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Abstract: A Π"# class is an effectively closed set of reals.  One way to view it is as the set of infinite 
paths through a computable tree.  We consider the notion of acceptably equivalent numberings of Π"# 
classes.  We show that a permutation exists between any two acceptably equivalent numberings that 
preserves the computable content.  Furthermore the most commonly used numberings of the Π"# classes 
are acceptably equivalent.  We also consider decidable Π"# classes in enumerations.  A decidable Π"# 
class may be represented by a unique computable tree without dead ends, but we show that this tree may 
not show up in an enumeration of uniformly computable trees which gives rise to all Π"# classes.  In fact 
this is guaranteed to occur for some decidable Π"# class.  These results are motivated by structural 
questions concerning the upper semi-lattice of enumerations of Π"# classes where notions such as 
acceptable equivalence arise. 
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1  Introduction 

Many results in classical computability 
theory are derived from a study of the indices of 
partial computable functions.  For example, the 
Enumeration Theorem allows indices to be 
treated as arguments.  Conversely, the S%& 
Theorem allows arguments to be treated as 
indices.   So it is desirable that these and other 
results be independent of the chosen system of 
indices. 

It is known that if a system of indices is 
acceptable then it has same structure theory as 
any system that satisfies the Enumeration and 
S%& theorems.  A system of indices ϕ is a family 
of surjective maps ϕ%:𝜔 → {n-ary partial 
recursive functions} [12].  Let ϕ be a system of 
indices that satisfies the Enumeration and S%& 
theorems and call it the standard system [9].  A 
system of indices φ is acceptable if, for every n, 
there are total computable functions f and g such 
that 𝜓-% ≃ 𝜙0(-)%  and 𝜙-% ≃ 𝜓3(-)%  [11].  For a 
greater treatment on acceptable systems of 

indices for partial recursive functions, see [9].    
In this paper we develop a notion of 
acceptability for Π"# classes. 

A Π"# class is an effectively closed set of 
reals in 𝜔4, although we shall restrict our 
attention to classes in 24.  Alternatively we may 
also consider a Π"# class to be the set of infinite 
paths in through a computable tree in 𝜔64.  One 
way to enumerate them is 𝑃- = 𝜔4\

𝐼(𝜎%)%∈=>  [1].  (Here 𝑊- is the eth c.e. set in 
the standard system, 𝜎% is the nth string in the 
enumeration 𝜎#, 𝜎", 𝜎A,⋯	of all strings in 𝜔64, 
and 𝐼(𝜎%) is the set of elements in 𝜔4 that 
extend 𝜎%.)  As a result,  Π"# classes have index-
argument related properties inherited from the 
Enumeration and S%& theorems.  We shall use an 
alternate enumeration method which takes 
advantage of this property and justifiably call 
this the standard numbering of  Π"# classes.   

Our work follows in the path of previous 
work done by Jockusch, Rogers, and Soare     
[13, p. 25] for acceptably equivalent number-      
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-ings of the partial recursive functions, and 
hence of the c.e. sets.  A permutation exists 
between any two acceptably equivalent 
numberings which preserves the original 
computable content.  We use the standard 
numbering for c.e. sets to extend this result to 
Π"# classes.  Furthermore we show that the most 
frequently used numberings in Π"# classes are 
acceptable with respect to the standard 
numbering.  We develop these notions below. 

In the mid-1950s, initiated under 
Kolmogorov, work began on generalized theory 
of numberings and continued under the 
direction of Mal'tsev and Ershov [4].  A 
numbering of a collection C of objects is a 
surjective map F:	𝜔 → 𝐶.  An enumeration 
without repetition is an injective numbering.  
Given two numberings 𝜈 and u, we say that u is 
acceptable with respect to 𝜈, denoted 𝜈 ≤ 𝑢, iff 
there is a total computable function f such that 
𝜈 = 𝑢 ∘ 𝑓. Then 𝑢 is acceptable if it acceptable 
with respect to all numberings.  We say that 𝜈 
and 𝑢 are acceptably equivalent, denoted 𝜈 ≡ 𝑢, 
iff  𝜈 ≤ 𝑢 and 𝑢 ≤ 𝜈.   Note that ≡ is an 
equivalence relation and let ℒ 𝐶  denote the set 
of all numberings of 𝐶 modulo ≡.  It is easy to 
verify that ℒ 𝐶  is an upper semilattice under ≤.  
Furthermore enumerations without repetition 
occur only in the minimal elements of this 
semilattice and acceptable enumerations occur 
only in the greatest element of the semilattice.  
It is well established that these types of 
enumerations do exist. 

In 1958 Friedburg [5] showed that an 
enumeration of the c.e. sets exists without 
repetition.  Goncharov, Lempp, and Solomon 
[6] further generalized this result for n-c.e. sets.  
An interesting result by Suzuki [14] shows that 
an enumeration of the computable sets exists 
without repetition.  However our goal is a set of 
corresponding results for Π"# classes. 

Recently Raichev [10] proved that an 
enumeration of the Π"# classes exists without 
repetition. Using a modification of the 
Friedberg's proof for c.e. sets, he gives an 
enumeration of the Σ"# sets without repetition.  
The corresponding result related to the 
Goncharov-Lempp-Solomon theorem concern-   
-ing differences of Σ"# classes remains unsolved.   

Concerning the Suzuki theorem, we turn to 
decidable Π"# classes. 

