Component connectivity of crossed cubes

LITAO GUO School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.CHINA Itguo2012@126.com

Abstract: Let G = (V, E) be a connected graph. A *r*-component cut of *G* is a set of vertices whose deletion results in a graph with at least *r* components. *r*-component connectivity $c\kappa_r(G)$ of *G* is the size of the smallest *r*-component cut. The *r*-component edge connectivity $c\lambda_r(G)$ can be defined similarly. In this paper, we determine the *r*-component (edge) connectivity of crossed cubes CQ_n for small *r*. And we also prove other properties of CQ_n .

Key-Words: Interconnection networks; Fault tolerance; r-component edge connectivity

1 Introduction

A network is often modeled by a graph G =(V, E) with the vertices representing nodes such as processors or stations, and the edges representing links between the nodes. One fundamental consideration in the design of networks is reliability [2, 16]. Let G = (V, E) be a connected graph, $N_G(v)$ the neighbors of a vertex v in G (simply N(v)), E(v) the edges incident to v. Moreover, for $S \subset V$, G[S] is the subgraph induced by $S, N_G(S) = \bigcup_{v \in S} N(v) S, N_G[S] = N_G(S) \cup S$, and G - S denotes the subgraph of G induced by the vertex set of $V \setminus S$. If $u, v \in V, d(u, v)$ denotes the length of a shortest (u, v)-path. For $X, Y \subset V$, denote by [X, Y] the set of edges of G with one end in X and the other in Y. A connected graph G is called supper- κ (resp. super- λ) if every minimum vertex cut (edge cut) of G is the set of neighbors of some vertex in G, that is, every minimum vertex cut (edge cut) isolates a vertex. If G is super- κ or super- λ , then $\kappa(G) = \delta(G)$ or $\lambda(G) = \delta(G)$. For graph-theoretical terminology and notation not defined here we follow [1]. All graphs considered in this paper are simple, finite and undirected.

A *r*-component cut of *G* is a set of vertices whose deletion results in a graph with at least *r* components. *r*-component connectivity $c\kappa_r(G)$ of *G* is the size of the smallest *r*-component cut. The *r*-component edge connectivity $c\lambda_r(G)$ can be defined correspondingly. We can see that $c\kappa_{r+1}(G) \ge c\kappa_r(G)$ for each positive integer *r*. The connectivity $\kappa(G)$ is the 2component connectivity $c\kappa_2(G)$. The *r*-component (edge) connectivity was introduced in [3] and [19] independently. Fábrega and Fiol introduced extraconnectivity in [7]. Let $F \subseteq V$ be a vertex set, F is called extra-cut, if G - F is not connected and each component of G - F has more than k vertices. The extraconnectivity $\kappa_k(G)$ is the cardinality of the minimum extra-cuts.

Two binary strings $x = x_1x_0$ and $y = y_1y_0$ are pair-related, denoted $x \sim y$, if and only if $(x, y) \in \{(00, 00), (10, 10), (01, 11), (11, 01)\}$; if x and y are not pair-related, we write $x \nsim y$.

The crossed cube CQ_n with 2^n vertices was introduced by Efe [5]. It can be defined inductively as follows: CQ_1 is K_2 , the complete graph with labels 0 and 1. For n > 1, CQ_n contains CQ_{n-1}^0 and CQ_{n-1}^1 joined according to the following rule: the vertex $u = 0u_{n-2} \cdots u_0$ from CQ_{n-1}^0 and the vertex $v = 1v_{n-2} \cdots v_0$ from CQ_{n-1}^1 are adjacent if and only if

(1)
$$u_{n-2} = v_{n-2}$$
 if n is even, and

(2) for
$$0 \le i < \lfloor (n-1)/2 \rfloor$$
, $u_{2i+1}u_{2i} \sim v_{2i+1}v_{2i}$.

From the definition, we can see that each vertex of CQ_n with a leading 0 bit has exactly one neighbor with a leading 1 and vice versa. It is a *n*-regular graph. In fact, some pairs of parallel edges are changed to some pairs of cross edges. Furthermore, CQ_n can be obtained by adding a perfect matching M between CQ_{n-1}^0 and CQ_{n-1}^1 . Hence CQ_n can be viewed as $G(CQ_{n-1}^0, CQ_{n-1}^1, M)$ or $CQ_{n-1}^0 \odot CQ_{n-1}^1$ briefly. For any vertex $u \in V(CQ_n), e_M(u)$ is the edge incident to u in M.

The crossed cube is an attractive alternative to hypercubes Q_n . The diameter of CQ_n is approximately half that of Q_n . For more references, we can see

[4, 6, 8, 9, 10, 18].

