
The structure of rationally factorized Lax type flows and

their analytical integrability

M. VOVK,
Lviv Polytechnic

National University
Dept. Applied Math.
Bandery Street 12,

79000 Lviv
UKRAINE

mira.i.kopych@gmail.com

P. PUKACH
Lviv Polytechnic

National University
Dept. Applied Math.
Bandery Street 12,

79000 Lviv
UKRAINE

ppukach@gmail.com

O. HENTOSH
IAPMM NASU
Naukova str., 3b

79060 Lviv
UKRAINE

ohen@ukr.net

Ya. PRYKARPATSKY
University of Agriculture

Dept. Applied Math.
Kraków

POLAND
yarpry@gmail.com
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1 The basic associative algebra
case

There is considered an associative functional alge-
bra A ⊂ C∞(S1;C), admitting the automorphism

T ◦ a(x) := a(x+ δi) (1)

for any a ∈ A, being a simple shift on iδ ∈
iR\{0} ⊂ C, i2 = −1, 2π/δ /∈ Z+, along the com-
plexified loop parameter x ∈ S1⊂ C. The linear
and invariant trace-functional τ : A → C is de-
fined for any a ∈ A by the natural expression :

τ(a) :=

∫
S1
a(x)dx. (2)

Having constructed the basic Lie algebra G of
homomorphisms A(T ) ∈ HomA, where

A(T ) ∼
j�∞∑

aj(x)T j (3)

for aj(y) ∈ A, j � ∞. As the related Lax type
integrable dynamical systems are generated [3, 5,

4, 1, 13, 11] by the Casimir invariants γ ∈ I(G∗) of
the basic Lie algebra G, satisfying the determining
equation

[∇γ(l), l] = 0, (4)

we will be interested in a seed Lax element l ∈ G∗,
chosen in the following rationally factorized form:

l := Fn(T )−1 ◦Qn+p(T ), (5)

where by definition, the elements

Fn(T ) :=
∑
j=0,n

fj(x)T j ,

Qn+p(T ) :=
∑

j=0,n+p

qj(x)T j (6)

are some polynomial homomorphisms of A for
fixed n and p ∈ Z+.

The following problem [2, 1, 6, 8] arises:
construct the corresponding dynamical systems on
the elements Fn(T ), Qn+p(T ) ∈ HomA, which
will possess an infinite hierarchy of functional in-
variants and will be analytically integrable.

WSEAS TRANSACTIONS on MATHEMATICS M. Vovk, P. Pukach, O. Hentosh, Ya. Prykarpatsky

E-ISSN: 2224-2880 322 Volume 16, 2017



It is natural to consider the general Lax type
flow

dl/dt = [l,∇γ(l)+], (7)

for the rational element (5), generated by a
Casimir functional γ ∈ I(G∗) and determined by
the expression (4). Now let us observe that

γ := tr(γ(l) = tr(γ(l̃)) for any analytical map-
ping γ(l) ∈ G , where we have introduced, by defi-

nition, the factorized element l̃ := Qn+pF
−1
n ∈ G∗.

In addition, the element l̃ = Qn+pF
−1
n ∈ G∗ sat-

isfies the similar to (7) evolution equation

dl̃/dt = [l̃,∇γ(l̃)+] (8)

for the same Casimir functional γ ∈ I(G∗), whose
gradient, similarly to (4), is determined from the
algebraic relationship

[l̃,∇γ(l̃)] = 0. (9)

Taking now into account these two compatible
equations (7) and (8) one easily derives the fol-
lowing factorization theorem.

Theorem 1 The operator evolution equations

dFn/dt = Fn∇γ(l)+ −∇γ(l̃)+Fn,

dQn+p/dt = Qn+p∇γ(l)+ −∇γ(l̃)+Qn+p (10)

factorize the Lax type flows (7) and (8) for all
t ∈ R with elements l = F−1n Qn+p ∈ G∗ and

l̃ = Qn+pF
−1
n ∈ G∗, respectively, where the cor-

responding Casimir invariants γ ∈ I(G∗) satisfy
the relationship γ|l=F−1

n Qn+p
= γ|l̃=Qn+pF

−1
n

for

any Fn and Qn+p ∈ G+.

As a simple consequence from Theorem 1 one
can derive the following proposition.