A decidable Π"# class is the set of infinite 
paths through a computable tree without dead 
ends.  In one way, decidable Π"# classes 
resemble the recursive sets in the same way that 
Π"# classes resemble the c.e. sets.  In c.e. sets it 
is unknown immediately whether an element 
will show up in an enumeration.  In Π"# classes 
it is also unknown if a branch in the 
corresponding tree will eventually end up as a 
dead end.  However in computable sets and 
decidable Π"# classes (given the proper 
representation) such things are known.  Given 
the result of Suzuki, it seems plausible that 
decidable Π"# classes can be enumerated without 
repetition. 

To show such an enumeration exists it is 
natural to follow Friedburg's approach, utilized 
by Odifreddi, Goncharov, Lempp, Solomon, 
Raichev, and others.  We attempt to do so but 
with surprising results.  Under the assumption 
that every computable tree without dead ends 
shows up in an enumeration of uniformly 
computable trees representing all the Π"# classes, 
the proof appears to succeed.  However 
diagonalization immediately provides for a 
computable tree without dead ends not in the 
enumeration.  Therefore although a decidable 
Π"# class may be represented by a computable 
tree without dead ends, its tree may not show up 
in an enumeration of uniformly computable 
trees representing all the Π"# classes.  For some 
decidable Π"# class this is guaranteed to happen.  
Subsequently complexity results for index sets 
for decidable Π"# classes and for computable 
trees without dead ends are distinct.  We note 
that the results on index sets for decidable Π"# 
classes in [2] use the convention that a class 𝑃- 
is decidable iff the corresponding tree 𝑇- has no 
dead ends.  In light of our new theorem, those 
results need to be revisited.  We generalize these 
enumeration results to subfamilies of Π"# classes 
and to trees with ≤ 𝑛 dead ends, for fixed 𝑛.  It 
remains open whether decidable Π"# classes may 
be enumerated without repetition. 
 
2  Numberings of Effectively Closed 
Sets 
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In this section, present some basic notation and 
facts about Π"# classes which lead to different 
methods of enumerating them.  Finally, we 
present six different enumerations of them. 
 
Basic Notations; Facts about 𝚷𝟏𝟎 classes 

The partial computable {0,1}-valued 
functions are indexed as 𝜙- -∈4 and the 
primitive recursive functions as π- -∈4.  As 
usual 𝜙-,T denotes that portion of function 𝜙- 
defined by stage 𝑠.  We use 𝜙- 𝑥 ↓ to mean that 
ϕ- is defined on input 𝑥.  Similarly 𝜙- 𝑥 ↑ 
signifies that the function is undefined.  We 
shall use σ and τ to represent strings in 𝜔64. Let 
𝜏 ∈ 𝜔 denote the usual code for a finite string.  

Recall that 𝑇 ⊆ 𝜔64 is a tree iff it is closed 
under initial segments.  Let 𝑇  be the set of 
infinite paths through the tree 𝑇.   𝑃 is a 𝛱"# class 
iff 𝑃 = 𝑇  for some computable tree 𝑇.  We 
have the following result from [2]. 

  
Proposition 1.  For any class 𝑃 ⊂ 𝜔4 the 
following are equivalent: 

(a) 𝑃 = [𝑇] for some computable tree       
𝑇 ⊂ 𝜔64;  

(b) 𝑃 = [𝑇] for some primitive recursive 
tree 𝑇; 

(c) 𝑃 = 𝑥: ∀𝑛 𝑅 𝑛, 𝑥 , for some 
computable relation 𝑅; 

(d) 𝑃 = [𝑇] for some 𝛱"# tree 𝑇 ⊂ 𝜔64. 
 
Following this proposition, Cenzer and Remmel 
mention two possible numberings of the Π"# 
classes that occur as a consequence.  We 
develop these concepts here. 
 
Numbering 1: Primitive Recursive Functions 

For each 𝑒, 𝑈- = ∅ ∪ 𝜎: ∀𝜏 ⊑
𝜎 	𝜋- 𝜏 = 1  defines a primitive recursive 
tree.  To see that this enumeration contains all 
primitive recursive trees, observe that if 
𝜎:	𝜋- 𝜎 = 1  is a tree then 𝑈- is that tree.  By 

part (b), 𝑒 ↦ 𝑈- is a tree enumeration of the Π"# 
classes. 
         
Numbering 2: Total Computable Functions 

Since the complexity of the set Tot of 
indices for total computable functions is ΠA#, any 
numbering 𝜔 → Tot must naturally be non-

effective.  We include such a result as such an 
example. 

Let Λ = 𝑒 ∈ Tot	and	𝑇- = 𝜎:𝜙- 𝜎 =
1 	is	a	tree .  By part (a), Λ ⊆ ω is an indexing 
of all Π"# classes.  To obtain a numbering, we 
will define a map on all of ω by defining the 
mapping on Λ.  We consider the method of 
proving (a)	→ (b) in Proposition 1.  One can 
show that if 𝑃 = [𝑇-] with computable 𝑇- then 
[𝑇-] = [𝑆-] with primitive recursive  

𝑆- = 𝜎: ∀𝑛 < 𝜏 ¬𝜙-, z 𝜏 ↾ 𝑛 = 0 . 
Now consider the following proposition. 
 
Proposition 2. [2, p. 9] 

(i) There exists a primitive recursive 
function 𝜙 such that if 𝜙- defines a 
computable tree 𝑇- then 𝑆- = 𝑈} - .  So 
[𝑇-] = [𝑈} - ]. 

(ii) There is a primitive recursive function 𝜋 
such that, for each 𝑒, 𝑈- = 𝑇~ - . 