The fault tolerance analysis of other cubes has recently attracted the attention of many researchers [11, 14, 17, 20, 21, 22, 23, 24, 26, 27]. In [15], Hsu et al. determined the *r*-component connectivity of the hypercube Q_n for $r = 2, 3, \dots, n + 1$. In [25], Zhao et al. determined the *r*-component connectivity of the hypercube Q_n for $r = n + 2, n + 3, \dots, 2n - 4$. In [12], Guo et al. determined the *r*-component (edge) connectivity of the hypercube Q_n and the folded hypercube FQ_n for small *r*. In this paper, we obtain that:

(1) $c\kappa_2(CQ_n) = \kappa(CQ_n) = n(n \ge 2).$ (2) $c\kappa_3(CQ_n) = 2n - 2(n \ge 3).$ (3) $c\lambda_2(CQ_n) = \lambda(CQ_n) = n$ for $n \ge 2.$ (4) $c\lambda_3(CQ_n) = 2n - 1$ for $n \ge 2.$ (5) $c\lambda_4(CQ_n) = 3n - 2$ for $n \ge 2.$

2 Component connectivity of crossed cubes

The hypercube Q_n has an important property as follows.

Lemma 2.1. [24] Any two vertices of Q_n have exactly two common neighbors for $n \ge 3$ if they have any.

The crossed cubes is obtained by interchanging a pair of edges of the hypercube. Then it appears two vertices which have only one common neighbor. So we have the following result similar to Lemma 2.1.

Lemma 2.2. Any two vertices of CQ_n have at most two common neighbors for $n \ge 3$ if they have.

Corollary 2.3. For any two vertices $x, y \in V(CQ_n) (n \ge 3)$,

(1) if d(x,y) = 2, then they have at most two common neighbors;

(2) if $d(x, y) \neq 2$, then they do not have common neighbors.

Lemma 2.4. [12] Let x and y be any two vertices of $V(Q_n)(n \ge 3)$ such that have two common neighbors.

(1) If $x \in V(Q_{n-1}^0)$, $y \in V(Q_{n-1}^1)$, then the one common neighbor is in Q_{n-1}^0 , and the other one is in Q_{n-1}^1 .

(2) If $x, y \in V(Q_{n-1}^0)$ or $V(Q_{n-1}^1)$, then the two common neighbors are in Q_{n-1}^0 or Q_{n-1}^1 .

According to the definition of CQ_n , if any two vertices of $V(CQ_n)$ have only one common neighbor, then it is obtained by interchanging a pair of edges of the hypercube. Hence similar to Lemma 2.4, we have **Lemma 2.5.** Let x and y be any two vertices of $V(CQ_n)(n \ge 3)$ such that have only two common neighbors.

(1) If $x \in V(CQ_{n-1}^0)$, $y \in V(CQ_{n-1}^1)$, then the one common neighbor is in CQ_{n-1}^0 , and the other one is in CQ_{n-1}^1 .

(2) If $x, y \in V(CQ_{n-1}^0)$ or $V(CQ_{n-1}^1)$, then the two common neighbors are in CQ_{n-1}^0 or CQ_{n-1}^1 .

By the definition of CQ_n and above results, we have

Lemma 2.6. If any two vertices of $V(CQ_n)$ have only one common neighbor, then the two vertices and their common neighbor are in some CQ_3 .

Lemma 2.7. [13] $\kappa(CQ_n) = \lambda(CQ_n) = n(n \ge 2).$

Theorem 2.8. CQ_n is super- λ for $n \geq 3$.

Proof. By induction. It is true for $n \le 4$. Let $n \ge 5$. Assume that it holds for n < k. We will show that it is true for n = k.

Let $F \subseteq E(CQ_n)$, |F| = n and $CQ_n - F$ be not connected. Furthermore, $CQ_n - F$ has only two connected components. Without loss of generality, suppose $|F \cap E(CQ_{n-1}^0)| \leq \lfloor n/2 \rfloor$. Then $CQ_{n-1}^0 - F$ is connected.

Note that $|[CQ_{n-1}^0, CQ_{n-1}^1]| = 2^{n-1} > n(n \ge 5)$. If $CQ_{n-1}^1 - F$ is connected, then $CQ_n - F$ is connected, a contradiction.

Assume that $CQ_{n-1}^1 - F$ is not connected. We have $|F \cap E(CQ_{n-1}^1)| \ge n-1$. If $|F \cap E(CQ_{n-1}^1)| = n$, then $F \cap E(CQ_{n-1}^0) = \emptyset$ and $[CQ_{n-1}^0, CQ_{n-1}^1] \cap F = \emptyset$. And each vertex of $CQ_{n-1}^1 - F$ has a neighbor in $CQ_{n-1}^0 - F$, that is, $CQ_n - F$ is connected, a contradiction.

