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Abstract: Homotopy perturbation method is simply applicable to the different non-linear partial differential equa-
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tively by using homotopy perturbation method.
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1 Introduction

The Drinfeld-Sokolov (DS) system was first intro-
duced by Drinfeld and Sokolov and it is a system of
nonlinear partial differential equations owner of the
Lax pairs of a special form [1]. The physical motiva-
tion of this system was explained in detail by Ref.[2].
Generalized form of the DS system has been stud-
ied by different authors using the various methods
[3, 4, 5, 6, 7, 8, 9, 10]. In order to find solutions of DS
system, we use homotopy perturbation method. To do
that, we write the DS system in the following form
[9],

ut + (v2)x = 0, (1)
vt − avxxx + 3buxv + 3kuvx = 0, (2)

where a, b and k are arbitrary constants.
For diverse physical systems generally require

non-linear differential equations. One of the these
types of equations is Benjamin- Bona- Mahony equa-
tion (BBM) which is an alternative model for the
Korteweg– de Vries equation (KdV) written by Ben-
jamin et al. in Ref. [11] . These type of equations are
known as the regularized long-wave equations, and
given in the following form [11]:

ut + ux + uux − uxxt = 0. (3)

Some of the modified versions of the Benjamin-
Bona- Mahony (MBBM) equation given in Eq.3 have
been investigated by many authors [12, 13, 14, 15,
16, 17]. MBBM equation can also be implemented
for the solution of different physical systems, such as
acoustic-gravity waves in compressible fluids, acous-
tic waves in enharmonic crystals, the hydromagnetic
waves in cold plasma [18], [19], etc. The existence
and uniqueness of the solution of initial value prob-
lems for the MBBM equation have been considered in
Ref.[20]. In this paper we use following form [14]:

ut + αux + βu2ux − γuxxt = 0, (4)

where α, β and γ are arbitrary real constants. He used
an effective and coincide method, (G′/G)-expansion
method [21], to obtain the exact solution of the Eq.1.3.
Some applications of the (G′/G)-expansion method
can be seen in Ref.[22, 23].

In this paper, our aim is to present the perturbative
solutions of the DS and MBBM equations by using
the Homotopy Perturbation Method (HPM) [24]. To
do that, the paper covers the following sections: in
Section 2 we have presented HPM. We have presented
application for DS system of equations and MBBM
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equation in Section 3. Finally, Section 4 is devoted to
the conclusion of the study.

2 Homotopy Perturbation Method

For the utility of the reader, we will introduce
HPM [24]. The following nonlinear differential equa-
tion:

A(u)− f(r) = 0, r ∈ Ω, (5)

with boundary conditions

B(u)− ∂u

∂n
= 0, r ∈ Γ,

where A is a general differential operator, B is a
boundary operator, f(r) is a known analytical func-
tion and Γ is the boundary of the domain Ω. The oper-
ator A can be divided into two parts L and N, where
L is linear, andN is nonlinear. Accordingly Eq. 5 can
be rewritten as follows:

L(u) +N(u)− f(r) = 0.

He constructed a homotopy ν(r, p) : Ω× [0, 1]→
R in paper [24]. ν satisfies

H(v, p) = L(v)−L(u0)+pL(u0)+p[N(v)−f(r)] = 0,
(6)

where p ∈ [0, 1] is an embedding parameter and u0 is
an initial approximation of Eq. 5. Expressly we have

H(v, 0) = L(v)− L(u0) = 0,

H(v, 1) = A(v)− f(r) = 0

where L(v)−L(u0) andA(v)−f(r) are called homo-
topic in topology. According to the Homotopy Pertur-
bation technique, we can be written the solution Eq 6
as a power series in p small parameter:

v = v0 + pv1 + p2v2 + ...

Setting p = 1 results in the approximate solution of
Eq. 5

u = lim
p→1

v = v0 + v1 + v2 + ...

3 Applications of the Homotopy Per-
turbation Method

3.1 Application for of DS equation

System of PDEs given in Eq.1 can be converted
into following system of ODEs by using transforma-
tion of η = x− βt, u = U(η), v = V (η),

−βU ′ + (V 2)′ = 0, (7)
βV ′ + aV ′′′ − 3bU ′V − 3kUV ′ = 0, (8)

where U ′ = dU
dη and V ′ = dV

dη . By integrating the first
equation given in Eq.7, we get

U =
1

β
(V 2 + c), (9)

where c is an arbitrary integration constant. We sub-
stitute Eq.9 in the second part of the Eq.7 and then
integrate the obtained equation, and have found

V ′′ +
(β2 − 3ck)

aβ
V − (2b+ k)

aβ
V 3 +

e

aβ
= 0, (10)

where e is an arbitrary integration constant.