 
The following is a numbering of the Π"# classes 
based on an indexing of trees 

𝑇- = 𝜎:𝜙- 𝜎 = 1  
arising solely from the total 0,1 -computable 
functions in 𝜙- -∈4. 
 

𝑒 ↦
𝑇-										 if	𝑒 ∈ Tot	and	𝑇-	is	a	tree
𝑇~ } - otherwise																												 

 
In [1], Cenzer describes two other methods of 
enumerating the Π"# classes. 
 
Numbering 3: Computably Enumerable Sets 
Utilizing part (d) of Proposition 1,  
																							𝑃- = 𝜔4\ 𝐼(𝜎%)%∈=>   
gives an enumeration of the Π"# classes.  We 
officially denote it by  
𝑒 ↦ 𝜎: ∀ 𝑚, 𝑠 𝜙-,T 𝑚 ↓	⇒ 	𝜎 ⋣ 𝜎}>,� & . 

  
Numbering 4: C.E. Sets (Primitive Recursive 
Version) 

Modifying the previous numbering we can 
get an numbering that has the dual feature of 
being a enumeration of uniformly primitive 
recursive trees and being based on the c.e. sets.  
This numbering is given by  

    𝑒 ↦ 𝜎: ∀𝜏 ⊑ 𝜎 𝜏 ∉ 𝑊-, � .   
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We call this the standard numbering of the Π"# 
classes. 

Another method commonly found in the 
literature (see [8], for example) utilizes a 
version of Halting Problem concerned with 
diagonal computation with oracles. 
 
Numbering 5: The Halting Problem 

Consider the mapping 𝜓:𝜔 →{class of all 
Π"#	trees} given by 𝑒 ↦ 𝜎: ∀𝑠 𝜙-,T� 𝑒 ↑ .  
From part (d) of the proposition,  𝜓 𝑛  codes a 
Π"# class for all 𝑛.  To show that Im(𝜓) codes all 
Π"# classes, let 𝜑 be any numbering of the Π"# 
classes given by trees.  We show that there is a 
computable function 𝑔 such that 𝜑 = 𝜓 ∘ 𝑔.  
For all 𝑛 let 𝜙3 -

� 𝑛  be defined only if 𝜎 ∉
𝜑 𝑒 .  Then 𝜎 ∈ 𝜓 ∘ 𝑔 𝑒 ⟺ 𝜙3 -

� 𝑔 𝑒 ↑	 
⟺ 𝜎 ∈ 𝜑 𝑒 . 
 
Numbering 6: Universal 𝚷𝟏𝟎 Relation 

There is a universal Π"# relation 𝑈 ⊆
𝜔	×	24 such that if 𝐷 𝑥  is a Π"# relation then 
there is an 𝑒 ∈ 𝜔 such that 𝐷 𝑥 ↔ 𝑈 𝑒, 𝑥       
[7, p. 78].  Therefore by part (c), 𝑒 ↦
𝑥:𝑈 𝑒, 𝑥  is a numbering of the Π"# classes. 

We may obtain a tree numbering as 
follows.  Suppose that 

𝑈 𝑒, 𝑥 = ∀𝑛 𝑅 𝑛, 𝑒, 𝑥  
where 𝑅 is a computable relation. There is a 
computable function 𝜈 and a computable 
functional Φ� -  such that 𝑅 𝑛, 𝑒, 𝑥 	⇔
Φ� -
� 𝑛 = 1 and ¬𝑅 𝑛, 𝑒, 𝑥 ⇔ Φ� -

� 𝑛 =
0.  Define the tree  

S� - = 𝜎: ∀𝑛 < 𝜎 Φ� -
� 𝑛 = 1 . 

Then 𝑥: 𝑈 𝑒, 𝑥 = S� -  and we obtain the 
numbering 𝑒 ↦ S� - . 
 
We used each part of Proposition 1 to give 
different numberings for the Π"# Classes.  
Numbering 2 has the distinct feature of being 
non-effective.  Collectively, however, each 
shared the common feature that they could 
ultimately be considered numberings of trees.  
This is due to the very definition of a Π"# class 
as the set of infinite paths through a computable 
tree.  In this next section we consider which of 
these are numberings are acceptably equivalent 
to one another. 

3  Acceptable Numberings of Effect-      
-ively Closed Sets 

In this section we consider the notion of 
acceptably equivalent numberings of Π"# classes 
and show that all of the enumerations given in 
the previous section are acceptably equivalent, 
up to the complexity of a given numbering.  This 
expands upon the corresponding work for 
partial computable functions.  We have the 
following.  
 
Theorem 3. [13, p. 25]  Consider the standard 
numbering 𝜑 of the partial computable 
functions 𝜙- -∈4 which represents an effective 
listing of all Turing programs.  Let 𝜓 be any 
acceptably equivalent numbering.  Then there is 
a computable permutation 𝑝 of 𝜔 such that   
𝜑 = 𝜓 ∘ 𝑝. 
 
The proof is similar to our result in Theorem 5.  
It uses the following proposition, also found in 
[13, p 25], whose proof utilizes the same 
construction used to prove the Myhill Isomor-     
-phism Theorem. 
 
Proposition 4.  Let 𝜔 = 𝐴%% = 𝐵%% 	where 
the sequences 𝐴% %∈4 and 𝐵% %∈4 are each 
pairwise disjoint.  Let 𝑓 and 𝑔 be injective 
computable functions such that 𝑓 𝐴% ⊆ 𝐵% 
and 𝑔 𝐵% ⊆ 𝐴% for all 𝑛.  Then there is a 
computable permutation 𝑝 such that 𝑝 𝐴% =
𝐵% for all 𝑛. 
 