Hence $|F \cap E(CQ_{n-1}^1)| = n - 1$. According to the inductive hypothesis, $CQ_{n-1}^1 - F$ is super- λ . Suppose the isolated vertex x and G_1 are the only two components of $CQ_{n-1}^1 - F$. And G_1 is connected to $CQ_{n-1}^0 - F$. If $e_M(x) \notin F$, then $CQ_n - F$ is connected, a contradiction. So $e_M(x) \in F$. We have F = e(x) and $CQ_n - F$ has only two components, one component is x. Hence CQ_n is super- λ .

Theorem 2.9. CQ_n is super- κ for $n \ge 2$.

The proof is similar to Theorem 2.9.

Theorem 2.10. $c\kappa_2(CQ_n) = \kappa(CQ_n) = n(n \ge 2).$

Theorem 2.11. $c\kappa_3(CQ_n) = 2n - 2(n \ge 3)$.

Proof. We choose two nonadjacent vertices x, y in a cycle C_4 which has two common neighbors. Then

 $CQ_n - N(\{x, y\})$ has at least three connected components and $|N(\{x, y\})| = 2n-2$. That is $c\kappa_3(CQ_n) \le 2n-2$.

We will show $c\kappa_3(CQ_n) \ge 2n-2$ by induction. It is easy to check that it is true for n = 3, 4. So we suppose $n \ge 5$. Suppose it is true for n < k. Let n = k.

Let $F \subseteq V(CQ_n)$ with $|F| \leq 2n-3$. And $CQ_n - F$ has at least three connected components, say, G_1, G_2 and G_3 . We have $|F \cap V(CQ_{n-1}^0)| \leq n-2$ or $|F \cap V(CQ_{n-1}^1)| \leq n-2$. Without loss of generality, we set $|F \cap V(CQ_{n-1}^0)| \leq n-2$. Hence $CQ_{n-1}^0 - F$ is connected.

If $CQ_{n-1}^1 - F$ has at least three components, from the inductive hypothesis, then $|F \cap V(CQ_{n-1}^1)| \ge 2n-4$ and $|F \cap V(CQ_{n-1}^0)| \le 1$. Because each vertex of CQ_{n-1}^1 has one neighbor in CQ_{n-1}^0 , at most one vertex of $CQ_{n-1}^1 - F$ has no neighbors in $CQ_{n-1}^0 - F$. So $CQ_n - F$ has at most two connected components, a contradiction.

Hence $CQ_{n-1}^1 - F$ has at most two components. At most one component of $CQ_{n-1}^1 - F$ is not connected to $CQ_{n-1}^0 - F$. And $CQ_n - F$ has at most two connected components, a contradiction.

Theorem 2.12. $c\lambda_2(CQ_n) = \lambda(CQ_n) = n$ for $n \ge 2$.

Theorem 2.13. $c\lambda_3(Q_n) = 2n - 1$ for $n \ge 2$.

Proof. Take an edge e = uv, then $|E(u) \cup E(v)| = 2n - 1$. And $CQ_n - E(u) - E(v)$ has at least three connected components. That is $c\lambda_3(CQ_n) \le 2n - 1$.

Next we will show that $c\lambda_3(CQ_n) \ge 2n-1$ by induction. It is easy to check it is true for n = 2, 3, 4. So we suppose $n \ge 5$ and assume it is true for all n < k. We will prove that is true for n = k.

Let $F \subseteq E(CQ_n)$ with $|F| \leq 2n-2$, and $CQ_n - F$ has at least three components. Now since $CQ_n = CQ_{n-1}^0 \odot CQ_{n-1}^1$, we have $|E(CQ_{n-1}^0) \cap F| \leq n-1$ or $|E(CQ_{n-1}^1) \cap F| \leq n-1$, say, $|E(CQ_{n-1}^0) \cap F| \leq n-1$. Since $\lambda(CQ_{n-1}) = n-1$, we have two cases.

Case 1. $CQ_{n-1}^0 - F$ is not connected. Then $|E(CQ_{n-1}^0) \cap F| = n-1$ and $CQ_{n-1}^0 - F$ has only two components.

If $CQ_{n-1}^1 - F$ is not connected, then $|E(CQ_{n-1}^1) \cap F| = n - 1$. That is $[CQ_{n-1}^0, CQ_{n-1}^1] \cap F = \emptyset$. But each vertex of $CQ_{n-1}^1 - F$ is connected to one component of $CQ_{n-1}^0 - F$. Hence $CQ_n - F$ has only two components, a contradiction.