Proposition 2 There exist such smooth map-
pings Φ,Ψ : R → G to the formal operator sub-
group G ' expG satisfying the linear evolution
equations

dΦ/dt+∇γ(l̃)+Φ = 0,

dΨ/dt+∇γ(l)+Ψ = 0 (11)

Φ|t=0 = Φ̄, B|t=0 = B̄ ∈ G, generated, respec-
tively, by the Lie algebra elements ∇γ(l)+ and

∇γ(l̃)+ ∈ G+, that

Fn := Ψ F̄nΦ−1, Qn+p := Ψ Q̄n+pΦ
−1, (12)

where, by definition, the elements F̄n and Q̄n+p ∈
G are constant with respect to the evolution pa-
rameter t ∈ R.

Proof: It is enough to check, using (11) that the
group elements (12) really satisfy the factorized
evolution equations (10). ut

Now based on Proposition 3 we can take into
account, with no loss of generality, that the group
elements A,B ∈ G for all t ∈ R can be repre-
sented as operator series

Φ(x; t) ∼ I +
∑
j∈Z+

aj(x; t)T−j ,

Ψ(x; t) ∼ I +
∑
j∈Z+

bj(x; t)T−j , (13)

whose coefficients can be found recurrently from
the expressions (12), rewritten in the following
useful for calculations form:

(I +
∑

j∈Z+
bj(x; t))T−j) ◦ F̄n =

= Fn ◦ (I +
∑

j∈Z+
aj(x; t)T−j),

(I +
∑

j∈Z+
bj(x; t)T−j) ◦ Q̄n+p =

= Qn+p ◦ (I +
∑

j∈Z+\{0} aj(x; t)T−j),

(14)

where the group elements F̄n and Q̄n+p ∈ G are
considered to be given a priori constant in the
following, motivated by the expression (6), op-
erator series form:

F̄n(T ) ∼
∑
j∈Z+

f̄jT
n−j ,

Q̄n+p(T ) ∼
∑
j ∈Z+

q̄jT
n+p−j , (15)

where df̄j/dt = 0 = dq̄j/dt, j ∈ Z+, for all t ∈ R.
The results obtained above mean, in particular,
that the expressions (14) can be effectively used
for finding exact analytical solutions to the re-
sulting differential-functional equations naturally
following from the operator evolution equations
(10), generated by a suitably chosen Casimir func-
tional γ ∈ I(G∗). This and other related aspects
of this important problem of finding exact analyt-
ical solutions will be analyzed in detail in other
work under preparation.

2 The centrally extended basic
associative algebra case

Consider now the case when the basic associative
functional algebra A ⊂ C∞(S1;C) is extended
as the loop algebra CS1(A) of smooth mappings
{S1 → A}. The corresponding Lie algebra CS1(G)
of linear homomorphisms CS1(A), naturally gen-
erated by the complexified homomorphic shifts
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(1) along the cyclic variable x ∈ S1, can be cen-

trally extended to the Lie algebra CS1(Ĝ) via the
standard [13, 1, 9, 11] Maurer-Cartan cocycle

ω2(A(T ), B(T )) :=

∫
S1
dy 〈A(T ), dB(T )/dy〉,

(16)
which also admits the natural splitting subject
to the positive and negative degrees of the basic
homomorphism (1) into two subalgebras

CS1(Ĝ) = CS1(Ĝ)+ + CS1(Ĝ)−. (17)

The latter makes it possible to construct the ad-
joint splitting

CS1(Ĝ∗) = CS1(Ĝ∗)+ + CS1(Ĝ∗)− (18)

and define for any factorized element (l, 1) ∈
CS1(Ĝ∗) the following integrable Hamiltonian
flows

dl/dt = [l − d/dy,∇γ(l)+], (19)

where the Casimir functionals γ ∈ I(CS1(Ĝ∗)) sat-
isfy the gauge type differential-functional equa-
tion

[l,∇γ(l)] = d∇γ(l)/dy (20)

for all y ∈ S1. Here as above we will consider the
case when a rationally factorized element l(T ) ∈
CS1(G∗) is given in the form

l(T ) := Fn (T )−1 ◦Qn+p(T ), (21)

where, by definition, the elements

Fn(T ) :=
∑
j=0,n

fj(x; y)T j ,

Qn+p(T ) :=
∑

j=0,n+p

qj(x; y)T j (22)

belong to the formal operator subgroup
CS1(G+) := exp(CS1(G+)) ' I + CS1(G+).