The First Approximation:

It is well known that the homotopy perturbation
method in [24, 25, 26, 27], we use for Eq.10 this
method. Eq.10 was also solved by using the HPM
with different initial condition in Ref. [28]. Our aim
is to find bifurcation point for same equation with dif-
ferent initial condition. A homotopy is constructed in
Eq.10

V ′′+
(β2 − 3ck)

aβ
V − (2b+ k)

aβ
p V 3+

e

aβ
= 0, (11)

where p ∈ [0, 1]. In Eq.11 there are two observa-
tions to be considered; the first observation is that for
p = 0, Eq.11 becomes a linear equation. The second
observation is that for p = 1, it becomes the origi-
nal nonlinear one. Due to the homotopy perturbation
method, the solution of Eq.11 can be expressed in a
series of p :

V = V0 + p V1 (12)

Besides, the coefficient of the linear term and the con-
stant also expend in a series of p [26, 29, 10], that is
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(β2 − 3ck)

aβ
= w2 + p w1, (13)

e

aβ
= p c1. (14)

Substituting Eqs. 12 and 13 into Eq. 11 and equating
coefficients of like powers of p constructs a series of
linear equations:

V ′′
0 + w2V0 = 0, (15)

V ′′
1 + w2V1 + w1V0 −

(2b+ k)

aβ
V 3
0 + c1 = 0. (16)

We apply the initial condition V0(0) = A and V ′
0(0) =

0 in the Eq.15, we get

V0 = A coswη. (17)

Substituting 17 into 16 obtain result

V ′′
1 + w2V1 +

(
w1 −

3A2(2b+ k)

4aβ

)
A coswη

−A
3(2b+ k)

4aβ
cos 3wη + c1 = 0. (18)

If w1− 3A2(2b+k)
4aβ 6= 0 in the Eq.18 , every solution of

Eq.18 will comprise a secular term. So we necessitate
that

w1 =
3A2(2b+ k)

4aβ
, (19)

c1 = 0 (20)

and eliminate the coswη term from Eq.18 completely.
Thus Eq.18 becomes

V ′′
1 + w2V1 −

A3(2b+ k)

4aβ
cos 3wη = 0. (21)

The solution of Eq.21 with the initial conditions
V1(0) = 0 and V ′

1(0) = 0

V1 = −A
3(2b+ k)

32aβw2
(cos 3wη − coswη) . (22)

Then the first-order approximate solution is enough,
if putting p = 1 in Eqs.12 and 13, we get

V = A coswη − A3(2b+ k)

32aβw2
(cos 3wη − coswη) ,

(23)
and

w2 =
(β2 − 3ck)

aβ
− 3A2(2b+ k)

4aβ
, (24)

e = 0. (25)

With the same logic in Ref. [10], we know that
w2 ≥ 0, the Eq.24 has no solution when

c >
1

3k
β2 − A2

4k
(2b+ k).

Nevertheless, when

c <
1

3k
β2 − A2

4k
(2b+ k),

Eq.24 has the solution

w =

√
(β2 − 3ck)

aβ
− 3A2(2b+ k)

4aβ
. (26)

Thus, bifurcation occurs at

c =
1

3k
β2 − A2

4k
(2b+ k).

The Second Approximation:
According to the homotopy perturbation method,

we assume that the solution of Eq.11 can be expressed
in a series of p :

V = V0 + p V1 + p2V2 (27)

Furthermore, the coefficient of the linear term and the
constant also expend in a series of p [26, 29], that is

(β2 − 3ck)

aβ
= w2 + pw1 + p2w2, (28)

e

aβ
= pc1 + p2c2. (29)

Therefore, in the conditions V0(0) = A, V ′
0(0) = 0

and Vi(0) = 0, V ′
i (0) = 0 for i = 1, 2, using 27, 28

and repeating the process in the first approximation
we get

V = A coswη − A3(2b+ k)

32aβw2
(cos 3wη − coswη)
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+
A5

210α2β2w4
(cos 5wη − coswη)

and

w2 =
(β2 − 3ck)

aβ
− 3A2(2b+ k)

4aβ

−3A4

26
(2b+ k)2

α2β2w2
(30)

e = 0. (31)

Rewrite Eq.30 in the form

w = ∓
√
αβ(8(β2 − 3ck)− 6A2(2b+ k)∓ q

4αβ
(32)

where q is
√

6A2(2b+ k)(2−A2)− 16(β2 − 3ck).
Therefore, the bifurcation occurs at

c =
1

3k
(β2 − 1

8
(−1 + 6A2(2b+ k))∓ s

where s is√
−1 + 6A4(2b+ k) + 36A4(2b+ k)2 + 54A6(2b+ k)3.