So any two acceptably equivalent numberings 
yield the same computable content since there is 
a computable permutation that can switch back 
and forth between the indices.  The same is true 
in Π"# classes. 
 
Theorem 5.  Let 𝜑 be the standard numbering 
of the 𝛱"# classes. Let 𝜓 be any acceptably 
equivalent numbering.  Then there is a comput-
-able permutation 𝑝 of 𝜔 such that 𝜑 = 𝜓 ∘ 𝑝. 
 
Proof:  Recall that 𝜑 is represented by 𝑒 ↦ 𝑃- =
𝜎: ∀𝜏 ⊑ 𝜎 𝜏 ∉ 𝑊-, � .  We shall represent 
𝜓 by 𝑒 ↦ 𝑄-.  Since 𝜑 and 𝜓 are acceptably 
equivalent there are total computable functions 
𝑓 and 𝑔 such that for all 𝑥, 𝑃0 - = 𝑄- and 
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𝑄3 - = 𝑃-.  Let 𝑘# = 0  and let 𝑘% be the least 
𝑎 such that 𝑃� ≠ 𝑃�� ∀𝑚 < 𝑛 .   Define 𝐺% =
𝑒: 𝑃- = 𝑃��  and 𝐻% = 𝑒: 𝑄- = 𝑃�� .  Then 
𝜔 = 𝐺%% = 𝐻%% 	and the sequences 
𝐺% %∈4 and 𝐻% %∈4 are each pairwise 

disjoint.  Furthermore 𝑓 𝐻% ⊆ 𝐺% and 
𝑔 𝐺% ⊆ 𝐻%.  To complete the proof it suffices 
by Proposition 4 to convert 𝑓 and 𝑔 into 
injective computable functions 𝑓" and 𝑔" 
satisfying the same property. 
 
Convert 𝑓 to 𝑓":  

𝑓 satisfies 𝑃0 - = 𝑄- and 𝑓 𝐻% ⊆ 𝐺%.  
Now 𝑓 may not be injective, but since 𝑓 𝑒  is in 
the standard numbering, the Padding Lemma for 
c.e. sets applies.  Therefore there is a 
computable function ℎ such that 𝑊� = 𝑊¡ ¢,�  
for all 𝑖 and 𝑎, and if 𝑖 ≠ 𝑗 then ℎ 𝑖, 𝑎 ≠ ℎ 𝑗, 𝑏  
for any 𝑎 or 𝑏.  Let 𝑓" 𝑒 = ℎ 𝑒, 𝑓 𝑒 .  Then 
𝑓" satisfies 𝑃0¦ - = 𝑄- and 𝑓" 𝐻% ⊆ 𝐺%.  
Furthermore 𝑓" is injective. 
 
Convert 𝑔 to 𝑔": 

To define 𝑔" we must be able (uniformly in 
𝑒) to effectively generate an infinite set 𝑆- of 
indices such that for each 𝑖 ∈ 𝑆- we have that 
𝑄¢ = 𝑄3 - .  We can then ensure that 𝑔" is 
injective, similar to the argument as for 𝑓".  We 
cannot use the Padding Lemma since that 
requires the standard numbering.  So we use a 
different approach. 

Take any two disjoint computably 
inseparable c.e. sets 𝐴 and 𝐵.  Let 𝑎#, 𝑎", 𝑎A, ... 
be an enumeration of 𝐴 without repetition.  Let 
𝐴% and 𝐵% denote the sets 𝐴 and 𝐵, respectively, 
up to stage 𝑛.  Also let 𝑇#, 𝑇", 𝑇A, ... be a tree 
enumeration of the Π"# classes.  \space For any 
𝜎 ∈ 𝜔4, let 𝐸� = 1 if 𝜎 	is even and 0 
otherwise.  Now let 𝑒, 𝑖 ∈ 𝜔.  Consider the 
computable relation 𝑃 𝑒, 𝑖, 𝜎  defined by: 
𝑃 𝑒, 𝑖, 𝜎 ↔	 

𝜎 ∈ 𝑇-		or 
(𝜎 ⊑ 0�¨©"1�¦©"0�ª©"... 𝐸�

� « ©" and 𝑖 ∉ 𝐴 � ) 
Define computable trees 𝑇� -,¢  and 𝑇¬ -,¢  

as follows: 
𝜎 ∈ 𝑇� -,¢ ↔ 𝑃 𝑒, 𝑖, 𝜎  AND 𝑖 ∉ 𝐵 �  
𝜎 ∈ 𝑇¬ -,¢ ↔ 	𝑃 𝑒, 𝑖, 𝜎     

It follows that 𝑃� -,¢  and 𝑃¬ -,¢  are given by: 

𝑃� -,¢ =
𝑃-																																			 if	𝑖 ∈ 𝐴						
∅																																				 if	𝑖 ∈ 𝐵						
𝑃- ∪ {0�¨©"1�¦©". . . } otherwise

 

𝑃¬ -,¢ =
𝑃-																																		 if	𝑖 ∈ 𝐴					
𝑃- ∪ {0�¨©"1�¦©". . . } otherwise 

 
Let 𝐶- = 𝑘 𝑒, 𝑖 : 𝑖 ∈ 𝐴  and 𝐷- = 𝑙 𝑒, 𝑖 : 𝑖 ∈
𝐴 .  We claim that for each 𝑒, 𝑆- = 𝑔 𝐶- ∪
𝑔 𝐷-  is infinite, thereby completing the proof.  
To show this, we shall prove that either 𝑔 𝐶-  
or 𝑔 𝐷-  is infinite. There are two cases. 