In this case we also can not make use of the
expansions (13), thus forcing us to apply the
Lie-algebraic scheme of [2, 1, 10]. Namely, we will
formulate the following similar statements with-
out proof.

Lemma 3 For any factorized in the rational
form (21) element l ∈ CS1(G∗) there exists,
as 2π/δ /∈ Z+, an invertible mapping Φ(T ) ∈
CS1(G−), Φ(T )|x=0 = I, and such an element
l̄ ∈ CS1(G∗) that the following functional opera-
tor relationship

(∂/∂y−l(T ))◦Φ(T ) = Φ(T )◦(∂/∂y−l̄(T ) ) (23)

holds, where ∂l̄(T )/∂t = 0 = ∂l̄(T )/∂x, that is
the element l̄(T ) ∈ CS1(G∗) is constant both with
respect to the evolution parameter t ∈ R and the
functional algebra A parameter x ∈ S1.

Proof: Sketch of a proof. Taking into account
that l(T ) := Fn (T )−1 ◦ Qn+p(T ) ∈ CS1(G∗), the
operator relationship (23) can be equivalently
rewritten as

(Fn (T )∂/∂y −Qn+p(T )) ◦ Φ(T ) =
= Fn (T ) ◦ Φ(T ) ◦ (∂/∂y − l̄(T )),

(24)

where
l̄(T ) ∼

∑
j∈Z+

lj(y)T p−j (25)

is constant, it allows to determine recurrently all
coefficients of the corresponding invertible opera-
tor expansion

Φ(T ) ∼ I +
∑
j∈Z+

ϕj(x; y)T−j (26)

for all (x; y) ∈ S1 × S1. The latter proves the
lemma.

Theorem 4 The following functionals

γj = Tr(T j l̄(T )) =

∫
S1
tr(l̄j(y))dy =

=

∫
S1
τ(l̄j(y))dy, (27)

where, by definition,

l̄ ∼
∑
j∈Z+

l̄j(y)T p−j , (28)

are for all j ∈ Z+ the Casimir invariants for the

centrally extended loop Lie algebra CS1(Ĝ).

Based on Theorem 4 one can find that the
corresponding gradients

∇γj(l) = Φ(T )T jΦ(T )−1 (29)

, j ∈ Z+, for the countable hierarchy of Casimir
functionals (27) satisfy the determining relation-
ship (20). In addition, from (23) one ensues that
the following operator expression for the case
l = F−1n Qn+p ∈ CS1(G∗) :

l̄ = Φ(T )−1(l − ∂/∂y)Φ(T ), (30)

holds for all y ∈ S1, where the invertible mapping
Φ(T ) ∈ CS1(Ĝ) satisfies the evolution equation

dΦ(T )/dt+∇γ(l)+Φ(T ) = 0 (31)
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for all t ∈ R. Similarly one can state that there ex-
ists a suitably chosen mapping Ψ(T ) ∈ CS1(G) for

the case l̃ = Qn+pF
−1
n ∈ CS1(G∗), such that

l̃ = Ψ(T )−1(l̃ − ∂/∂y)Ψ(T ) (32)

holds for some constant element ˜̄l ∈ CS1(G∗) with
respect to both the evolution variable t ∈ R and
the functional parameter x ∈ S1, where the in-
vertible mapping Ψ(T ) ∈ CS1(G) satisfies the evo-
lution equation

dΨ(T )/dt+∇γ(l)+Ψ(T ) = 0. (33)

Moreover, the element l̃ ∈ CS1(G∗) satisfies the
Lax type evolution equation

dl̃/dt = [l̃ − d/dy,∇γ(l̃)+] (34)

for all t ∈ R. Taking into account that the expres-
sion (32) can be equivalently rewritten as

