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Abstract: Let G = (V, E) be a connected graph. A r-component cut of G is a set of vertices whose deletion
results in a graph with at least r components. r-component connectivity cκr(G) of G is the size of the smallest
r-component cut. The r-component edge connectivity cλr(G) can be defined similarly. In this paper, we determine
the r-component (edge) connectivity of crossed cubes CQn for small r. And we also prove other properties of
CQn.
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1 Introduction

A network is often modeled by a graph G =
(V, E) with the vertices representing nodes such as
processors or stations, and the edges representing
links between the nodes. One fundamental consider-
ation in the design of networks is reliability [2, 16].
Let G = (V, E) be a connected graph, NG(v) the
neighbors of a vertex v in G (simply N(v)), E(v) the
edges incident to v. Moreover, for S ⊂ V , G[S] is
the subgraph induced by S, NG(S) = ∪v∈SN(v) −
S,NG[S] = NG(S) ∪ S, and G− S denotes the sub-
graph of G induced by the vertex set of V \ S. If
u, v ∈ V , d(u, v) denotes the length of a shortest
(u, v)-path. For X, Y ⊂ V , denote by [X, Y ] the
set of edges of G with one end in X and the other
in Y . A connected graph G is called supper-κ (resp.
super-λ) if every minimum vertex cut (edge cut) of G
is the set of neighbors of some vertex in G, that is,
every minimum vertex cut (edge cut) isolates a ver-
tex. If G is super-κ or super-λ, then κ(G) = δ(G) or
λ(G) = δ(G). For graph-theoretical terminology and
notation not defined here we follow [1]. All graphs
considered in this paper are simple, finite and undi-
rected.

A r-component cut of G is a set of vertices whose
deletion results in a graph with at least r components.
r-component connectivity cκr(G) of G is the size
of the smallest r-component cut. The r-component
edge connectivity cλr(G) can be defined correspond-
ingly. We can see that cκr+1(G) ≥ cκr(G) for each
positive integer r. The connectivity κ(G) is the 2-
component connectivity cκ2(G). The r-component
(edge) connectivity was introduced in [3] and [19] in-

dependently. Fábrega and Fiol introduced extracon-
nectivity in [7]. Let F ⊆ V be a vertex set, F is
called extra-cut, if G − F is not connected and each
component of G − F has more than k vertices. The
extraconnectivity κk(G) is the cardinality of the min-
imum extra-cuts.

Two binary strings x = x1x0 and y = y1y0 are
pair-related, denoted x ∼ y, if and only if (x, y) ∈
{(00, 00), (10, 10), (01, 11), (11, 01)}; if x and y are
not pair-related, we write x � y.

The crossed cube CQn with 2n vertices was in-
troduced by Efe [5]. It can be defined inductively
as follows: CQ1 is K2, the complete graph with la-
bels 0 and 1. For n > 1, CQn contains CQ0

n−1 and
CQ1

n−1 joined according to the following rule: the
vertex u = 0un−2 · · ·u0 from CQ0

n−1 and the ver-
tex v = 1vn−2 · · · v0 from CQ1

n−1 are adjacent if and
only if

(1) un−2 = vn−2 if n is even, and
(2) for 0 ≤ i < b(n−1)/2c, u2i+1u2i ∼ v2i+1v2i.
From the definition, we can see that each vertex

of CQn with a leading 0 bit has exactly one neighbor
with a leading 1 and vice versa. It is a n-regular graph.
In fact, some pairs of parallel edges are changed to
some pairs of cross edges. Furthermore, CQn can
be obtained by adding a perfect matching M between
CQ0

n−1 and CQ1
n−1. Hence CQn can be viewed as

G(CQ0
n−1, CQ1

n−1,M) or CQ0
n−1 ¯CQ1

n−1 briefly.
For any vertex u ∈ V (CQn), eM (u) is the edge inci-
dent to u in M .