3.2 Application for MBBM equation

Eq.4 can be converted into following ordinary dif-
ferential equation by using transformation of η =
kx+ wt, u = U(η),

−γk2wU ′′′ + βkU2U ′ + (w + αk)U ′ = 0. (33)

Integration Eq.33 once, we get

U ′′ − (w + αk)

γk2w
U − β

3γkw
U3 − c

γk2w
= 0. (34)

where c is an integration constant. Eq.4 was also
solved by using the HPM with different initial condi-
tion in Ref. [30]. Our aim is to find bifurcation point
for same equation with different initial condition.

The First Approximation:

We apply the homotopy perturbation method to
Eq.34. We compose a homotopy in the form

U ′′− (w + αk)

γk2w
U − β

3γkw
pU3− c

γk2w
= 0, (35)

where p ∈ [0, 1]. In Eq.35 there are two observa-
tions to be considered; the first observation is that for
p = 0, Eq.35 becomes a linear equation. The second
observation is that for p = 1, it becomes the origi-
nal nonlinear one. Due to the homotopy perturbation
method, the solution of Eq.35 can be expressed in a
series of p :

U = U0 + p U1 (36)

Moreover, the coefficient of the linear term and the
constant also expend in a series of p, that is

−(w + αk)

γk2w
= σ2 + p σ1, (37)

− c

γk2w
= p c1. (38)

Substituting Eqs 36 and 37 into Eq 35 and equating
coefficients of like powers of p yields a series of linear
equations:

U ′′
0 + σ2U0 = 0, (39)

U ′′
1 + σ2U1 + σ1U0 −

β

3γkw
U3
0 + c1 = 0 = 0. (40)

Solving Eq..39 in the initial condition U0(0) = A and
U ′
0(0) = 0, we get

U0 = A cosση. (41)

Substituting .41 into.40 results into

U ′′
1 + σ2U1 +

(
σ1 −

A2β

4γkw

)
A cosση (42)

− A3β

12γkw
cos 3ση + c1 = 0.

If σ1 − A2β
4γkw 6= 0, every solution of Eq.42 will com-

prise a secular term. So we necessitate that

σ1 =
A2β

4γkw
, (43)

c1 = 0. (44)

and eliminate the cosση term from Eq.42 completely.
With this requirement, Eq.42 becomes

U ′′
1 + σ2U1 −

A3β

12γkw
cos 3ση = 0. (45)
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The solution of Eq.45 reads in the initial conditions
U1(0) = 0 and U ′

1(0) = 0

U1 = − A3β

96γkwσ2
(cos 3ση − cosση) . (46)

Then the first-order approximate solution is enough,
then putting p = 1 in Eqs.36 and 37, we get

U = A cosση − A3β

96γkwσ2
(cos 3ση − cosση) ,

(47)
and

σ2 = −(w + αk)

γk2w
− A2β

4γkw
, (48)

c = 0. (49)

Similarly, with the same logic in Section 3.1 and
Ref. [10], since σ2 ≥ 0, the above equation has no
solution when

α >
A2β

4
+
w

k
.

Nevertheless, when

α <
A2β

4
+
w

k
,

Eq.48 has the solution

σ =

√
−(w + αk)

γk2w
− A2β

4γkw
. (50)

Therefore, the bifurcation occurs at

α =
A2β

4
+
w

k
.

The Second Approximation:

According to the homotopy perturbation method,
we assume that the solution of Eq.35 can be expressed
in a series of p :

U = U0 + pU1 + p2U2 (51)

Moreover, the coefficient of the linear term and the
constant also expend in a series of p, that is

−(w + αk)

γk2w
= σ2 + pσ1 + p2σ2, (52)

− c

γk2w
= pc1 + p2c2. (53)

Therefore, in the initial conditions U0(0) = A,
U ′
0(0) = 0 and Ui(0) = 0, U ′

i(0) = 0 for i = 1, 2,
using 51, 52 and repeating the process in the first ap-
proximation, then putting p = 1 in Eqs.51 and 52 we
get

U = A cosση − A3β

96γkwσ2
(cos 3ση − cosση)

+
A5β2

32210γ2k2w2σ4
(cos 5ση − cosση) ,

and

σ2 = −(w + αk)

γk2w
− A2β

4γkw

− A4β2

3127γ2k2w2σ2
, (54)

c = 0. (55)

Rewrite Eq.54 in the form

σ = ∓
√

(−6wγ(4w + 4kα+A2kβ)∓ wγϕ
4
√

3wγk

or

σ = ∓
√

(−6wγ(4w + 4kα+A2kβ)± wγϕ
4
√

3wγk

where ϕ is√
6(96w2 + 48kw(4α+A2β) + k2(96α2 + 48A2αβ + 5A4β2)).

Therefore, bifurcation occurs at

α =
A4β2k

−32w + 8A2k(−1 + 2w)β
.

4 Conclusion

The homotopy perturbation method have been used
to obtain the perturbative solutions of the DS and
MBBM equations. In this paper, bifurcation phe-
nomenon in DS and MBBM equations is investigated
by using HPM and then the bifurcation is observed in
first and second approximations.
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