(Fn (T )∂/∂y −Qn+p(T ) ) ◦Ψ(T ) =

= Fn (T ) ◦Ψ(T ) ◦ (∂/∂y − l̃(T )),
(35)

from (35), (24) and evolution equations (31),
(33) one can derive the corresponding factorized
evolution equations

dFn/dt = Fn∇γ(l)+ −∇γ(l̃)+Fn,

Qn/dt = Qn∇γ(l)+ −∇γ(l̃)+Qn, (36)

for the elements Fn := Fn ∈ CS1(G) and Qn+p :=

Qn+p − Fn∂/∂y ∈ CS1(Ĝ), which allow the fol-
lowing natural representations

Fn := Ψ(T ) F̄nΦ(T )−1,

Qn+p := Ψ(T ) Q̄n+pΦ(T )−1 (37)

with F̄n := F̄n ∈ CS1(G) and Q̄n := Q̄n −
F̄n∂/∂y ∈ CS1(G) being constants with respect to
the evolution variables t ∈ R and x ∈ S1. Taking
now into account the above expressions (37) and
(31) one easily obtains from (36) the following
evolutions equations

dFn/dt = Fn∇γ(l)+ −∇γ(l̃)+Fn, (38)

dQn+p/dt = Qn+p∇γ(l)+ −∇γ(l̃)+Qn+p−
Fn∂∇γ(l)+/∂y

on the basic operator factors Fn and Qn+p ∈
CS1(G). The corresponding invertible mapping Φ

and Ψ ∈ CS1(G), satisfying, respectively, the ex-
pressions (37), can be recurrently constructed
from the algebraic relationships

Fn(I+
∑
j∈Z+

aj(x; y)T−j) = (I+
∑
j∈Z+

bj(x; y)T−j)F̄n,

(Qn+p − Fn∂/∂y)(I +
∑
j∈Z+

aj(x; y)T−j) = (39)

= (I +
∑
j∈Z+

bj(x; y)T−j)(Q̄n − F̄n∂/∂y)

in the series expansion form:

Φ(T ) ∼ I +
∑
j∈Z+

aj(x; y)T−j ,

Ψ(T ) ∼ I +
∑
j∈Z+

bj(x; y)T−j . (40)

The statements above we can formulate as the
next factorization theorem.

Theorem 5 The operator evolution equations

dFn/dt = Fn∇γ(l)+ −∇γ(l̃)+Fn,

dQn+p/dt = Qn+p∇γ(l)+ −∇γ(l̃)+ = (41)

=Qn+p − Fn∂∇γ(l)+/∂y

factorize the Lax type flows (19) and (34)
with elements l = F−1n Qn+p ∈ CS1(G∗)
and l̃ = Qn+pF

−1
n ∈ CS1(G∗), respectively,

where the corresponding Casimir invariants γ ∈
I(CS1(Ĝ∗)) satisfy the relationship γ|l=F−1

n Qn+p
=

γ|l̃=Qn+pF
−1
n

for any Fn and Qn+p ∈ CS1(G+).

2.1 Example

As an example of a rationally factorized operator
l ∈ CS1(G∗) one can consider the following simple
expression

l := T−1(T 2 + Tv + uI), (42)

where functions u, v ∈ C(S1 × R;R). The corre-
sponding elements F1 := T, Q2 := T 2 + Tv +
uI) ∈ CS1(G+) generate the factorized evolu-
tion equations (10), where gradients of the cor-

responding Casimir functionals γ ∈ I(CS1(Ĝ∗))
can be found recurrently from the relationships
(29) jointly with the relationships (24), (25) and
(26). From the corresponding calculations one en-
sues the system of integrable evolution functional
equations

ut = u(Tv − v), vt = v(T−1u− u) (43)

on the elements u, v ∈ C(S1;R ).
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3 Special functional-algebraic
realizations

The algebraic scheme devised in Section 2 makes
it possible to be effectively modified for the case
when the associative functional algebra A is cho-
sen to be the algebra of smooth pseudo-differential
operators PDO(S1), acting on the functional
space C∞(S1;R)and endowed with the natural
commutator Lie structure. The resulting Lie alge-
bra G := (PDO(S1); [·, ·]) is split into direct sum
of two subalgebras, G = G+ ⊕ G− :

G+ :=
{ ∑
j∈Z+

aj(x)∂j : ∀j aj(x) ∈ C∞(S1;R)
}
,

G− :=
{ ∑
j∈Z+

bj(x)∂−j : ∀j bj(x) ∈ C∞(S1;R)
}
,

where, by definition, ∂ := ∂/∂x and ∂ · ∂−1 =
1 for x ∈ S1. Moreover, the Lie algebra G is
metrized by means of the invariant trace form

(a, b) := Tr(a · b), T r(c) :=

∫
S1

(res∂ c) dx (44)

for any a, b and c ∈ G, allowing to identify the
adjoint space G∗ ' G.