The crossed cube is an attractive alternative to hy-
percubes Qn. The diameter of CQn is approximately
half that of Qn. For more references, we can see
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[4, 6, 8, 9, 10, 18].
The fault tolerance analysis of other cubes has

recently attracted the attention of many researchers
[11, 14, 17, 20, 21, 22, 23, 24, 26, 27]. In [15], Hsu
et al. determined the r-component connectivity of the
hypercube Qn for r = 2, 3, · · · , n + 1. In [25], Zhao
et al. determined the r-component connectivity of the
hypercube Qn for r = n + 2, n + 3, · · · , 2n − 4. In
[12], Guo et al. determined the r-component (edge)
connectivity of the hypercube Qn and the folded hy-
percube FQn for small r. In this paper, we obtain
that:

(1) cκ2(CQn) = κ(CQn) = n(n ≥ 2).
(2) cκ3(CQn) = 2n− 2(n ≥ 3).
(3) cλ2(CQn) = λ(CQn) = n for n ≥ 2.
(4) cλ3(CQn) = 2n− 1 for n ≥ 2.
(5) cλ4(CQn) = 3n− 2 for n ≥ 2.

2 Component connectivity of crossed
cubes

The hypercube Qn has an important property as
follows.

Lemma 2.1. [24] Any two vertices of Qn have exactly
two common neighbors for n ≥ 3 if they have any.

The crossed cubes is obtained by interchanging a
pair of edges of the hypercube. Then it appears two
vertices which have only one common neighbor. So
we have the following result similar to Lemma 2.1.

Lemma 2.2. Any two vertices of CQn have at most
two common neighbors for n ≥ 3 if they have.

Corollary 2.3. For any two vertices x, y ∈
V (CQn)(n ≥ 3),

(1) if d(x, y) = 2, then they have at most two
common neighbors;

(2) if d(x, y) 6= 2, then they do not have common
neighbors.

Lemma 2.4. [12] Let x and y be any two vertices of
V (Qn)(n ≥ 3) such that have two common neigh-
bors.

(1) If x ∈ V (Q0
n−1), y ∈ V (Q1

n−1), then the one
common neighbor is in Q0

n−1, and the other one is in
Q1

n−1.
(2) If x, y ∈ V (Q0

n−1) or V (Q1
n−1), then the two

common neighbors are in Q0
n−1 or Q1

n−1.

According to the definition of CQn, if any two
vertices of V (CQn) have only one common neighbor,
then it is obtained by interchanging a pair of edges of
the hypercube. Hence similar to Lemma 2.4, we have

Lemma 2.5. Let x and y be any two vertices of
V (CQn)(n ≥ 3) such that have only two common
neighbors.

(1) If x ∈ V (CQ0
n−1), y ∈ V (CQ1

n−1), then the
one common neighbor is in CQ0

n−1, and the other one
is in CQ1

n−1.
(2) If x, y ∈ V (CQ0

n−1) or V (CQ1
n−1), then the

two common neighbors are in CQ0
n−1 or CQ1

n−1.

By the definition of CQn and above results, we
have

Lemma 2.6. If any two vertices of V (CQn) have only
one common neighbor, then the two vertices and their
common neighbor are in some CQ3.

Lemma 2.7. [13] κ(CQn) = λ(CQn) = n(n ≥ 2).

Theorem 2.8. CQn is super-λ for n ≥ 3.

Proof. By induction. It is true for n ≤ 4. Let n ≥ 5.
Assume that it holds for n < k. We will show that it
is true for n = k.