Case I: 𝑃- ≠ ∅ .  It follows that for some 
distinct 𝑚 and 𝑛, that 
							 𝑘 𝑒, 𝑖 : 𝑖 ∈ 𝐴 ⊆ 𝑎: 𝑃� = 𝑃- ⊆ 𝐺% and 
							 𝑘 𝑒, 𝑖 : 𝑖 ∈ 𝐵 ⊆ 𝑎: 𝑃� = ∅ ⊆ 𝐺&   
are disjoint.  Now since 𝑄3 - = 𝑃- for all 𝑒, 
after applying 𝑔 to each set the new sets remain 
disjoint.   If 𝑔 𝐶-  is finite, say 𝑔 𝐶- = 
{𝑐", 𝑐A,	...	, 𝑐¬}, then 
𝐶-± = 𝑖 ∈ 𝜔: 𝑔 𝑘 𝑒, 𝑖 ∈ 𝑐", 𝑐A, . . . , 𝑐¬  

is computable and 𝐴 ⊆ 𝐶-±  and 𝐵 ∩ 𝐶-± = ∅, 
contrary to 𝐴 and 𝐵 being computably 
inseparable.  Therefore 𝑔 𝐶-  is infinite. 

Case II: 𝑃- = ∅ . It follows that  
{0�¨©"1�¦©"...}	∉ 𝑃- 

so that 𝑃- ≠ 𝑃- ∪	{0�¨©"1�¦©"...}.  By a similar 
argument to that above, 𝑔 𝐷-  is infinite. QED 
 
Next we show that all of our numberings are 
acceptably equivalent up to the complexity of a 
given numbering. We use all the same notation 
as before and use 𝑒 ↦ 𝑇- to denote a specific 
tree numbering of the Π"# classes.   
 
Theorem 6.  In the notation of the previous 
section, each of the following is a numbering of 
the 𝛱"# classes: 
 

(1) Primitive Recursive Functions 
𝑒 ↦ ∅ ∪ 𝜎: ∀𝜏 ⊑ 𝜎 𝜋- 𝜏 = 1   

(2) Total Computable Functions 

𝑒 ↦
𝑇-										

𝑖𝑓	𝜙-	𝑖𝑠	𝑡𝑜𝑡𝑎𝑙	&								
𝜎: 𝜙- 𝜎 = 1 	 	

𝑖𝑠	𝑎	𝑡𝑟𝑒𝑒													
	

𝑇~ } - 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																					
 

(3) Computably Enumerable (C.E.) Sets 
𝑒 ↦ {	𝜎: ∀ 𝑚, 𝑠 		[𝜙-,T 𝑚 ↓			⇒
																																			𝜎 ⋣ 𝜎}>,� & 	]}  
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(4) C.E. Sets (Partial Recursive Version)  
𝑒 ↦ 𝜎: ∀𝜏 ⊑ 𝜎 	 𝜏 ∉ 𝑊-, �  

(5) The Halting Problem 
𝑒 ↦ 𝜎: ∀𝑠 	𝜙-,T� 𝑒 ↑  

(6) Universal 𝜫𝟏
𝟎 Relation  

𝑒 ↦ 𝑥:𝑈 𝑒, 𝑥  
Any of these can be considered to be the 
standard numbering in the following sense.  If 𝜑 
and 𝜓 are two distinct numberings, then there 
exists a permutation 𝑝 such that 𝜑 = 𝜓 ∘ 𝑝.  The 
permutation is ∆º# if either 𝜑 or 𝜓 is the 
numbering given in (2).  Otherwise the permut-
-ation is computable. 
 
Proof:  We use the notation (i) → (j) to mean 
that if 𝜑 and 𝜓 are the corresponding 
numberings for (i) and (j) respectively, then 
there is a total 𝜑 -computable function 𝑓 such 
that 𝜑 = 𝜓 ∘ 𝑓.  We show that (i) ↔ (j) for 𝑖 ≠
𝑗.  Then by Theorem 5 we have our result for 
𝑖, 𝑗 ≠ 2.  However the same proof given in that 
theorem demonstrates that if 𝑖 = 2 then the 
permutation is ΠA#.  Our proof closely models the 
proof, as given in [2], of Proposition 1.  Note 
that according to this result, (2) is of form (a), 
((1), (4)) are of form (b), (6) is of form (c), and 
((3), (5)) are of form (d).  Accordingly, we show 
(2)	→ ((1), (4))	→ (6)	→ ((3), (5))	→ (2).  To 
obtain the result for 𝑖 ≠ 2 we also show ((3), 
(5)) → ((1), (4)). 
 
(2) → (1), (4).  Let 𝜑, 𝜓, and 𝛾 be the 
numberings for (2), (1), and (4) respectively.  
Let 𝛿 𝑒  denote the index of the tree 𝜑 𝑒 = 
𝑇½ - .  For each 𝑒 ∈ 𝜔, define the primitive 
recursive tree  

𝑆- = 𝜎: ∀𝜏 ⊑ 𝜎 ¬𝜙½ - , � 𝜏 = 0 . 
We show that 𝜑 𝑒 = 𝑆- .  Now 𝑆- ⊆ 𝜑 𝑒 , 
so that 𝑆- ⊆ 𝜑 𝑒 .  Now suppose that 𝑥 ∉
𝑆- . Then for some 𝑛, 𝑥 ↾ 𝑛 ∉ 𝑆-.  So there is 

some 𝑚 such that 𝜙½ - ,& 𝑥 ↾ 𝑛 = 0.  Then for 
any 𝑘 > max 𝑚, 𝑛 , we have that 𝑥 ↾ 𝑘 ∉ 𝜑 𝑒 .  
It follows that 𝑥 ∉ 𝜑 𝑒 . 