Taking into account these preliminaries a
similar to that, posed in Section 2, problem arises:
construct the corresponding operator dynamical
systems on the elements Fn(∂), Qn+p(∂) ∈ G,
which will possess an infinite hierarchy of func-
tional invariants and will be analytically inte-
grable.

As above we consider the general Lax type
flow

dl/dt = [l,∇γ(l)+], (45)

for the rational element

l(∂) := Fn(∂)−1Qn+p(∂), (46)

generated by a Casimir functional γ ∈ I(G∗) and
determined by the expression (4). One observes

that γ := tr(γ(l) = tr(γ(l̃)) for any analytical
mapping γ(l) ∈ G , where we have introduced, by

definition, the factorized element l̃ := Qn+pF
−1
n ∈

G∗. Also the element l̃ = Qn+pF
−1
n ∈ G∗ satisfies

the similar to (7) evolution equation

dl̃/dt = [l̃,∇γ(l̃)+] (47)

for the same Casimir functional γ ∈ I(G∗), whose
gradient, similarly to (4), is determined from the
algebraic relationship

[l̃,∇γ(l̃)] = 0. (48)

Taking now into account these two compatible
equations (45) and (47) one easily derives the
following factorization theorem.

Theorem 6 The differential operator evolution
equations

dFn/dt = Fn∇γ(l)+ −∇γ(l̃)+Fn, (49)

dQn+p/dt = Qn+p∇γ(l)+ −∇γ(l̃)+Qn+p

factorize the Lax type flows (45) and (47) for
all t ∈ R with elements l = F−1n Qn+p ∈ G∗ and

l̃ = Qn+pF
−1
n ∈ G∗, respectively, where the cor-

responding Casimir invariants γ ∈ I(G∗) satisfy
the relationship γ|l=F−1

n Qn+p
= γ|l̃=Qn+pF

−1
n

for

any Fn and Qn+p ∈ G+.

From Theorem 6 one easily ensues the follow-
ing proposition.

Proposition 7 There exist such smooth map-
pings Φ,Ψ : R → G to the formal operator sub-
group G ' expG satisfying the linear evolution
equations

dΦ

dt
+∇γ(l̃)+Φ = 0,

dΨ

dt
+∇γ(l)+Ψ = 0 (50)

Φ|t=0 = Φ̄, B|t=0 = B̄ ∈ G, generated, respec-
tively, by the pseudo-differential Lie algebra ele-
ments ∇γ(l)+ and ∇γ(l̃)+ ∈ G+, that

Fn := Ψ F̄nΦ−1, Qn+p := Ψ Q̄n+pΦ
−1, (51)

where, by definition, the elements F̄n and Q̄n+p ∈
G are some constant expressions with respect to
the evolution parameter t ∈ R.

4 The Poisson structures and
Hamiltonian analysis on the
extended phase space

Let us consider equation (7), the first equation
of (11) and its adjoint expression:

dl̂/dt = [l̂,∇γ(l̂)+], df̂/dt+∇γ(l̂)+f̂ = 0,

df̂∗/dt−∇γ(l̂)∗+f̂ = 0 (52)

for vector elements f̂ ∈W and f̂∗ ∈W ∗, respec-
tively, where W denotes a representation space
for the group G and W ∗ is its natural conjugation
with respect to the natural bilinear form < ·, · >,
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realizing the standard paring between spaces W ∗

and W. Put also by

∇γ(l̂, f̂ , f̂∗) := (δγ/δl̂, δγ/δf̂ , δγ/δf̂∗)

an extended gradient vector at a point (l̂; f̃ , f̃∗) ∈
G∗ ⊕ W ⊕ W ∗ for any smooth functional γ ∈
D(G∗ ⊕W ⊕W ∗).