Let F ⊆ E(CQn), |F | = n and CQn−F be not
connected. Furthermore, CQn−F has only two con-
nected components. Without loss of generality, sup-
pose |F ∩ E(CQ0

n−1)| ≤ bn/2c. Then CQ0
n−1 − F

is connected.
Note that |[CQ0

n−1, CQ1
n−1]| = 2n−1 > n(n ≥

5). If CQ1
n−1 − F is connected, then CQn − F is

connected, a contradiction.
Assume that CQ1

n−1 − F is not connected. We
have |F ∩E(CQ1

n−1)| ≥ n−1. If |F ∩E(CQ1
n−1)| =

n, then F ∩E(CQ0
n−1) = ∅ and [CQ0

n−1, CQ1
n−1] ∩

F = ∅. And each vertex of CQ1
n−1 − F has a neigh-

bor in CQ0
n−1 − F , that is, CQn − F is connected, a

contradiction.
Hence |F ∩ E(CQ1

n−1)| = n − 1. According
to the inductive hypothesis, CQ1

n−1 − F is super-λ.
Suppose the isolated vertex x and G1 are the only two
components of CQ1

n−1 − F . And G1 is connected
to CQ0

n−1 − F . If eM (x) /∈ F , then CQn − F is
connected, a contradiction. So eM (x) ∈ F . We have
F = e(x) and CQn − F has only two components,
one component is x. Hence CQn is super-λ.

Theorem 2.9. CQn is super-κ for n ≥ 2.

The proof is similar to Theorem 2.9.

Theorem 2.10. cκ2(CQn) = κ(CQn) = n(n ≥ 2).

Theorem 2.11. cκ3(CQn) = 2n− 2(n ≥ 3).

Proof. We choose two nonadjacent vertices x, y in a
cycle C4 which has two common neighbors. Then
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CQn−N({x, y}) has at least three connected compo-
nents and |N({x, y})| = 2n−2. That is cκ3(CQn) ≤
2n− 2.

We will show cκ3(CQn) ≥ 2n− 2 by induction.
It is easy to check that it is true for n = 3, 4. So we
suppose n ≥ 5. Suppose it is true for n < k. Let
n = k.

Let F ⊆ V (CQn) with |F | ≤ 2n − 3. And
CQn − F has at least three connected components,
say, G1, G2 and G3. We have |F ∩ V (CQ0

n−1)| ≤
n − 2 or |F ∩ V (CQ1

n−1)| ≤ n − 2. Without loss of
generality, we set |F ∩ V (CQ0

n−1)| ≤ n − 2. Hence
CQ0

n−1 − F is connected.
If CQ1

n−1−F has at least three components, from
the inductive hypothesis, then |F ∩ V (CQ1

n−1)| ≥
2n−4 and |F∩V (CQ0

n−1)| ≤ 1. Because each vertex
of CQ1

n−1 has one neighbor in CQ0
n−1, at most one

vertex of CQ1
n−1−F has no neighbors in CQ0

n−1−F .
So CQn − F has at most two connected components,
a contradiction.

Hence CQ1
n−1 − F has at most two components.

At most one component of CQ1
n−1 − F is not con-

nected to CQ0
n−1−F . And CQn−F has at most two

connected components, a contradiction.

Theorem 2.12. cλ2(CQn) = λ(CQn) = n for n ≥
2.

Theorem 2.13. cλ3(Qn) = 2n− 1 for n ≥ 2.

Proof. Take an edge e = uv, then |E(u) ∪ E(v)| =
2n − 1. And CQn − E(u) − E(v) has at least three
connected components. That is cλ3(CQn) ≤ 2n− 1.

Next we will show that cλ3(CQn) ≥ 2n − 1 by
induction. It is easy to check it is true for n = 2, 3, 4.
So we suppose n ≥ 5 and assume it is true for all
n < k. We will prove that is true for n = k.

Let F ⊆ E(CQn) with |F | ≤ 2n−2, and CQn−
F has at least three components. Now since CQn =
CQ0

n−1¯CQ1
n−1, we have |E(CQ0

n−1)∩F | ≤ n−1
or |E(CQ1

n−1)∩F | ≤ n−1, say, |E(CQ0
n−1)∩F | ≤

n− 1. Since λ(CQn−1) = n− 1, we have two cases.
Case 1. CQ0

n−1 − F is not connected.
Then |E(CQ0

n−1)∩F | = n− 1 and CQ0
n−1−F

has only two components.
If CQ1

n−1 − F is not connected, then
|E(CQ1

n−1) ∩ F | = n − 1. That is
[CQ0

n−1, CQ1
n−1] ∩ F = ∅. But each vertex of

CQ1
n−1 − F is connected to one component of

CQ0
n−1 − F . Hence CQn − F has only two

components, a contradiction.
Note that |[CQ0

n−1, CQ1
n−1]| = 2n−1 > n −

1(n ≥ 5). If CQ1
n−1−F is connected, then CQ1

n−1−
F is connected to one component of CQ0

n−1 − F .