Now use the 𝑆%& Theorem to get a ∆º#-
function 𝑔 such that 𝜋3 - 𝜎 = 1 ⟺ ∀𝜏 ⊑
𝜎 ¬𝜙½ - , � 𝜏 = 0.  Then 𝜑 = 𝜓 ∘ 𝑔. We 
also have that 𝜑 = 𝛾 ∘ 𝛿. 
 

(1), (4) → (6).  Let 𝜑,𝜓, and 𝛾 be the number-            
-ings for (1), (4), and (6) respectively.  Define 
the relation 𝑅Á by 𝑅Á 𝑛, 𝑒, 𝑥 ⟺ 	𝑥 ↾ 𝑛 ∈
𝜑 𝑒 .  Let 𝑓Á be a computable function such that 
∀𝑛 𝑅 𝑛, 𝑒, 𝑥 ⟺ 𝑈 𝑓Á 𝑒 , 𝑥 .  Then 𝜑 = 	𝛾 ∘
𝑓Á.  Defining 𝑅Â and 𝑓Â similarly we obtain 
	𝜓 = 		𝛾 ∘ 𝑓	Â.   
 
(6) → (3), (5).  We obtained (6) → (5) in 
discussing Numbering (5).  Now let 𝜑 and 𝜓 
be numberings for (6) and (3) respectively. 
Define 𝜙	3 � - 𝜎  

= 1 if	∃ 𝑛, 𝑠 𝑛 < 𝜎 	&	ΦÄ - ,T
� 𝑛 = 0

↑ otherwise																																															
 

Then 𝜑 = 		𝜓 ∘ 𝑔 ∘ 𝜈 . 
 
(3), (5) → (1), (2), (4).  Let 𝜑, 𝜓, 𝛾, 𝜍, and 𝜄 be 
numberings for (3), (5), (2), (1), and (4), 
respectively.  We have, for all 𝑒,  

𝜑 𝑒 = 𝜎: ∀𝑛 𝑅Á 𝑛, 𝑒, 𝜎  
with 𝑅Á a recursive relation.  Define the 
computable tree  
𝑇0 - = 𝜎: ∀𝑚, 𝑛 ≤ 𝜎 𝑅Á 𝑚, 𝑒, 𝜎 ↾ 𝑛 . 

Define 𝑇3 -  similarily utilizing the recursive 
relation 𝑅Â.  Then 𝜑 = 𝛾 ∘ 𝑓 and 𝜓 = 𝛾 ∘ 𝑔.  

Now utilize the methods of (2) → (1),(4) 
with 𝑇0 - , 𝑇3 -  in place of 𝑇½ -  to obtain 
computable 𝑓±, 𝑔± such that 𝜑 = 𝜍 ∘ 𝑓± and 𝜓 =
𝜍 ∘ 𝑔±; note that 𝜑 = 𝜄 ∘ 𝑓 and 𝜓 = 𝜄 ∘ 𝑔.    QED                                          
 
It remains open whether these enumerations 
only occur in the greatest element of the semi-
lattice ℒ 𝒫 , where 𝒫 is the class of all Π"# 
classes.  We already have a nice example of an 
element occuring in a minimal element if this 
semilattice, namely an enumeration of all Π"# 
classes without repetition.  The next section is 
motivated by the result of Suzuki that there is an 
enumeration without repetition of the 
computable sets.  We will study decidable Π"# 
classes occuring in enumerations of Π"# classes. 
 
4  Decidable Effectively Closed Sets in 
Numberings 
A Π"# class may be represented by many 
different computable trees.  However decidable 
Π"# classes are unique in that each decidable 
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class 𝐷 has a unique computable tree without 
dead ends that represents it.  Although every 
enumeration of the Π"# classes necessarily 
contains every decidable Π"# class, the unique 
tree without dead ends does not have to show up 
in the enumeration.  In fact this is guaranteed to 
occur for some decidable Π"# class in an 
effective enumeration of uniformly computable 
trees giving rise to all Π"# classes.  As a result, 
index sets for decidable Π"# classes and for 
computable trees without dead ends are distinct 
both as sets and in complexity.  Previous results 
in [2] make no such distinction and 
consequently must be revisted.  We generalize 
the enumeration results to subfamilies of Π"# 
classes and to trees with ≤ 𝑛 dead ends.  We 
devote the rest of this paper towards proving 
these results. 
 
Definition 7.  A tree 𝑇 ⊆ 264 and a set 𝑇  are 
clopen iff there is a nonempty finite set 𝑆 ⊆ 𝜔 
such that 𝑇 = ∅ or 𝑇 = 𝜎: 𝜎 ⊑ 𝜎¢	𝑜𝑟	𝜎¢ ⊑
𝜎	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑖 ∈ 𝑆 . 
 
Clearly a clopen tree 𝑇 has no dead ends.  
Moreover a Π"# class 𝑇 ⊆ 24 is clopen if 
24\ 𝑇  is clopen.  That is 𝑃 = 𝑇  is clopen iff 
𝑃 is a finite union of intervals 𝐼 𝜎% .  Clopen 
sets will play the role for Π"# classes that finite 
sets play for c.e. sets. 
 