On the space G∗ there exists the canonical
Poisson structure

δγ/δl̂ :
θ̃→ [l̂, (δγ/δl̂)+]− [l̂, δγ/δl̂]+ , (53)

where θ̃ : T ∗(G∗) → T (G∗) ' G is a Poisson op-

erator at a point l̂ ∈ G∗. Similarly on the space
W ⊕W ∗ there exists the canonical Poisson struc-
ture

(δγ/δf̂ , δγ/δf̂∗) :
J̃→ (−δγ/δf̂∗, δγ/δf̂), (54)

where J̃ : T ∗(W ⊕ W ∗) → T (W ⊕ W ∗) is the
Poisson operator corresponding to the symplectic
form ω(2) =< df̂∗,∧df̂ > at a point (f̂ , f̂∗) ∈
W ⊕W ∗. It should be noted here that the Pois-
son structure (53) generates equations (7) and
(8) for any Casimir functional γ ∈ I(G∗).

Thus, on the extended phase space G∗⊕W ⊕
W ∗ one can obtain a new Poisson structure as the
tensor product Θ̃ := θ̃ ⊗ J̃ of the structures (53)
and (54).

Consider now the following Backlund [1]
transformation:

(l̂; f̂ , f̂∗) :
B→ (l = l(l̂; f̂ , f̂∗), f = f̂ , f∗ = f̂∗),

(55)
generating on G∗⊕W ⊕W ∗ some Poisson struc-
ture Θ : T ∗(G∗ ⊕W ⊕W ∗) → T (G∗ ⊕W ⊕W ∗).
The main condition imposed on the mapping (55)
is the coincidence of the resulting dynamical sys-
tem

(dl/dt; df/dt, df∗/dt) := −Θ∇γ̄( l; f, f∗) (56)

with the evolution equations

dl/dt = [l,∇γ(l)+], df/dt = ∇γ (l)+f,

df∗/dt = −∇γ (l)+f
∗ (57)

in the case when γ̄ := γ ∈ I(G∗), being not depen-
dent on the variables (f, f∗) ∈W ⊕W ∗.

To satisfy that condition we will find variation
of the functional γ̄ := γ|l=l(l̂,f̂ ,f̂∗) ∈ D(G∗ ×W ⊕
W ∗), generated by a Casimir functional γ ∈ I(G∗),
under the constraint δl̃ = 0, taking into account

the evolutions (52) and the Backlund transforma-
tion (55) definition. One easily obtains that

δγ̄(l̂; f̂ , f̂∗)
∣∣∣
δl̂=0

= 〈δγ̄/δf̂ , δf̂〉+ 〈δγ̄/δf̂∗, δf̂∗〉

= 〈−df̂∗/dt, δf̂〉+ 〈df̂/dt, δf̂∗〉
∣∣∣
f̂=f, f̂∗=f∗

=

= 〈(δγ/δ l)∗+f̂∗, δf̂〉+ 〈(δγ/δ l)+f̂ , δf̂∗〉 =

= 〈f̂∗, (δγ/δ l)+δf̂〉+ 〈(δγ/δ l)+f̂ , δf̂∗〉 =

= (δγ/δ l, (δf̂)ξ−1 ⊗ f̂∗) + (δγ/δ l, f̂ξ−1 ⊗ δf̂∗) =

=
(
δγ/δ l, δ(f̂ ξ−1 ⊗ f̂∗)

)
:= (δγ/δ l, δ l) , (58)

giving rise to the relationship

δ l|δl̃=0 = δ(f̂ ξ−1 ⊗ f̂∗) := δ(f̂ ξ−1 ⊗ f̂∗). (59)

Having assumed now the linear dependence of l
on l̃ ∈ Ĝ∗ one gets right away from (59) that

l = l̃ + f̂ ξ−1 ⊗ f̂∗. (60)

Thus, the Backlund transformation (55) can be
rewritten as

(l̂; f̂ , f̂∗) :
B→ ( l = l̂+ f̂ ξ−1⊗ f̂∗; f = f̂ , f∗ = f̂∗).