Note that $|[CQ_{n-1}^0, CQ_{n-1}^1]| = 2^{n-1} > n - 1(n \ge 5)$. If $CQ_{n-1}^1 - F$ is connected, then $CQ_{n-1}^1 - F$ is connected to one component of $CQ_{n-1}^0 - F$.

Hence $CQ_n - F$ has only two components, a contradiction.

Case 2. $CQ_{n-1}^0 - F$ is connected.

If $CQ_{n-1}^1 - F$ is connected, then we are done. We assume that $CQ_{n-1}^1 - F$ is not connected. And $CQ_{n-1}^1 - F$ has at most one isolated vertex since $|F| \le 2n - 2$.

If $CQ_{n-1}^1 - F$ has at least three components, from the inductive hypothesis, then $|E(CQ_{n-1}^1) \cap F| \ge 2n-3$. Hence at most one of components of $CQ_{n-1}^1 - F$ is not connected to $CQ_{n-1}^0 - F$, $CQ_n - F$ has at most two components, a contradiction.

Therefore we assume that $CQ_{n-1}^1 - F$ has only two components. But $2^{n-1} - (2n-2) > 0 (n \ge 5)$, $CQ_n - F$ has at most two components, a contradiction.

Theorem 2.14. $c\lambda_4(CQ_n) = 3n - 2$ for $n \ge 2$.

Proof. Take a path $P_3 = uvw$. Then $|E(u) \cup E(v) \cup E(w)| = 3n - 2$. And $CQ_n - E(u) - E(v) - E(w)$ has at least four connected components. That is $c\lambda_4(CQ_n) \leq 3n - 2$.

Next we will show that $c\lambda_4(CQ_n) \ge 3n-2$ by induction. It is easy to check it is true for n = 2, 3, 4. So we suppose $n \ge 5$ and assume this is true for all n < k. We will prove that is true for n = k.

Let $F \subseteq E(CQ_n)$ with $|F| \leq 3n-3$, and $CQ_n - F$ has at least four components. Now since $CQ_n = CQ_{n-1}^0 \odot CQ_{n-1}^1$, we have $|E(CQ_{n-1}^0) \cap F| \leq [3n/2]-2$ or $|E(CQ_{n-1}^1) \cap F| \leq [3n/2]-2$, say, $|E(CQ_{n-1}^0) \cap F| \leq [3n/2]-2$. Since $c\lambda_3(CQ_{n-1}) = 2n-3 > [3n/2] - 2(n \geq 5)$, $CQ_{n-1}^0 - F$ has at most two components.

Case 1. $CQ_{n-1}^0 - F$ is connected.

If $CQ_{n-1}^1 - F$ has at least four components, then $c\lambda_4(CQ_{n-1}) \ge 3n - 5$ by the inductive hypothesis. We need delete at most two edges again. Since each vertex of CQ_{n-1}^1 has a neighbor in CQ_{n-1}^0 and $|[CQ_{n-1}^0, CQ_{n-1}^1]| = 2^{n-1} > 2(n \ge 5), CQ_n - F$ has at most three components, a contradiction.

Suppose $CQ_{n-1}^1 - F$ has at most three components. Because of $|[CQ_{n-1}^0, CQ_{n-1}^1]| = 2^{n-1} > (3n-3)(n \ge 5), CQ_n - F$ has at most three components, a contradiction.

Case 2. $CQ_{n-1}^0 - F$ has only two connected components.

Then $|E(CQ_{n-1}^0) \cap F| \ge \lambda(CQ_{n-1}) = n-1$ and $|E(CQ_{n-1}^1) \cap F| \le 2n-2$. Note that $c\lambda_3(CQ_{n-1}) = 2n-3$.

If $CQ_{n-1}^1 - F$ has at least three components, then $|E(CQ_{n-1}^1) \cap F| \ge 2n-3$ and $|E(CQ_{n-1}^0) \cap F| \le n$. But $|[CQ_{n-1}^0, CQ_{n-1}^1] \cap F| \le 1$ and $2^{n-1} > 1(n \ge n)$. 5), $CQ_n - F$ has at most three components, a contradiction.

Hence $CQ_{n-1}^1 - F$ has at most two components. We have $|[CQ_{n-1}^0, CQ_{n-1}^1]| > 3n - 3(n \ge 5)$, and $CQ_n - F$ has at most three components, a contradiction.