Theorem 8.  Given any effective enumeration of 
uniformly computable trees, there exists an 
enumeration without repetition containing all 
clopen trees along with all computable trees 
without dead ends that occur in the enumer-          
-ation. 
 
Proof:  Friedberg [5] uses in his construction of 
c.e. sets without repetition the notion of one c.e. 
set following another, so that in the end the 
constructed set will be the followed set.  We use 
the same term terminology here except in the 
context of one tree following another. 

Let 𝑇#, 𝑇", ... be an effective enumeration of 
uniformly computable trees.  Take, for example, 
the standard enumeration of trees corresponding 
to an effective listing of the Π"# classes.  
Although we don't require 𝑇- -∈4 to contain all 
clopen trees, we assume, without loss of 

generality, that they already contain them.  We 
will construct, in stages, a sequence of follower 
trees 𝑆#, 𝑆", ...  to prove the theorem. 

At stage 𝑖 we will ensure that we have      
𝑖 + 1 trees 𝑆#, 𝑆", ..., 𝑆¢, constructed up to level 
2¢, following trees 𝑇 É¨,�Ê ,	... , 𝑇 É¨,�Ê  𝑘¢ ∈
𝑚, 𝑛 	which are each pairwise distinct at level 
2¢.  Also, at stage 𝑖, initially some of the 𝑆¢ will 
have the status of being marked 𝑘¢ = 𝑚  in 
which case 𝑆¢ will continue to follow 𝑇 ÉÊ,&  
forever.  If not, then 𝑆¢ is not marked 𝑘¢ = 𝑛  
and we determine for each 𝑖, if 𝑆¢ should be 
marked.  If an 𝑆¢ needs to be marked then we 
determine a tree 𝑇 ÉÊ,&  that it shall hereafter 
follow.  Otherwise each 𝑆¢ continues to follow 
𝑇 ÉÊ,%  and the stage is complete. 
 
Construction: 
 
Stage 0.  Find the first tree 𝑇¢ such that 𝑇¢ ∩
0,1 A¨ ≠ ∅.  Denote this tree as 𝑇 É¨,% , and 

define 𝑆# = 𝑇 É¨,% ∩ 0,1 ËA¨. 
 
Stage j+1.  𝑆#, ..., 𝑆Ì have already been 
constructed up to level 2Ì and are already 
following trees 𝑇 É¨,�Í ,	... , 𝑇 ÉÍ,�Í .  We 
perform the following two actions at this stage: 

(1) Construct 𝑆#, ..., 𝑆Ì up to level 2Ì©" by 
determining the trees 𝑇 É¨,�ÍÎ¦ ,	..., 
𝑇 ÉÍ,�ÍÎ¦  they shall follow, and 

(2) Construct a new tree 𝑆Ì©" up to level 2Ì©" 
 
Action (1).  Let 𝑈Ì©" ={ 𝑆¢, 𝑘Ì : 𝑘Ì = 𝑛 

and 𝑇 ÉÊ,�Í  has dead ends at level 2Ì©"}.  All 𝑆¢ 
such that 𝑆¢, 𝑘Ì ∉ 𝑈Ì©" keep their status as 
marked or unmarked, so 𝑘Ì = 𝑘Ì©", and 
continue to follow 𝑇 ÉÊ,�ÍÎ¦ .  Those 𝑆¢ such that 
𝑆¢, 𝑘Ì ∈ 𝑈Ì©" will hereafter be marked and 

will now follow the tree 𝑇 ÉÊ,&  given by 
𝑇 ÉÊ,& ={𝜎: 𝜏 ⊑ 𝜎 or 𝜎 ⊑ 𝜏 for some 𝜏 ∈ 𝑇 ÉÊ,%  
of length 2Ì}.  Note that each marked 𝑆¢ follows 
a clopen tree 𝑇 ÉÊ,& . 

Action (2).  Let 𝑆Ì©", 𝑛  be the least 𝑖 such 
that 𝑇¢ is distinct from all 𝑇 ÉÊ,�ÍÎ¦  𝑖 ≤ 𝑗  at 
level 2Ì©" and such that 𝑇¢ has no dead ends.  
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Define 𝑆Ì©" = 𝑇 ÉÍÎ¦,% ⋂ 0,1 ËÌ©".  This comp-
-letes the construction. 
 
Verification: 
We now verify that: 