(61)
Now by means of simple calculations via [1] the
isomorphism formula

Θ = B
′
Θ̃B

′∗ ,

where B
′

: T (G∗ ⊕W ⊕W ∗)→ T (G∗ ⊕W ⊕W ∗)
is a Frechet derivative of (61), one finds easily
the following form of the Backlund transformed
Poisson structure Θ on G∗ ⊕W ⊕W ∗ :

Θ : ∇γ( l; f, f∗)→
[ l, (δγ/δ l)+]− [ l, δγ/δ l]+

+(fξ−1 ⊗ (δγ/δf)− (δγ/δf∗)ξ−1 ⊗ f∗);
−δγ/δf∗ − (δγ/δ l)+f
δγ/δf + (δγ/δ l)∗+f

∗

 ,

(62)

where γ ∈ D(G∗⊕W⊕W ∗) is an arbitrary smooth
functional. The obtained Backlund transforma-
tion (61) makes it possible to formulate the fol-
lowing theorem.

Theorem 8 The set of differential-operator dy-
namical systems (57) on G∗ ⊕W ⊕W ∗ is Hamil-
tonian with respect to the Poisson structure (62)
and has the form (56) for γ := γ̄ ∈ I(G∗), being
chosen Casimir functionals on G∗.
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Based on the expression (56) one can con-
struct a new hierarchy of Hamiltonian evolution
equations describing commutative flows generated
by involutive with respect to the natural Pois-
son bracket (54) Casimir invariants γ ∈ I(Ĝ∗),
extended on the space G∗ ⊕W ⊕W ∗.

Proceed now to considering flows (7) and (8)
as Hamiltonian systems on G∗×G∗ subject to the
following tensor doubled standard Poisson struc-
ture:

ϑ : ∇γ(l) −→
(

[∇γ(l)+, l]− [∇γ(l), l]+[
∇γ̃+(l̃), l̃

]
−
[
∇γ̃(l̃), l̃

]
+

)
,

(63)

where γ(l) = γ(l̃) and γ ∈ D(G∗×G∗) is an arbi-
trary smooth functional on G∗ × G∗. Concerning
the transformation

Φ(Q,F ; l̃, l) = 0⇔ l̃−QF−1 = 0, l−F−1Q = 0,
(64)

which can be evidently considered as a usual
Backlund [1] transformation, we can construct
a new Poisson structure η : T ∗(G∗+ × G∗+) −→
T (G∗+×G∗+) on the space G∗+×G∗+ with respect to
the phase variables (F,Q) ∈ G∗+×G∗+. Thereby one
finds [1] the corresponding to (63) and (64) trans-
formed Poisson structure η : T ∗(G∗+ × G∗+) −→
T (G∗+ × G∗+) at (F,Q) ∈ G∗+ × G∗+, where

η = TϑT ∗, T = Φ′
(l̃,l)

Φ′−1(Q,F ). (65)

Making use of the expressions

Φ′(Q,F ) =

(
− (.)F−1 l̃(.)F−1

−F−1(.) F−1(.)l

)
,Φ′

(l,l̃)
=

(
1 0
0 1

)
,

Φ′−1(Q,F )=

(
−(1− l̃ ⊗ l−1)−1(.)F (1− l̃ ⊗ l−1)−1 l̃F (.)l−1

−(1− l̃ ⊗ l−1)−1(.)F (1− l̃ ⊗ l−1)−1F (.),

)

(Φ′∗(Q,F ))
−1=

(
−F (.)(1− l̃−1 ⊗ l̃)−1 −F (.)(1− l−1 ⊗ l̃)−1
l−1(.)F l̃(1− l−1 ⊗ l̃)−1 (.)F (1− l−1 ⊗ l̃)−1

)

jointly with the ϑ- structure (63), one gets from
(65) that

η=

(
−(1− l̃ ⊗ l−1)−1(.)F (1− l̃ ⊗ l−1)−1 l̃F (.)l−1

−(1− l̃ ⊗ l−1)−1(.)F (1− l̃ ⊗ l−1)−1F (.)

)
×

×
−
[
l̃, (1− l̃ ⊗ l−1)−1(.)F (1− l̃ ⊗ l−1)−1(.)

