Recent Advances in Telecommunications, Signal and Systems, WSEAS Press, 2013, pp. 118–123.

[44] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology, 1971.

[45] A. Tversky and D. Kahneman, Advances in prospect theory: commulative representation of uncertainty, J. Risk Uncertainty 5, 1992, pp. 297–323.

WSEAS Transactions on Mathematics, ISSN / E-ISSN: 1109-2769 / 2224-2880, Volume 16, 2017, Art. #41, pp. 375-383


Copyright © 2017 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site