(i) For each 𝑖, limÌ𝑇 ÉÊ,�Í ↓	= 𝑆¢ = 	𝑇%Ê for 
some 𝑇%Ê	without dead ends 

(ii) ∀𝑖 (𝑇¢ has no dead ends → ∃𝑐	𝑇¢ = 𝑆Ñ) 
(iii)  𝑖 ≠ 𝑗 ⟶ 𝑆¢ ≠ 𝑆Ì  

 
Verification of (i).  For all 𝑗, 𝑘Ì = 𝑛 or 𝑘Ì = 𝑚.  
Fix 𝑖.  By Action (2), at stage 𝑖, 𝑆¢, 𝑘¢ =
𝑆¢, 𝑛 .  By Action (1), 𝑘¬ = 𝑘¬©" = 𝑛 for all 𝑙 >
𝑖 if 𝑆¢ is never marked.  If 𝑆¢ is marked at stage 
𝑟 > 𝑖, then for all 𝑠 ≥ 𝑟, 𝑘T = 𝑘T©" = 𝑚.  In 
either case limÌÔ¢𝑘Ì ↓ so that limÌ 𝑆¢, 𝑘Ì   
converges to 𝑆¢, 𝑛  or 𝑆¢,𝑚 .  If it converges 
to 𝑆¢,𝑚  then 𝑆¢ never diverges from following 
the clopen tree 𝑇 ÉÊ,& .  Otherwise 𝑆¢ is never 
marked and continually follows 𝑇 ÉÊ,% .  Since it 
is never marked it means that 𝑇 ÉÊ,%  never has 
dead ends up to level 2Õ, for all 𝑟 > 𝑖.  So 𝑇 ÉÊ,%  
is a tree without dead ends.  Either way 
limÌ𝑇 ÉÊ,�Í ↓= 𝑇%Ê for some tree 𝑇%Ê without 
dead ends.  Now for all 𝑛, 𝑆¢ ∩ 0,1 Ë% =
𝑇 ÉÊ,�� ∩ 0,1 Ë% and 𝑇 ÉÊ,�� ⊆ 𝑇 ÉÊ,��Î¦ .  
Therefore 𝑆¢ = limÌ𝑇 ÉÊ,�Í = 𝑇%Ê. 
 
Verification of (ii).  Let 𝑇¢ be a tree without 
dead ends.  There are two cases.  If there is a 
stage 𝑗 and a 𝑐 such that 𝑇¢ = 𝑇 ÉÖ,&  at stage 𝑗, 
then by the constrction 𝑇¢ = 𝑆Ñ.  If not, let 𝚤 
equal the least 𝑘 such that 𝑇� = 𝑇¢.  Let 𝑗 be 
large enough so that 𝑇Ø differs from 𝑇- at level 
2Ì for all 𝑒 < 𝚤.  If at stage 𝑗 there already exists 
a 𝑐 such that 𝑇Ø = 𝑇 ÉÖ,%  then clearly 𝑇¢ = 𝑆Ñ.  
Otherwise, by Action (2), some tree 𝑆Ñ follows 
𝑇Ø by no later than stage 𝑗 + 𝚤.  
 
Verification of (iii).  By Action (2), 𝑆¢ is 
distinct from all 𝑆Ì (𝑗 < 𝑖) at level 2¢ and from 
all 𝑆Ì (𝑗 > 𝑖) at level 2Ì; 𝑆¢ ≠ 𝑆Ì if 𝑖 ≠ 𝑗.       QED   
                                       
Corollary 9.  In any enumeration of uniformly 
computable trees, there is a computable tree 
without dead ends that does not occur in the 
enumeration. 

Proof:  Suppose not.  Theorem 8 provides for 
an enumeration 𝑆#, 𝑆", 𝑆A, ... without repetition 
of all computable trees without dead ends.  We 
use a diagonalization argument to construct a 
tree 𝑇 so that for all 𝑛,  

𝑇⋂ 0,1 %©" ≠ 𝑆%⋂ 0,1 %©". 
At stage 0 let 𝑇⋂ 0,1 # = ∅ . At stage 𝑛 + 1 
we are given that 𝑇⋂ 0,1 % is nonempty.  
Therefore there are at least 2 subtrees of 
0,1 %©" extending 𝑇⋂ 0,1 %.  Define 𝑇⋂ 
0,1 %©" to be an extension which is different 

from 𝑆%⋂ 0,1 %©".                                       QED 
 
Corollary 10.  Let T- -∈4 be the standard 
enumeration of the Π"# classes.  Then there is a 
decidable Π"# class 𝑃 such that 𝑃 ≠ 𝑇-  for any 
𝑇- without dead ends. 
 
As a result of this corollary, {𝑒: 𝑇- has no dead 
ends}	≠ { 𝑒: 𝑃- = 𝑇-  is decidable}.  In fact 
both have distinct complexities.  Let Ext 𝑃- = 
𝜎: ∀𝜎 ∈ 𝑇- ∀𝑛 ∃𝜏 ∈ 0,1 % 	𝜎 ∥ 𝜏 ∈ 𝑇-  

where ∥ denotes concatenation.  By König's 
Lemma, since the trees are subsets of 264, this 
set is Π"#.  Therefore {𝑒: 𝑇- has no dead 
ends}	= 𝑒: 𝑇- = Ext 𝑃-  is Π"#.  However, 
{𝑒: 𝑃- is decidable} 

=	{𝑒: 𝑃- = [𝑇] for some computable 𝑇     
                         without dead ends} 
=	{𝑒: ∃𝑎 	𝜙� is a characteristic     
                        function for Ext(𝑃-)} 

Therefore this latter set is ∑A#.  In [2], no 
distinction is made between these sets or their 
complexities.  In light of these surprising results, 
the results of [2] must be revisited. We 
generalize Theorem 8. 
 
Corollary 11.  Let 𝒫% ={𝑃 = 𝑇  is a Π"# class 
and 𝑇 has ≤ 𝑛 dead ends}.  Then in any 
enumeration (of a subfamily) of Π"# classes by 
uniformly computable trees, there is a Π"# class 
[𝑇] ∈ 𝒫% such that there is no 𝑒 such that 𝑇- has 
≤ 𝑛 dead ends and 𝑇- = 𝑇 .   
 
Proof:  Modify the proof of Theorem 8 so that 
for fixed 𝑛, trees become marked only if they 
are discovered to have > 𝑛 dead ends.  We leave 
details to the reader.                                       QED 
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In particular, the previous result is true for the 
standard numbering and also the numbering 
done via the primitive recursive functions.  
Future research in this area will include the 
enumeration of differences of Π"# classes as well 
as  the complexity of index sets for decidable Π"# 
classes. 
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