Hence CQn − F has only two components, a con-
tradiction.

Case 2. CQ0
n−1 − F is connected.

If CQ1
n−1 − F is connected, then we are done.

We assume that CQ1
n−1 − F is not connected. And

CQ1
n−1 − F has at most one isolated vertex since

|F | ≤ 2n− 2.
If CQ1

n−1−F has at least three components, from
the inductive hypothesis, then |E(CQ1

n−1) ∩ F | ≥
2n−3. Hence at most one of components of CQ1

n−1−
F is not connected to CQ0

n−1 − F , CQn − F has at
most two components, a contradiction.

Therefore we assume that CQ1
n−1 − F has only

two components. But 2n−1 − (2n − 2) > 0(n ≥ 5),
CQn − F has at most two components, a contradic-
tion.

Theorem 2.14. cλ4(CQn) = 3n− 2 for n ≥ 2.

Proof. Take a path P3 = uvw. Then |E(u) ∪ E(v) ∪
E(w)| = 3n− 2. And CQn −E(u)−E(v)−E(w)
has at least four connected components. That is
cλ4(CQn) ≤ 3n− 2.

Next we will show that cλ4(CQn) ≥ 3n − 2 by
induction. It is easy to check it is true for n = 2, 3, 4.
So we suppose n ≥ 5 and assume this is true for all
n < k. We will prove that is true for n = k.

Let F ⊆ E(CQn) with |F | ≤ 3n − 3, and
CQn − F has at least four components. Now since
CQn = CQ0

n−1 ¯ CQ1
n−1, we have |E(CQ0

n−1) ∩
F | ≤ [3n/2]−2 or |E(CQ1

n−1)∩F | ≤ [3n/2]−2, say,
|E(CQ0

n−1)∩F | ≤ [3n/2]−2. Since cλ3(CQn−1) =
2n−3 > [3n/2]−2(n ≥ 5), CQ0

n−1−F has at most
two components.

Case 1. CQ0
n−1 − F is connected.

If CQ1
n−1−F has at least four components, then

cλ4(CQn−1) ≥ 3n − 5 by the inductive hypothe-
sis. We need delete at most two edges again. Since
each vertex of CQ1

n−1 has a neighbor in CQ0
n−1 and

|[CQ0
n−1, CQ1

n−1]| = 2n−1 > 2(n ≥ 5), CQn − F
has at most three components, a contradiction.

Suppose CQ1
n−1 − F has at most three compo-

nents. Because of |[CQ0
n−1, CQ1

n−1]| = 2n−1 >
(3n− 3)(n ≥ 5), CQn−F has at most three compo-
nents, a contradiction.

Case 2. CQ0
n−1−F has only two connected com-

ponents.
Then |E(CQ0

n−1)∩F | ≥ λ(CQn−1) = n−1 and
|E(CQ1

n−1)∩F | ≤ 2n−2. Note that cλ3(CQn−1) =
2n− 3.

If CQ1
n−1−F has at least three components, then

|E(CQ1
n−1)∩F | ≥ 2n−3 and |E(CQ0

n−1)∩F | ≤ n.
But |[CQ0

n−1, CQ1
n−1] ∩ F | ≤ 1 and 2n−1 > 1(n ≥
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5), CQn−F has at most three components, a contra-
diction.

Hence CQ1
n−1 − F has at most two components.

We have |[CQ0
n−1, CQ1

n−1]| > 3n − 3(n ≥ 5), and
CQn − F has at most three components, a contradic-
tion.
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