]
+
,

−
[
l−1(.)F l̃(1− l−1 ⊗ l̃)−1, l

]
+

+

[(
(.)F (1− l−1 ⊗ l̃)−1

)
+
, l

]
,

−
[(
F (.)(1− l−1 ⊗ l̃)−1

)
+
, l̃

]
+

+
[(
F (.)(1− l−1 ⊗ l̃)−1

)
, l̃
]
+[(

(.)F (1− l−1 ⊗ l̃)−1
)
+
, l

]
−

−
[
(.)F (1− l−1 ⊗ l̃)−1, l

]
+


(66)

at l̃ = QF−1 and l = F−1Q ∈ G∗.
Let now take any Casimir functional γ ∈

I(G∗). Then one construct from the Poisson
bracket (66) the following Hamiltonian flow on
G∗+ × G∗+ :

d

dt
(Q,F ) = η∇γ(Q,F ), (67)

where (Q,F ) ∈ G∗+×G∗+ and t ∈ R is the temporal
evolution parameter. The flow (67 ) is character-
ized by the following theorem.

Theorem 9 The Hamiltonian vector field d/dt
on G∗+ × G∗+, defined by (67), and the vector field
d/dt on G∗+ × G∗+, defined by (10), coincide.

Proof: Proof of this theorem consists in simple
but a slightly tedious calculation of the expression
(67).

Remark 10 The theorem above solves com-
pletely a problem posed in [8] about Hamiltonian
formulation of the factorized differential-operator
equations (10).

5 Examples

5.1 Example 1

We consider the following pseudo-differential fac-
torized expression

l(∂) = (∂ + u)−1[(∂ + u)(∂2 + 2v)− 2w] (68)

for F1 := ∂ + u,Q3 := (∂ + u)(∂2 + 2v) − 2w ∈
G+, (u, v, w) ∈ C∞(S1;R3). The respectively fac-
torized differential operator evolution equations

WSEAS TRANSACTIONS on MATHEMATICS M. Vovk, P. Pukach, O. Hentosh, Ya. Prykarpatsky

E-ISSN: 2224-2880 328 Volume 16, 2017



(49) give rise to the following [6] interesting sys-
tem

ut = 2uux + 2vx − uxx, (69)

vt = 2wx, wt = wxx + 2(wu)x

of completely integrable evolution equations.

Remark 11 It is worth to mention that the de-
rived above system of integrable equations (69)
allows the following degenerate purely differential-
matrix linear spectral problem:(

(∂2 + 2v)(∂ − u) −λ
∂ − u −1

)(
f
g

)
= 0 (70)

for (f, g) ∈ L2(S1;C2) and arbitrary spectral pa-
rameter λ ∈ C.

5.2 Example 2

A next example is related with the pseudo-
differential factorized expression

l(∂) = [(∂+w)(∂+p)]−1[(∂+w)(∂+p)∂+(∂+p)u+v]
(71)

for F2 := (∂ + w)(∂ + p) and Q3 := (∂ + w)(∂ +
p)∂+ (∂+p)u+v ∈ G+, (u, p, v, w) ∈ C∞(S1;R4).
From the factorized differential operator evolution
equations (49) one easily ensues the system

ut = u2x + 2vx + 2(uw)x, (72)

vt = v2x + 2vwx + 2(pw)x,

wt = −wxx + 2ux + 2wwx,

pt = −pxx − 2w2x + 2ux + 2ppx,

of completely integrable evolution flows on
C∞(S1;R4), considered also before in [12, 6] in the
context of generating a new class of integrable dis-
persionless systems of hydrodynamic type equa-
tions.

5.3 Example 3

Let us put now the following pseudo-differential
factorized expression

l(∂) = ∂+(1/4−α2∂2)−1(γ∂2+v/2 +β/4)+γα−2,
(73)

where α, β and γ ∈ R are constants, v ∈
C∞(S1;R), F2 := 1/4 − α2∂2 and Q3 := γ∂2 +
v/2 +β/4 ∈ G+. The related factorized differential
operator evolution equations (49) are reduced for
the gradient element∇γ(l)+ = ∇γ(l)−∇γ(l)− =
1
2ux −u∂ − (1/4−α2∂2)−1(γ∂3+∂ v/2 +β∂/4) ∈

G− ⊕ {∂}, where and u := (1 − α2∂2)−1v ∈
C∞(S1;R) and the element ∂ ∈ G is a charac-
ter of the Lie algebra G, that is (∂, [G±,G±]) = 0,
to the following evolution flow:

vt + βux + uvx + 2vux + γu3x = 0, (74)

describing simple wave motion [7] of the Euler
equations for shallow water dynamics.
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