References:

- [1] J. Bondy, U. Murty, *Graph theory and its application*, Academic Press, 1976.
- [2] E. Cheng, L. Lesniak, M. Lipman, L. Lipták, Conditional matching preclusion sets, *Information Sciences* 179, 2009, pp. 1092- 1101.
- [3] G. Chartrand, S. Kapoor, L. Lesniak, D. Lick, Generalized connectivity in graphs, *Bull. Bombay Math. Colloq.* 2, 1984, pp. 1-6.
- [4] C. Chang, C. Wu, Conditional fault diameter of crossed cubes, J. Parallel Distrib. Comput. 69, 2009, pp. 91-99.
- [5] E. Efe, The crossed cube architecture for parallel computing, *IEEE Trans. Parallel Distrib. Systems* 3 (5), 1992, pp. 513-524.
- [6] K. Efe, P.K. Blackwell, W. Slough, T. Shiau, Topological properties of the crossed cube architecture,*Parallel Computing* 20, 1994, pp. 1763-1775.
- [7] J. Fábrega, M. Fiol, On the extraconnectivity of graphs, *Discr. Math.* 155, 1996, pp. 49 - 57.
- [8] J. Fan, Diagnosability of crossed cubes under the comparison diagnosis model, *IEEE Transactions on Parallel and Distributed Systems* 13 (10), 2002, pp. 1099-1104.
- [9] J. Fan, X. Lin, X. Jia, Optimal path embedding in crossed cubes, *IEEE Transactions on Parallel* and Distributed Systems 16 (2), 2004, pp. 1190-1200.
- [10] J. Fan, X. Lin, X. Jia, Node-pancyclicity and edge-pancyclicity in crossed cubes, *IEEE Transactions on Parallel and Distributed Systems* 16 (2), 2004, pp. 1190-1200.
- [11] L. Guo, X. Guo, Fault tolerance of hypercubes and folded hypercubes, *J Supercomput.* 68, 2014, pp. 1235-1240.
- [12] L. Guo, Fault tolerance of hypercubes and folded hypercubes in terms of component connectivity , submitted.

- [14] S. Hsieh, Extra edge connectivity of hypercubelike networks, *Int. J. Parallel Emergent Distrib. Syst.* 28, 2013, pp. 123-133.
- [15] L. Hsu, E. Cheng, L. Lipták, J. Tan, C. Lin, T. Ho, Component connectivity of the hypercubes, *Int. J. Comput. Math.* 89, 2012, pp. 137-145.
- [16] M. Lin, M. Chang, D. Chen, Efficient algorithms for reliability analysis of distributed computing systems, *Inform. Sci.* 117, 1999, pp. 89 - 106.
- [17] L. Lin, L. Xu, S. Zhou, Relating the extra connectivity and the conditional diagnosability of regular graphs under the comparison model, *Theoretical Comput. Sci.* 618, 2016, pp. 21-29.
- [18] M. Ma, J. Xu, Edge-pancyclicity of crossed cubes, *J. China Univ. Sci. Tech.* 35 (3), 2005, pp. 329-333.
- [19] E. Sampathkumar, Connectivity of a graphła generalization, J. Comb. Inf. Syst. Sci. 9, 1984, pp. 71-78.
- [20] J. Xu, Q. Zhu, X. Hou, T. Zhou, On restricted connectivity and extra connectivity of hypercubes and folded hypercubes, *J. Shanghai Jiaotong Univ., Sci.* 10(2), 2005, pp. 203-207.
- [21] W. Yang, H. Li, On reliability of the folded hypercubes in terms of the extra edge-connectivity, *Inform. Sci.* 272, 2014, pp. 238-243.
- [22] W. Yang, S. Zhao, S. Zhang, Strong Menger connectivity with conditional faults of folded hypercubes, *Inform. Processing Let.* 125, 2017, pp. 30-34.
- [23] Q. Zhu, J. Xu, X. Hou, M. Xu, On reliability of the folded hypercubes, *Inform. Sci.* 177, 2007, pp. 1782 - 1788.
- [24] Q. Zhu, J. Xu, On restricted edge connectivity and extra edge connectivity of hypercubes and foled hypercubes, J. University of Science and Technology of China 36(3), 2006, pp. 246 -253.
- [25] S. Zhao, W. Yang, S. Zhang, Component connectivity of hypercubes, *Theoretical Comput. Sci.* 640, 2016, pp. 115-118.
- [26] M. Zhang, J. Zhou, On g-extra connectivity of folded hypercubes, *Theoretical Comput. Sci.* 593, 2015, pp. 146-153.

[27] M. Zhang, L. Zhang, X. Feng, Reliability measures in relation to the h-extra edge-connectivity of folded hypercubes, *Theoretical Comput. Sci.* 615, 2016, pp. 71-77.